World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soil Properties, and Soil Organic Carbon Stocks of Tropical Andosol Under Different Land Uses
Open Journal of Soil Science, 2013, 3, 153-162 153 http://dx.doi.org/10.4236/ojss.2013.33018 Published Online July 2013 (http://www.scirp.org/journal/ojss) Soil Properties, and Soil Organic Carbon Stocks of Tropical Andosol under Different Land Uses Girma Abera*, Endalkachew Wolde-Meskel School of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia. Email: *girmajibat2006 @yahoo.com Received December 21st, 2012; revised April 21st, 2013; accepted April 29th, 2013 Copyright © 2013 Girma Abera, Endalkachew Wolde-Meskel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Land use effect of tropical Andosol, with two from crop lands (Site 1 and Site 2) and one from Agroforestry coffee plantation (Site 3) was explored under laboratory conditions to understand their physical, chemical and biological prop- erties and soil organic carbon (SOC) stocks from the rift valley of Ethiopia. Site 3 that acquired less cultivation than others exhibited better aggregate size fraction (AF, 55%), higher aggregate stability (AS, 91%), and greater active mi- crobial biomass (AMB), reflecting better soil structure development. Comparatively, higher total carbon (TC), organic carbon (OC) and total nitrogen (TN) concentrations were recorded in bulk soils and microaggregate fractions of Site 2 and Site 3 than in intensively cultivated Site 1. As expected, microaggregate fractions displayed greater OC and TN than bulk soils across all land uses. Site 1 revealed higher metabolic quotient (qCO2) and lower SOC stock (2.1 Mg·ha−1), suggesting microbial stress, while micro nutrients deficiencies were observed with the alkaline soil (Site 2). -
Fate of Organic Carbon in Paddy Soils – Results of Alisol and Andosol Incubation with 13C Marker
Geophysical Research Abstracts Vol. 18, EGU2016-17404, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. Fate of organic carbon in paddy soils – results of Alisol and Andosol incubation with 13C marker Pauline Winkler (1), Chiara Cerli (2), Sabine Fiedler (3), Susanne Woche (4), Sri Rahayu Utami (5), Reinhold Jahn (1), Karsten Kalbitz (6), and Klaus Kaiser (1) (1) Soil Science, Martin Luther University Halle-Wittenberg, Germany, (2) Earth Surface Science, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands, (3) Soil Science, Johannes Gutenberg University Mainz, Germany, (4) Soil Science, Leibniz University Hannover, Germany, (5) Faculty of Agriculture, Brawijaya University, Malang, Indonesia, (6) Soil Science & Site Ecology, TU Dresden, Germany For a better understanding of organic carbon (OC) decomposition in paddy soils an incubation experiment was performed. Two soil types with contrasting mineralogy (Alisol and Andosol) were exposed to 8 anoxic–oxic cycles over 1 year. Soils received rice straw marked with 13C (228 at the beginning of each cycle. A second set of samples without straw addition was used as control. Headspacesh of the incubation vessels were regularly analysed for CO2 and CH4. In soil solutions, redox potential, pH, dissolved organic C (DOC), and Fe2+ were measured after each anoxic and each oxic phase. Soils were fractionated by density at the end of the experiment and the different fractions were isotopically analysed. Samples of genuine paddy soils that developed from the test soils were used as reference. During anoxic cycles, soils receiving rice straw released large amounts of CO2 and CH4, indicating strong micro- bial activity. -
Plant Uptake of Radionuclides in Lysimeter Experiments
AT9900006 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek F. Strebl B. Temmel June 1998 OEFZS—4820 SEIBERSDORF 30-20 / OEFZS-4820 June 1998 Plant uptake of radionuclides in lysimeter experiments In: Environmental Pollution 99 (1998) 93-103 M.H. Gerzabek, F. Strebl, B. Temmel Department of Environmental Research Division of Life Sciences ENVIRONMENTAL POLLUTION ELSEVIER Environmental Pollution 99 (1998) 93-103 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek*, F. Strebl, B. Temmel Austrian Research Centre Seibersdorf, Division of Life Sciences, A-2444 Seibersdorf Austria Received 20 June 1997; accepted 15 October 1997 Abstract The results of seven years lysimeter experiments to determine the uptake of 60 Co, 137Cs and 226 Ra into agricultural crops (endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass) are described. The lysimeter consists of twelve monolithic soil profiles (four soil types and three replicates) and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and semi-arid summers and humid winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8°C). Besides soil-to-plant transfer factors (TF), fluxes were calculated taking into account biomass production and growth time. Total median values of TF’s (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg" 1) to ,37Cs (0.043 kg kg" 1) and 60 Co (0.018 kg kg" 1); flux values exhibited the same ranking. The varying physical and chemical proper ties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for l37Cs and 226 Ra, but not for 60 Co. -
