Classification of Soil Systems on the Basis of Transfer Factors of Radionuclides from Soil to Reference Plants

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Soil Systems on the Basis of Transfer Factors of Radionuclides from Soil to Reference Plants IAEA-TECDOC-1497 Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants Proceedings of a final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture and held in Chania, Crete, 22–26 September 2003 June 2006 IAEA-TECDOC-1497 Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants Report of the final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture held in Chania, Crete, 22–26 September 2003 June 2006 The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria CLASSIFICATION OF SOIL SYSTEMS ON THE BASIS OF TRANSFER FACTORS OF RADIONUCLIDES FROM SOIL TO REFERENCE PLANTS IAEA, VIENNA, 2006 IAEA-TECDOC-1497 ISBN 92–0–105906–X ISSN 1011–4289 © IAEA, 2006 Printed by the IAEA in Austria June 2006 FOREWORD The IAEA Basic Safety Standards for Radiation Protection include the general requirement to keep all doses as low as reasonably achievable, taking account of economic and social considerations, within the overall constraint of individual dose limits. National and Regional authorities have to set release limits for radioactive effluent and also to establish contingency plans to deal with an uncontrolled release following an accident or terrorist activity. It is normal practice to assess radiation doses to man by means of radiological assessment models. In this context the IAEA published (1994), in cooperation with the International Union of Radioecologists (IUR), a Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments to facilitate such calculations. The obvious limitation of the Handbook is that the data on soil-to-plant transfer of radionuclides are strictly relevant only to temperate climates. Therefore, the IAEA, together with the United Nations Food and Agriculture Organization and the IUR, conducted a coordinated research project (CRP), to obtain similar data in tropical and sub-tropical regions. A conclusion of this research was that some combinations of ecosystems and radionuclides do not behave as might be expected. A consultants meeting held in May 1998 produced a proposal for a CRP to address the issue of identifying such situations in temperate as well as tropical and sub-tropical conditions. The IAEA acknowledges the contributions of all the participants to this CRP and in particular the mentoring of M. Frissel (Netherlands) and work undertaken by R.J. Hance (UK) in reviewing the individual contributions presented at the final research coordination meeting held in Chania, Crete from 22–26 September, 2003. The IAEA officers responsible for this publication were M.A. Matin, J. Brodesser and I.G. Ferris of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. EDITORIAL NOTE The papers in these proceedings are reproduced as submitted by the authors and have not undergone rigorous editorial review by the IAEA. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS SUMMARY OF THE COORDINATED RESEARCH PROJECT........................................................ 1 Transfer of radioactive caesium, strontium and zinc from soil to sorghum and mung beans under field conditions in tropical Northern Australia ...................................................................... 21 J. Twining, P. Shotton, K. Tagami, T. Payne, T. Itakura, R. Russell, K. Wilde, G. McOrist, H. Wong Plant uptake processes related with the geochemical behaviour of radionuclides in some Brazilian soil ................................................................................................ 39 M.A. Wasserman, E.R.R. Rochedo, A.C. Ferreira, C.C. Conti, A.G. Viana, F. Bartoly, J.C. Wasserman, D.V. Perez Influence of soil acidity on the transfer of Caesium-137 and other radionuclides from soil to reference plants ............................................................................. 51 R. Djingova Soil to crops transfer of radiocaesium and -strontium in different allophanic soils from the Lake Region, Chile .................................................................................. 59 P. Schuller, K. Bunzl, G. Voigt, A. Krarup, A. Castillo A field study of soil-to-plant transfer of strontium-90 and caesium-137 based on a Calcaric Cambisol in sub-tropical southwest China ................................. 73 J. Li, H. Peng, B. Ma, G. Li, R. Guo, F. Ma Time dependent caesium-134 transfer factors for crops grown on different Greek soil types ............................................................................................................ 81 V. Skarlou–Alexiou, I. Massas, C. Haidouti, Y. Papatheohari The classification of Indian soils on the basis of transfer factors of radionuclides from soil to reference plants ...................................................................................... 89 P. Sachdev, M.S. Sachdev, K.M. Manjaiah Variation of transfer factors of radionuclides for food crops in Japan................................................ 