[Propiedades Hidraulicasl Del Un Nitisol En Kabete, Kenya]
Total Page:16
File Type:pdf, Size:1020Kb
Tropical and Subtropical Agroecosystems, 15 (2012): 595 - 609 SOIL HYDRAULIC PROPERTIES OF A NITISOL IN KABETE, KENYA [PROPIEDADES HIDRAULICASL DEL UN NITISOL EN KABETE, KENYA] G.N. Karukua*, C.K.K. Gachenea, N. Karanjaa, W. Cornelisb, H. Verplanckeb and G. Kironchia, aFaculty of Agriculture, University of Nairobi. P. O. Box 29053- 00625 Kangemi, Nairobi, Kenya. Email: [email protected]: b Department of Soil Management and Soil care, University Ghent, Coupure Links 653, B-9000 Gent, Belgium, *Corresponding author SUMMARY positively by soil organic matter. The Van Genuchten parameters of air entry value (α) and pore size Water relations are among the most important distribution (n) indicated that pore size distribution physical phenomena that affect the use of soils for was not even in the AP and AB horizons. The field agricultural, ecological, environmental, and capacity was attained at higher matric potential at - engineering purposes. To formulate soil-water 5kPa for Bt1 while Bt2 and AP, AB, Bt2 and Bt3 was at relationships, soil hydraulic properties are required as -10kPa.The functional relationship, K(θ) = aθb that essential inputs. The most important hydraulic deals with water redistribution as a result of soil properties are the soil-water retention curve and the hydraulic properties and evaporative demand of the hydraulic conductivity. The objective of this study atmosphere was highly correlated to soil moisture was to determine the soil hydraulic properties of a content and texture with R2 values > 0.85. Nitisol, at Kabete Campus Field Station. Use of an internal drainage procedure to characterize the Key words: Soil water retention; hydraulic hydraulic properties and soil and water retention conductivity; water content; field capacity; permanent curves allowed for the establishment of the moisture wilting point; Van Genuchten parameters and matric potential at field capacity and permanent wilting point. The Bt2 (84 -115) and Bt3 (115 - 143 RESUMEN cm) had the highest clay contents of 619 compared to Ap, AB and Bt1 horizons. The PWP was attained at Las relaciones del agua son entre los fenómenos soil moisture contents of 0.223, 0.284, 0277, 0.307 físicos que afectan el uso del suelo para propósitos 3 -3 and 0.314 m m in the Ap, AB, Bt1, Bt2, and Bt3 agrícolas, ecológicos, ambientales y de ingeniería. horizons, respectively. Horizontal saturated hydraulic Para formulas las relaciones agua-suelo, se requieren -1 conductivity (Ksat) was high at 6.0 cm hr in Ap como datos esenciales las propiedades hidráulicas del horizon and decreased to 0.4 cm hr-1 in the subsurface suelo. Las propiedades hidráulicas más importantes horizon (Bt3). Ksat in the vertical direction was higher del suelo son la curva de retención de agua y la than horizontal and ranged from 8.3 cm hr-1 in surface conductividad hidráulica. El objetivo de este estudio -1 layer to 0.6 cm hr in Bt3 horizon, with exception of fue determinar las propiedades hidráulicas del suelo Bt1 and Bt2 where horizontal Ksat was greater than Nitisol en la estación del campus Kabete. Se usó un vertical. The Ap horizon also had the highest crop procedimiento de drenaje interno para caracterizar las extractable water. Though the AB and Bt1 had the propiedades hidráulicas y las curvas de retención del same water content at low matric suction, the suelo y agua que permitieron el establecimiento de la variation was very wide as the SWRC approached humedad y el potencial matrico en capacidad de saturation point. Bt1 and Bt2 also had similar water campo y punto de marchitez permanente. El Bt2 (84 - contents at suction range of – 7kPa after which Bt1, 115) y Bt3 (115 - 143 cm) tuvieron los más altos tended towards Bt3. Bt3 had the narrowest range of contenidos de arcilla de 619 comparados con los crop extractable water and thus was attributed to horizontes Ap, AB y Bt1. El PWP fue alcanzado con texture. The Bt3 retained the most amount of water at un humedad del suelo de 0.223, 0.284, 0277, 0.307 y 3 -3 3 -3 0.314 m m concluding that θPWP increased with 0.314 m m en los horizontes Ap, AB, Bt1, Bt2, y Bt3 depth. The total available water capacity between FC respectivamente. La conductividad saturada -1 -1 and PWP in the profile was 79.2 mm m . The study horizontal (Ksat) fue mayor en 6.0 cm hr en Ap observed that the field capacity, crop available water horizontal y disminuyo a 0.4 cm hr-1 en la contents and hydraulic conductivities were influenced subsuperficie horizontal (Bt3)). Ksat en dirección 595 Karuku et al 2012. vertical fue más alta que la horizontal en un rango de fueron influenciados positivamente por la materia 8.3 cm hr-1 en la capa superficial a 0.6 cm hr-1 en el orgánica del suelo. Los parámetros de Van Genuchten horizonte Bt3 con excepción de Bt1, y Bt2 donde Bt1 para entrada de aire (α) y distribución de tamaño de tuvo el mismo contenido de agua en la