Artificial Chinampas Soils of Mexico City
!"#$%&$'()Chinampas)*+$(,)+-) ./0$&+)1$#23)#4/$")5"+6/"#$/,) '78)*'($7$9'#$+7):'9'"8, Suelos artificiales de chinampas de la Ciudad de México: propiedades y riesgos de salinización Solos artificiais da cidade do México - Chinampas: propriedades e riscos de salinização AUTHORS Received: 24.03.2011 Revised: 02.06.2011 Accepted: 24.06.2011 1 Ramos Bello, R. ABSTRACT García Calderón, 1 N.E. !e chinampas agriculture is a traditional land use practice in the Valley of Mexico since Pre-Hispa- nic time. !e chinampas soils were constructed by excavation of lake sediments that resulted in the Ortega Escobar, 2 H.M. creation of a system of islands separated by channels. !e agricultural productivity of these artificial soils was high; also the land use practices included forestry, fish breeding and hunting. Nowadays, 3@ Krasilnikov, P. the chinampas soils are affected by excessive salinity. We studied 10 representative soil profiles in the pavel.krasilnikov@ gmail.com chinampas zone of Mexico City in order to characterize their properties and origin, to provide their classification, and to evaluate soil salinization, vertical distribution of the salts and their chemical composition. !e soils are characterized by a layered structure, uniform dark grey colour, irregular vertical distribution of organic carbon and clay, and high percentage of carbon. Some soils show an @ Corresponding Author increase in organic matter with depth, and other profiles have maximum organic matter content in the surficial layers and in the subsoil. !e dynamics of sedimentation resulted in the decrease in 1 Facultad de Ciencias, organic matter in the upper layers of lacustrine sediments, because of recent increase in erosion rate UNAM, México. -
A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible Through Initial and Repeated Biochar Application
agronomy Article A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application Ján Horák 1,* , Tatijana Kotuš 1, Lucia Toková 1, Elena Aydın 1 , Dušan Igaz 1 and Vladimír Šimanský 2 1 Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] (T.K.); [email protected] (L.T.); [email protected] (E.A.); [email protected] (D.I.) 2 Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] * Correspondence: [email protected] Abstract: Recent findings of changing climate, water scarcity, soil degradation, and greenhouse gas emissions have brought major challenges to sustainable agriculture worldwide. Biochar application to soil proves to be a suitable solution to these problems. Although the literature presents the pros and cons of biochar application, very little information is available on the impact of repeated application. In this study, we evaluate and discuss the effects of initial and reapplied biochar (both in rates of 0, 10, and 20 t ha−1) combined with N fertilization (at doses of 0, 40, and 80 kg ha−1) on soil properties and N O emission from Haplic Luvisol in the temperate climate zone (Slovakia). Results showed that 2 biochar generally improved the soil properties such as soil pH(KCl) (p ≤ 0.05; from acidic towards Citation: Horák, J.; Kotuš, T.; Toková, moderately acidic), soil organic carbon (p ≤ 0.05; an increase from 4% to over 100%), soil water L.; Aydın, E.; Igaz, D.; Šimanský, V. -
Evolution of Loess-Derived Soil Along a Topo-Climatic Sequence in The
European Journal of Soil Science, May 2017, 68, 270–280 doi: 10.1111/ejss.12425 Evolution of loess-derived soil along a climatic toposequence in the Qilian Mountains, NE Tibetan Plateau F. Yanga,c ,L.M.Huangb,c,D.G.Rossitera,d,F.Yanga,c,R.M.Yanga,c & G. L. Zhanga,c aState Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NO. 71 East Beijing Road, Xuanwu District, Nanjing 210008, China, bKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11(A), Datun Road, Chaoyang District, Beijing 100101, China, cUniversity of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China, and dSchool of Integrative Plant Sciences, Section of Soil and Crop Sciences, Cornell University, Ithaca NY 14853, USA Summary Holocene loess has been recognized as the primary source of the silty topsoil in the northeast Qinghai-Tibetan Plateau. The processes through which these uniform loess sediments develop into diverse types of soil remain unclear. In this research, we examined 23 loess-derived soil samples from the Qilian Mountains with varying amounts of pedogenic modification. Soil particle-size distribution and non-calcareous mineralogy were changed only slightly because of the weak intensity of chemical weathering. Accumulation of soil organic carbon (SOC) and leaching of carbonate were both identified as predominant pedogenic responses to soil forming processes. Principal component analysis and structural analysis revealed the strong correlations between soil carbon (SOC and carbonate) and several soil properties related to soil functions. -
Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa
Article Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa Sara Gonzalez-Rodriguez 1 and Maria Luisa Fernandez-Marcos 1,2,* 1 Department of Soil Science and Agricultural Chemistry, Universidad de Santiago de Compostela, 27002 Lugo, Spain; [email protected] 2 Institute of Agricultural Biodiversity and Rural Development, University of Santiago de Compostela, 27002 Lugo, Spain * Correspondence: [email protected] Abstract: Sorption of oxyanions by soils and mineral surfaces is of interest due to their role as nutrients or pollutants. Volcanic soils are variable charge soils, rich in active forms of aluminum and iron, and capable of sorbing anions. Sorption and desorption of vanadate, arsenate, and chromate by two African andosols was studied in laboratory experiments. Sorption isotherms were determined by equilibrating at 293 K soil samples with oxyanion solutions of concentrations between 0 and 100 mg L−1 V, As, or Cr, equivalent to 0−2.0 mmol V L−1, 0−1.3 mmol As L−1, and −1 0−1.9 mmol Cr L , in NaNO3; V, As, or Cr were determined by ICP-mass spectrometry in the equilibrium solution. After sorption, the soil samples were equilibrated with 0.02 M NaNO3 to study desorption. The isotherms were adjusted to mathematical models. After desorption with NaNO3, desorption experiments were carried out with a 1 mM phosphate. The sorption of vanadate and arsenate was greater than 90% of the amount added, while the chromate sorption was much lower (19–97%). The sorption by the Silandic Andosol is attributed to non-crystalline Fe and Al, while in Citation: Gonzalez-Rodriguez, S.; the Vitric Andosol, crystalline iron species play a relevant role. -
A Review of Four Soil Amendments
Die Bodenkultur: Journal of Land Management, Food and Environment Volume 69, Issue 3, 141–153, 2018. 10.2478/boku-2018-0013 ISSN: 0006-5471 online, © De Gruyter, www.degruyter.com/view/j/boku Research Article Sustainable intensification of agricultural production: a review of four soil amendments Nachhaltige Intensivierung der landwirtschaftlichen Produktion: ein Überblick vier verschiedener Bodenzusätze Katharina Maria Keiblinger1,* Rosana Maria Kral2 1 University of Natural Resources and Life Sciences Vienna, Austria, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria 2 University of Natural Resources and Life Sciences Vienna, Austria, Centre for Development Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria * Corresponding author: [email protected] Received: 22 June 2018, received in revised form: 10 September 2018, accepted: 21 September 2018 Summary Dwindling natural resources, growing population pressure, climate change, and degraded soils threaten agricultural production. In order to feed the growing world population, we have to develop strategies to sustainably intensify current agricultural production while reducing the adverse effects of agriculture. Currently, a number of amendments have come into focus for improving structure and fertility of soils. Zeolites, biochar (BC), lime, and nitrification inhibitors (NIs) are reviewed for their properties. Zeolites and BC share many characteristics, such as a high cation exchange capacity (CEC), high specific surface area, and high porosity. Lime, on the other hand, works above all through its buffering capacity and can improve aggregate stability. Although the latter amend- ments change soil physicochemical characteristics, NIs do not act on soil properties but constrain a chemical/enzymatic reaction directly. These amendments are potential strategies to mitigate ongoing soil degradation and to secure soil fertility, under the global challenges. -
The Soil Map of the Flemish Region Converted to the 3 Edition of the World Reference Base for Soil Resources
Ontwikkelen en toepassen van een methodiek voor de vertaling van de Belgische bodemclassificatie van de kustpolders naar het internationale WRB systeem en generaliseren van de WRB-bodemkaart voor gans Vlaanderen naar het 1 : 250 000 schaalniveau The soil map of the Flemish region converted to the 3 rd edition of the World Reference Base for soil resources Stefaan Dondeyne, Laura Vanierschot, Roger Langohr Eric Van Ranst and Jozef Deckers Oct. 2014 Opdracht van de Vlaamse Overheid Bestek nr. BOD/STUD/2013/01 Contents Contents............................................................................................................................................................3 Acknowledgement ...........................................................................................................................................5 Abstract............................................................................................................................................................7 Samenvatting ...................................................................................................................................................9 1. Background and objectives.......................................................................................................................11 2. The soil map of Belgium............................................................................................................................12 2.1 The soil survey project..........................................................................................................................12 -