101 S. Uchida, K. Tagami, M. Komamura The classification of Russian soil systems on the basis of transfer factors of radionuclides from soil to reference plants .................................................................... 113 N. Sanzharova, S. Spiridonov, V. Kuznetzov, N. Isamov, S. Fesenko, N. Belova Transfer factor of caesium-137 in arid and semi-arid regions............................................................. 139 M. Al-Oudat F. Al-Asfary Transfer of caesium-137, strontium-90 and polonium-210 from soil to maize and black cabbage crops ........................................................................................... 145 S. Topcuoğlu, N. Güngör, A. Köse, C. Kirbaşoğlu, I. Akkurt The classification of Ukrainian soil systems on the basis of transfer factors of radionuclides from soils to reference plants................................................................... 153 B.S. Prister, L.V. Perepelyatnikova, T.N. Ivanova, V.D.Vynogradskaya, L.V. Kalinenko, N.R. Grytsjuk, V.A. Rudenko, G.P. Perepelyatnikov, V.A. Pojarkov Uptake of caesium-137 by leafy vegetables and grains from calcareous soils.................................... 179 W.L. Robison, T.F. Hamilton, C.L. Conrado, and S. Kehl The classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants .................................................................................... 191 H.Q. Nguyen APPENDIX I: FAO/IAEA/IUR PROTOCOL FOR EXPERIMENTAL STUDIES ON THE UPTAKE OF RADIONUCLIDES FROM SOILS BY PLANTS ............................................................................................ 197 APPENDIX II: TRANSFER FACTOR (TF) RESULTS .............................................................. 201 APPENDIX III: RESULTS OF THE PROFICIENCY TEST FOR THE IAEA CRP: CLASSIFICATION OF SOIL SYSTEMS BASED ON TRANSFER FACTORS OF RADIONUCLIDES FROM SOIL TO REFERENCE PLANTS ......................... 211 Z. Radecki ABBREVIATIONS............................................................................................................................. 247 LIST OF PARTICIPANTS ................................................................................................................. 249 SUMMARY OF THE COORDINATED RESEARCH PROJECT 1. INTRODUCTION The IAEA, together with the United Nations Food and Agriculture Organization (FAO) and the International Union of Radiologists (IUR), conducted a Coordinated Research Project (CRP) on Transfer of Radionuclides from Air, Soil and Freshwater to the Foodchain of Man in Tropical and Subtropical Environments. This produced a set of values for key transfer parameters of radionuclides between the various components of tropical and sub-tropical ecosystems that can be used in dose assessment models. It concentrated on what are considered as the key parameters in assessment models—radionuclide transfer from soil to plant and from freshwater to fish. A data bank was developed of transfer factors for radionuclides, principally 137Cs and 90Sr, from soil to cereals, fodder crops including grass, legumes, root crops, green vegetables, and plantation crops. Account was taken of soil properties, nature of the contamination (artificial, weapons testing fallout, Chernobyl fallout and so on) and the type of experiment (field, pot or lysimeter) that generated the values. For soil-to-plant transfer the following conclusions were drawn: (i) there are no systematic differences between soil-to-plant transfer factors in temperate,
Recommended publications
  • Soil Properties and Pre-Columbian Settlement Patterns in The
    SOIL, 1, 65–81, 2015 www.soil-journal.net/1/65/2015/ doi:10.5194/soil-1-65-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon U. Lombardo1,2, S. Denier1, and H. Veit1 1Universität Bern, Geographisches Institut, Hallerstrasse 12, 3012 Bern, Switzerland 2CaSeS research group, IMF-CSIC, C/Egipciaques, 15-08001 Barcelona, Spain Correspondence to: U. Lombardo ([email protected]) Received: 5 May 2014 – Published in SOIL Discuss.: 15 May 2014 Revised: – – Accepted: 26 September 2014 – Published: 6 January 2015 Abstract. In the present paper we explore to what degree soil properties might have influenced pre-Columbian settlement patterns in the Monumental Mounds Region (MMR) of the Llanos de Moxos (LM), Bolivian Amazon. Monumental mounds are pre-Hispanic earth buildings and were preferentially built on mid- to late Holocene palaeolevees of the Grande River (here denominated PR1), while levees of older palaeorivers (PR0) were only sparsely occupied. We dug two transects across PR0 and PR1 levee–backswamp catenas and analysed them for grain size, pH, cation exchange capacity (CEC) and Corg. Our data show that PR1 soils, where the density of mounds is higher, have far greater agricultural potential than PR0 soils, which are affected by aluminium toxicity in the backswamps and by high levels of exchangeable sodium in the levees. This study provides new data on the soil properties of the south-eastern Bolivian Amazon and reinforces the hypothesis that environmental constraints and opportunities exerted an important role on pre-Columbian occupation patterns and the population density reached in the Bolivian Amazon.
