Sustainable Forestry and Iron Compounds in Karstic Soils: Qualitative and Semi-Quantitative Results Focused on the Occurrence of Fe-Compounds on Mineral Particles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Soil Chiseling on Soil Structure and Root Growth for a Clayey Soil Under No-Tillage
Geoderma 259–260 (2015) 149–155 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage Márcio Renato Nunes a,⁎, José Eloir Denardin b, Eloy Antônio Pauletto c, Antônio Faganello b, Luiz Fernando Spinelli Pinto c a University of São Paulo, “Luiz de Queiroz” College of Agriculture, Avenida Pádua Dias, 11, CEP 13418-900 Piracicaba, São Paulo, Brazil b Embrapa Trigo, Rodovia BR 285, km. 294, P.O. Box 451, CEP 99001-970 Passo Fundo, Rio Grande do Sul, Brazil c Federal University of Pelotas, Department of Soil Science, Campus Universitário s/n, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil article info abstract Article history: Soil chiseling under no-tillage (NT) promotes root growth in depth. This practice, however, might affect soil ag- Received 11 November 2014 gregation. This study evaluated the chiseling effects on the aggregation of a Ferralic Nitisol (Rhodic), under NT, in Received in revised form 2 June 2015 humid subtropical climate region. The treatments carried out consisted of the time that soil was kept under NT Accepted 3 June 2015 after chiseling: continuous NT for 24 months after chiseling in September 2009; continuous NT for 18 months Available online xxxx after chiseling in March 2010; continuous NT for 12 months after chiseling in September 2010; continuous NT for 6 months after chiseling in March 2011; NT in newly chiseling soil in September 2011; continuous NT without Keywords: Soil physical attributes chiseling (control). -
Mediterranean Soils - Willy Verheye, Diego De La Rosa
LAND USE, LAND COVER AND SOIL SCIENCES – Vol. VII – Mediterranean Soils - Willy Verheye, Diego de la Rosa MEDITERRANEAN SOILS Willy Verheye National Science Foundation Flanders/Belgium and Geography Department, University Gent, Belgium Diego de la Rosa Consejo Superior de Investigaciones Scientificas, Sevilla, Spain Keywords: Calcium carbonate, decalcification, Luvisol, Mediterranean, pedogenesis, soil classification, Terra Rossa, Xeralf, xeric moisture regime Contents 1. Introduction 2. Soil Forming Factors 2.1 Climate 2.2 Parent Material 2.3 Time 2.4 Topography 2.5 Biological Activity and Man 3. Pedogenesis and Profile Development 3.1 Pedogenesis on Carbonaceous Rocks 3.2 Pedogenesis on Non-Carbonaceous Rocks 4. Classification 4.1. USDA Soil Taxonomy 4.2 World Soil Reference Base for Soil Resources 4.3 French CPCS Classification 5. Land Use and Production Potential 5.1 Crop Production 5.2 Extensive Grazing Acknowledgements Glossary Bibliography BiographicalUNESCO Sketches – EOLSS Summary Mediterranean SAMPLEsoils are soils which form underCHAPTERS a Mediterranean climate. They are variously called Terra Rossa (on hard limestone) and Red Mediterranean Soils. Not all soils in a Mediterranean environment are, however, qualified as such because normal pedogenetic development may be hampered by erosion (rejuvenation of the profile), lack of time, and lack of water or unfavorable parent material characteristics. The impact of climate, topography, parent material (mineralogical composition, coherence and permeability), time and human influence as soil forming factors is discussed. Pedogenesis is reviewed and three phases in a color sequence are recognized, ©Encyclopedia of Life Support Systems (EOLSS) LAND USE, LAND COVER AND SOIL SCIENCES – Vol. VII – Mediterranean Soils - Willy Verheye, Diego de la Rosa with a major focus on soils developed over carbonaceous substrata. -
Ecological and Geographical Features of Ontogenesis of Holocene Soils of Kamianets-Podilskyi Fortress
SHS Web of Conferences 100, 05006 (2021) https://doi.org/10.1051/shsconf/202110005006 ISCSAI 2021 Ecological and Geographical Features of Ontogenesis of Holocene Soils of Kamianets-Podilskyi Fortress Roman Malyk1*, Andriy Kyrylchuk1, Zinovy Pankiv1, and Ihor Kasiyanyk2 1Ivan Franko National University of Lviv, 79000, University str. 1, Lviv, Ukraine 2Ivan Ogienko National University of Kamianets-Podilskyi, 32301, Ogienko str. 61, Kamianets-Podilskyi, Ukraine Abstract. The article analyzes the degree of study of the genetic features of Holocene soils of beligerative complexes. A detailed description of natural and anthropogenic conditions and factors determining the geography, genesis and ecological condition of modern and buried soils of beligerative structures of Kamianets-Podilskyi Fortress is given. Considerable attention is paid to the problem of ontogenesis of the dominant natural and anthropogenic soils within the study area, represented by urborendzins and constructional soils. The morphogenetic features of these soils