succión poro (n) indicaron que la distribución de tamaño de matricial baja, la variación fue muy amplia en la poro no estuvo incluso en los horizontes AP y AB h. SWC, el cual fue cercano al punto de saturación Bt1 y AB, Bt2 y Bt3 fueron de -10kPa .La relación funcional b Bt2 tuvieron también contenidos rangos de succión de K(θ) = aθ que de acuerdo con la redistribución como agua similares de – 7kPa después del cual Bt1, tendió resultado de las propiedades hidraulicas del suelo y la hacía Bt3. Bt3 tuvo el más estrecho rango de agua demanda evaporativa de la atmosfera fue altamente extraíble de un cultivo y sin embargo fue atribuido a correlacionada con el contenido de humedad del suelo 2 la textura. La Bt3 retuvo la mayor cantidad de agua en y la textura con valores de R >0.85 3 -3 0.314 m m concluyendo que la θPWP incrementó con la profundidad. La capacidad total de agua disponible Palabras clave: Retención de agua del suelo; entre FC y PWP en el perfil fue 79.2 mm m-1. En el conductividad hidráulica; contenido de agua; estudio se observó la capacidad de campo, contenido capacidad de campo; punto de marchitez permanente; y disponibilidad de agua y conductividad del suelo parámetros de Van Genuchten. INTRODUCTION Other investigators, therefore, have sought to derive soil hydraulic properties from moisture retention Knowledge of soil hydraulic properties is important curves of undisturbed soil cores measured in the for describing and predicting movements of water and laboratory (Brooks and Corey, 1964; Mualem, 1976; solutes through soils, which may be related to many van Genuchten, 1980; Kosugi, 1999). agronomic, engineering, and environmental fields of research. Key soil hydraulic properties include Various indirect methods have also been used saturated hydraulic conductivity (K ), unsaturated including predicting hydraulic properties from more s easily measured soil properties, such as texture, bulk hydraulic conductivity function – K(ψ), Κ(θ) or Κ(ϑ), density or organic matter content, using pedo-transfer where ψ is water potential, θ is volumetric water functions (PTFs), and the inverse modelling content and ϑ is water volume ratio – and the soil techniques have provided a good review of these moisture retention curve. Over the years many direct functions (Wosten et al., 2001). Since PTFs predict methods have been developed for measuring soil missing characteristics from already available basic hydraulic properties in the field, for example the soil data, they have the clear advantages of being internal drainage method (Hillel et al., 1972; Libardi relatively inexpensive, easy to derive and convenient et al., 1980), the zero plane flux method (Richards et to use. However, for application at a specific point, al., 1956) and the Guelph permeameter method prediction by a PTF might be inadequate and in such (Reynolds and Elrick, 1985), and in the laboratory, cases, direct measurement is the only option. e.g. the hot-air method (Arya et al., 1975), the out- flow method (Gardner, 1956) and the constant head Various types of organic materials have been found to method (Klute and Dirksen, 1986). have similar effects on soil physical properties (Barzegar et al., 2002), and almost all studies indicate that application of organic materials improves soil On sandy loam and silt loam soils, water retention properties (Celik et al., 2004; Mando et al., 2005). curves generated using data obtained by the However, reported effects of manure additions on undisturbed soil core and field internal drainage soils’ hydraulic properties, such as water retention methods agree well, but give saturated conductivity and saturated hydraulic conductivity, are inconsistent. values that are up to three times higher than those Unger and Stewart (1974) reported that water obtained using the Guelph permeameter (Paige and contents at low tensions (< 150 kPa) were Hillel, 1993). In addition, both the soil water retention significantly higher for manure-treated soils than for curves and hydraulic conductivity values obtained on untreated soils, but they found no significant a sandy loam soil using various measuring techniques difference at 1500 kPa tension. Sommerfeldt and differ considerably (Mallants et al., 1997). Hence, no Chang (1987) found that manure amendment single method has been developed that performs well significantly (P ≤ 0.05) increased soil water retention in a wide range of circumstances and for all soil (at 0-5 and 10-15 cm depths) compared with the types. Most direct methods require restrictive initial control across the whole tension range between 0 and and boundary conditions, which make measurements 1500 kPa (Miller et al., 2002). Obi and Ebo (1995) time consuming, range restrictive and expensive. 596 Tropical and Subtropical Agroecosystems, 15 (2012): 595 - 609 found that poultry manure significantly increased climate, of large areas of the Central Kenya water retention at tensions between 0 and 33 kPa, but highlands.