    [Show full text]
  • Topic: Soil Classification
    Programme: M.Sc.(Environmental Science) Course: Soil Science Semester: IV Code: MSESC4007E04 Topic: Soil Classification Prof. Umesh Kumar Singh Department of Environmental Science School of Earth, Environmental and Biological Sciences Central University of South Bihar, Gaya Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data/figures/materials are taken from several research articles/e-books/text books including Wikipedia and other online resources. 1 • Pedology: The origin of the soil , its classification, and its description are examined in pedology (pedon-soil or earth in greek). Pedology is the study of the soil as a natural body and does not focus primarily on the soil’s immediate practical use. A pedologist studies, examines, and classifies soils as they occur in their natural environment. • Edaphology (concerned with the influence of soils on living things, particularly plants ) is the study of soil from the stand point of higher plants. Edaphologist considers the various properties of soil in relation to plant production. • Soil Profile: specific series of layers of soil called soil horizons from soil surface down to the unaltered parent material. 2 • By area Soil – can be small or few hectares. • Smallest representative unit – k.a. Pedon • Polypedon • Bordered by its side by the vertical section of soil …the soil profile. • Soil profile – characterize the pedon. So it defines the soil. • Horizon tell- soil properties- colour, texture, structure, permeability, drainage, bio-activity etc. • 6 groups of horizons k.a. master horizons. O,A,E,B,C &R. 3 Soil Sampling and Mapping Units 4 Typical soil profile 5 O • OM deposits (decomposed, partially decomposed) • Lie above mineral horizon • Histic epipedon (Histos Gr.
    [Show full text]
  • Changes in Soil Properties in a Fluvisol (Calcaric) Amended with Coal Fly Ash A
    Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash A. Riehl, F. Elsass, J. Duplay, F. Huber, M. Trautmann To cite this version: A. Riehl, F. Elsass, J. Duplay, F. Huber, M. Trautmann. Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash. Geoderma, Elsevier, 2010, 155 (1-2), pp.67-74. 10.1016/j.geoderma.2009.11.025. halsde-00546980 HAL Id: halsde-00546980 https://hal.archives-ouvertes.fr/halsde-00546980 Submitted on 30 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geoderma 155 (2010) 67–74 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash A. Riehl a, F. Elsass b, J. Duplay a,⁎, F. Huber a, M. Trautmann c a Laboratoire d'Hydrologie et de Géochimie de Strasbourg, UMR 7517 CNRS, 1 rue Blessig 67084 Strasbourg Cedex, France b Institut National de Recherche Agronomique, route de Saint-Cyr 78026Versailles, France c UMS 830 UDS/CNRS, Laboratoire d'Analyses des Sols et des Formations Superficielles, 3 rue de l'Argonne 67083 Strasbourg Cedex, France article info abstract Article history: Fluidized bed combustion ash (FBC) is a by-product from coal-fired power stations used for many decades in Received 25 March 2009 concrete, cement and brick manufacturing and more recently for trace metal immobilization and pesticide Received in revised form 17 November 2009 retention in soils.