Kaolinite Dating from Acrisol and Ferralsol
Kaolinite dating from Acrisol and Ferralsol: A new key to understanding the landscape evolution in NW Amazonia (Brazil) Maximilien Mathian, Guilherme Taitson Bueno, Etienne Balan, Emmanuel Fritsch, Nádia Regina Do Nascimento, Madeleine Selo, Thierry Allard To cite this version: Maximilien Mathian, Guilherme Taitson Bueno, Etienne Balan, Emmanuel Fritsch, Nádia Regina Do Nascimento, et al.. Kaolinite dating from Acrisol and Ferralsol: A new key to understand- ing the landscape evolution in NW Amazonia (Brazil). Geoderma, Elsevier, 2020, 370, pp.114354. 10.1016/j.geoderma.2020.114354. hal-03047287 HAL Id: hal-03047287 https://hal.archives-ouvertes.fr/hal-03047287 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Kaolinite dating from Acrisol and Ferralsol: a new key to 2 understanding the landscape evolution in NW Amazonia (Brazil) 3 4 Maximilien Mathian1, Guilherme Taitson Bueno2, Etienne Balan1, Emmanuel Fritsch1, Nádia 5 Regina do Nascimento3, Madeleine Selo1, Thierry Allard1 6 7 1Sorbonne Université, Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR 8 CNRS 7590, IRD, MNHN, Université Pierre et Marie Curie, 4 Place Jussieu, 75005, France 9 2Federal University of Goiás - UFG, Instituto de Estudos Socioambientais, Av. -
Effects of Treated Wastewater Irrigation on Soil Salinity and Sodicity in Sfax (Tunisia): a Case Study"
CORE Metadata, citation and similar papers at core.ac.uk Provided by Érudit Article "Effects of treated wastewater irrigation on soil salinity and sodicity in Sfax (Tunisia): A case study" Nebil Belaid, Catherine Neel, Monem Kallel, Tarek Ayoub, Abdel Ayadi, et Michel Baudu Revue des sciences de l'eau / Journal of Water Science, vol. 23, n° 2, 2010, p. 133-146. Pour citer cet article, utiliser l'information suivante : URI: http://id.erudit.org/iderudit/039905ar DOI: 10.7202/039905ar Note : les règles d'écriture des références bibliographiques peuvent varier selon les différents domaines du savoir. Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter à l'URI https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Érudit est un consortium interuniversitaire sans but lucratif composé de l'Université de Montréal, l'Université Laval et l'Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. Érudit offre des services d'édition numérique de documents scientifiques depuis 1998. Pour communiquer avec les responsables d'Érudit : [email protected] Document téléchargé le 13 février 2017 01:03 EFFECTS OF TREATED WASTEWATER IRRIGATION ON SOIL SALINITY AND SODICITY IN SFAX (TUNISIA): A CASE STUDY Effets de l’irrigation par les eaux usées traitées sur la salinité et la sodicité des sols de Sfax (Tunisie): Un cas d’étude Nebil belaid1,2 , CatheriNe Neel2*, MoNeM Kallel3, -
Soils Diversity Iberian Peninsula
SOILS DIVERSITY IN THE SOUTHWEST OF IBERIAN PENINSULA Beatriz Ramírez1; Luís Fernández-Pozo1; José Cabezas1; Rui Alexandre Castanho1*; Luís Loures2 1 Environmental Resources Analysis Research Group (ARAM). University of Extremadura. Badajoz. Spain. 2 ESAE – Portalegre Polytechnic School, Portugal and Research Centre for Spatial and Organizational Dynamics (CIEO), University of Algarve, Portugal. * Presenter | 28.04.2017 |Room 2.20 authors contacts: [email protected] | [email protected]| joca fer @unex.es | [email protected] | [email protected] INTRODUCTION An increase in the development of Digital Soil Cartography methods has been noticed in recent decades. The proposal put forward by the World Reference Base for Soil Resource (WRB) (FAO, 1998) establishes that, for the World Map Soils, a first level with 30 soils typologies and for the second 531. In Europe, the development of this mapping has been coordinated by European Soil Bureau Network (ESBN), the European Environment Agency (EEA) and also by Food and Agriculture Organization of the United Nations (FAO), identifying 26 first level soils typologies and 134 from the second level. INTRODUCTION Taking as reference the mentioned soil map, the research group have been studied the pedodiversity in the Southwest of Iberian Peninsula (Euro region Alentejo-Centro- Extremadura, EUROACE) through the use of Geographical Information Systems and diversity algorithms. The pedodiversity concept, takes its origin in ecological measures and defines, according to Ibañez et al., (1998): “the soil variability in a specific area or region, determined by its constitution, types, attributes and the conditions in which the different types of soils were formed ". The edafodiversity analysis, using diversity indexes, has allowed to approach in a quantitative and rigorous way the soils geography, and also enable to classify to the edafo-rate according to their spatial distribution typologies.