    [Show full text]
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • Effect of Soil Chiseling on Soil Structure and Root Growth for a Clayey Soil Under No-Tillage
    Geoderma 259–260 (2015) 149–155 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage Márcio Renato Nunes a,⁎, José Eloir Denardin b, Eloy Antônio Pauletto c, Antônio Faganello b, Luiz Fernando Spinelli Pinto c a University of São Paulo, “Luiz de Queiroz” College of Agriculture, Avenida Pádua Dias, 11, CEP 13418-900 Piracicaba, São Paulo, Brazil b Embrapa Trigo, Rodovia BR 285, km. 294, P.O. Box 451, CEP 99001-970 Passo Fundo, Rio Grande do Sul, Brazil c Federal University of Pelotas, Department of Soil Science, Campus Universitário s/n, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil article info abstract Article history: Soil chiseling under no-tillage (NT) promotes root growth in depth. This practice, however, might affect soil ag- Received 11 November 2014 gregation. This study evaluated the chiseling effects on the aggregation of a Ferralic Nitisol (Rhodic), under NT, in Received in revised form 2 June 2015 humid subtropical climate region. The treatments carried out consisted of the time that soil was kept under NT Accepted 3 June 2015 after chiseling: continuous NT for 24 months after chiseling in September 2009; continuous NT for 18 months Available online xxxx after chiseling in March 2010; continuous NT for 12 months after chiseling in September 2010; continuous NT for 6 months after chiseling in March 2011; NT in newly chiseling soil in September 2011; continuous NT without Keywords: Soil physical attributes chiseling (control).
    [Show full text]
  • Plant Uptake of Radionuclides in Lysimeter Experiments
    AT9900006 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek F. Strebl B. Temmel June 1998 OEFZS—4820 SEIBERSDORF 30-20 / OEFZS-4820 June 1998 Plant uptake of radionuclides in lysimeter experiments In: Environmental Pollution 99 (1998) 93-103 M.H. Gerzabek, F. Strebl, B. Temmel Department of Environmental Research Division of Life Sciences ENVIRONMENTAL POLLUTION ELSEVIER Environmental Pollution 99 (1998) 93-103 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek*, F. Strebl, B. Temmel Austrian Research Centre Seibersdorf, Division of Life Sciences, A-2444 Seibersdorf Austria Received 20 June 1997; accepted 15 October 1997 Abstract The results of seven years lysimeter experiments to determine the uptake of 60 Co, 137Cs and 226 Ra into agricultural crops (endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass) are described. The lysimeter consists of twelve monolithic soil profiles (four soil types and three replicates) and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and semi-arid summers and humid winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8°C). Besides soil-to-plant transfer factors (TF), fluxes were calculated taking into account biomass production and growth time. Total median values of TF’s (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg" 1) to ,37Cs (0.043 kg kg" 1) and 60 Co (0.018 kg kg" 1); flux values exhibited the same ranking. The varying physical and chemical proper­ ties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for l37Cs and 226 Ra, but not for 60 Co.
    [Show full text]
  • Artificial Chinampas Soils of Mexico City
    !"#$%&$'()Chinampas)*+$(,)+-) ./0$&+)1$#23)#4/$")5"+6/"#$/,) '78)*'($7$9'#$+7):'9'"8, Suelos artificiales de chinampas de la Ciudad de México: propiedades y riesgos de salinización Solos artificiais da cidade do México - Chinampas: propriedades e riscos de salinização AUTHORS Received: 24.03.2011 Revised: 02.06.2011 Accepted: 24.06.2011 1 Ramos Bello, R. ABSTRACT García Calderón, 1 N.E. !e chinampas agriculture is a traditional land use practice in the Valley of Mexico since Pre-Hispa- nic time. !e chinampas soils were constructed by excavation of lake sediments that resulted in the Ortega Escobar, 2 H.M. creation of a system of islands separated by channels. !e agricultural productivity of these artificial soils was high; also the land use practices included forestry, fish breeding and hunting. Nowadays, 3@ Krasilnikov, P. the chinampas soils are affected by excessive salinity. We studied 10 representative soil profiles in the pavel.krasilnikov@ gmail.com chinampas zone of Mexico City in order to characterize their properties and origin, to provide their classification, and to evaluate soil salinization, vertical distribution of the salts and their chemical composition. !e soils are characterized by a layered structure, uniform dark grey colour, irregular vertical distribution of organic carbon and clay, and high percentage of carbon. Some soils show an @ Corresponding Author increase in organic matter with depth, and other profiles have maximum organic matter content in the surficial layers and in the subsoil. !e dynamics of sedimentation resulted in the decrease in 1 Facultad de Ciencias, organic matter in the upper layers of lacustrine sediments, because of recent increase in erosion rate UNAM, México.
    [Show full text]
  • A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible Through Initial and Repeated Biochar Application
    agronomy Article A Sustainable Approach for Improving Soil Properties and Reducing N2O Emissions Is Possible through Initial and Repeated Biochar Application Ján Horák 1,* , Tatijana Kotuš 1, Lucia Toková 1, Elena Aydın 1 , Dušan Igaz 1 and Vladimír Šimanský 2 1 Department of Biometeorology and Hydrology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] (T.K.); [email protected] (L.T.); [email protected] (E.A.); [email protected] (D.I.) 2 Department of Soil Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia; [email protected] * Correspondence: [email protected] Abstract: Recent findings of changing climate, water scarcity, soil degradation, and greenhouse gas emissions have brought major challenges to sustainable agriculture worldwide. Biochar application to soil proves to be a suitable solution to these problems. Although the literature presents the pros and cons of biochar application, very little information is available on the impact of repeated application. In this study, we evaluate and discuss the effects of initial and reapplied biochar (both in rates of 0, 10, and 20 t ha−1) combined with N fertilization (at doses of 0, 40, and 80 kg ha−1) on soil properties and N O emission from Haplic Luvisol in the temperate climate zone (Slovakia). Results showed that 2 biochar generally improved the soil properties such as soil pH(KCl) (p ≤ 0.05; from acidic towards Citation: Horák, J.; Kotuš, T.; Toková, moderately acidic), soil organic carbon (p ≤ 0.05; an increase from 4% to over 100%), soil water L.; Aydın, E.; Igaz, D.; Šimanský, V.
    [Show full text]
  • Integrated Evaluation of Petroleum Impacts to Soil
    Integrated Evaluation of Petroleum Impacts to Soil Randy Adams, D. Marín, C. Avila, L. de la Cruz, C. Morales, and V. Domínguez Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico [email protected] 1.00 0.90 0.80 0.70 0.60 R2 = 0.9626 0.50 0.40 1-IAFcorr 0.30 0.20 0.10 0.00 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Conc. hidrocarburos (mg/Kg) Actual Modelo BACKGROUND U J A T •Clean-up criteria for petroleum contaminated soils developed in US in 60’s and 70’s on drilling cuttings •1% considered OK – no or only slight damage to crops, only lasts one growing season •Bioassays confirmed low toxicity of residual oil •Subsequenty used as a basis for clean-up criteria for hydrocarbons in soils in many countries does not consider kind of hydrocarbons does not consider kind of soil SISTEMATIC EVALUATION U J A T •Selection of light, medium, heavy and extra-heavy crudes •Selection of 5 soil types common in petroleum producing region of SE Mexico •Contamination of soil at different concentrations •Measurement of acute toxicity (Microtox), and subchronic toxicity (28 d earthworm) •Measurement of impacts to soil fertility: water repellency, soil moisure, compaction, complemented with in situ weathering experiments •Measurement of plant growth: pasture, black beans Crude Petroleum Used in Study U J A T 100% 80% 60% Aliphatics Aromatics 40% Polars + Resins Asphaltenes 20% 0% Light Crude Medium Crude Heavy Crude Extra-heavy Crude 37 ºAPI 27 ºAPI 15 ºAPI 3 ºAPI U J A T FAO: FLUVISOL VERTISOL GLEYSOL ARENOSOL ACRISOL USDA: FLUVENT
    [Show full text]
  • Fiji)Iji) Uusingsing Tthehe UUSLESLE Mmodelodel Andand a GISGIS
    COMPONENT 1A - Project 1A4 Integrated Coastal Management - GERSA Project Spatial Approach - Remote Sensing September 2008 TECHNICAL REPORT MMappingapping PotentialPotential EErosionrosion RRisksisks iinn NNorthorth VVitiiti LLevuevu (FFiji)iji) uusingsing tthehe UUSLESLE MModelodel andand a GISGIS AAuthor:uthor: JJuliaulia PPRINTEMPSRINTEMPS Photo : Julia PRINTEMPS The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c. he Initiative for the Protection and Management of Coral Reefs in the Pacifi c T (CRISP), sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique eco-systems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan and USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components, which are: Component 1A: Integrated Coastal Management and Watershed Management - 1A1: Marine biodiversity conservation planning - 1A2: Marine Protected Areas (MPAs) - 1A3: Institutional strengthening and networking -
    [Show full text]
  • A Review of Four Soil Amendments
    Die Bodenkultur: Journal of Land Management, Food and Environment Volume 69, Issue 3, 141–153, 2018. 10.2478/boku-2018-0013 ISSN: 0006-5471 online, © De Gruyter, www.degruyter.com/view/j/boku Research Article Sustainable intensification of agricultural production: a review of four soil amendments Nachhaltige Intensivierung der landwirtschaftlichen Produktion: ein Überblick vier verschiedener Bodenzusätze Katharina Maria Keiblinger1,* Rosana Maria Kral2 1 University of Natural Resources and Life Sciences Vienna, Austria, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria 2 University of Natural Resources and Life Sciences Vienna, Austria, Centre for Development Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria * Corresponding author: [email protected] Received: 22 June 2018, received in revised form: 10 September 2018, accepted: 21 September 2018 Summary Dwindling natural resources, growing population pressure, climate change, and degraded soils threaten agricultural production. In order to feed the growing world population, we have to develop strategies to sustainably intensify current agricultural production while reducing the adverse effects of agriculture. Currently, a number of amendments have come into focus for improving structure and fertility of soils. Zeolites, biochar (BC), lime, and nitrification inhibitors (NIs) are reviewed for their properties. Zeolites and BC share many characteristics, such as a high cation exchange capacity (CEC), high specific surface area, and high porosity. Lime, on the other hand, works above all through its buffering capacity and can improve aggregate stability. Although the latter amend- ments change soil physicochemical characteristics, NIs do not act on soil properties but constrain a chemical/enzymatic reaction directly. These amendments are potential strategies to mitigate ongoing soil degradation and to secure soil fertility, under the global challenges.
    [Show full text]
  • The Soil Map of the Flemish Region Converted to the 3 Edition of the World Reference Base for Soil Resources
    Ontwikkelen en toepassen van een methodiek voor de vertaling van de Belgische bodemclassificatie van de kustpolders naar het internationale WRB systeem en generaliseren van de WRB-bodemkaart voor gans Vlaanderen naar het 1 : 250 000 schaalniveau The soil map of the Flemish region converted to the 3 rd edition of the World Reference Base for soil resources Stefaan Dondeyne, Laura Vanierschot, Roger Langohr Eric Van Ranst and Jozef Deckers Oct. 2014 Opdracht van de Vlaamse Overheid Bestek nr. BOD/STUD/2013/01 Contents Contents............................................................................................................................................................3 Acknowledgement ...........................................................................................................................................5 Abstract............................................................................................................................................................7 Samenvatting ...................................................................................................................................................9 1. Background and objectives.......................................................................................................................11 2. The soil map of Belgium............................................................................................................................12 2.1 The soil survey project..........................................................................................................................12
    [Show full text]