have been studied. The soils of the beligerative complex are represented by naturally anthropogenic soils – urborendzins and constructional soils. They are polygenetic with complex phylogeny and their genesis includes at least two onogenesis. For a long time soils have been evolving naturally in form of typical rendzin, but have undergone quantitative and qualitative changes due to intensive anthropogenic activity. The genetic profile of soils is characterized by significant variability of morphological traits, the presence of eluvium of soil- forming rocks in the entire soil layer. the studied Holocene soils (modern and buried) are an integral part of the historical and cultural lands and need protection, as they contain information about the evolution of the territory and ways of its use. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin
Geologia Croatica 56/1 83–100 23 Figs. 6 Tabs. ZAGREB 2003 Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin Goran DURN Key words: Terra rossa, Parent materials, Composi- relict soil formed during the Tertiary and/or hot and humid periods of the Quaternary. However, some recent investigation in the Atlantic tion, Origin, Mediterranean region. coastal region of Morocco (BRONGER & SEDOV, 2002) show that at least some terra rossa previously referred to as polygenetic relict soils should be regarded as Vetusols. In some isolated karst terrain, terra Abstract rossa may have formed exclusively from the insoluble residue of lime- In the past, the term “terra rossa” became quite a common indication stone and dolomite but much more often it comprises a span of parent for all limestone derived red soils in the Mediterranean region. Today, materials including, for example, aaeolian dust, volcanic material or in some classification systems based on the Mediterranean climate as sedimentary clastic rocks which were derived on carbonate terrain via the major soil differentiating criterion, the term terra rossa is used as a different transport mechanisms. BOERO & SCHWERTMANN (1989) name for the soil subclass “Modal Fersiallitic Red soil” when situated concluded that it is of little relevance for the process of rubification on limestones (DUCHAUFOUR, 1982). However, several national whether the primary Fe sources are autochthonous or allochthonous as soil classifications (e.g. Croatian, Italian, Israeli) retained the term long as the general pedoenvironment remains essentially suitable for “terra rossa” for the hard limestone derived red soils. The nature and the formation of terra rossa. -
An Idea of Multi-Functional Storage Reservoirs in Mountain Regions
International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-396-400 ISSN: 2249-6645 An Idea of Multi-Functional Storage Reservoirs in Mountain Regions Jan Jaremski Rzeszow University of Technology, Rzeszow, Poland Abstract: The paper presents possibilities of construction of multi-functional reservoir in mountain regions, especially those with soft rocks. Construction of relatively small reservoir instead of big ones and taking the area configuration into account allows eliminating expensive embankments and insists to construction of cofferdams. The cofferdam can be formed of the occurring rock eluvium. Such idea was analyzed for the south of Poland. At present we can observe the climate changes accompanied by increase of the weather dynamics and unusual intensity of extreme phenomena. Mineralogical composition of rocks or their eluvia occurring in the considered area is usually not taken into account while forecasting of such phenomena. The proposed tests on determination of the eluvium areas especially susceptible to formation of mud avalanches in the mountains sites. Keywords: flysch eluvium, reservoir, rock eluvium , mud avalanches , swelling I. INTRODUCTION The climate variation has been observed recently. They are accompanied by increase of the weather dynamics and unusual intensity of extreme phenomena. Precipitations are very intense and they are accompanied by landslides and mud avalanches, or long-lasting droughts. A lack of suitable retention causes a fast flow of discharge water to the seas. Mineralogical composition of rocks or their eluvia occurring in the considered area is usually not taken into account while forecasting of such phenomena. Colloidal activity, a state of colloidal bonding and crystallization strongly influence formation of avalanches, strength of the mixtures and reversibility of their reactions with participation of clay minerals. -
Journal of Geochemical Exploration 164 (2016) 122–135
Journal of Geochemical Exploration 164 (2016) 122–135 Contents lists available at ScienceDirect Journal of Geochemical Exploration journal homepage: www.elsevier.com/locate/jgeoexp Three-dimensional geochemical patterns of regolith over a concealed gold deposit revealed by overburden drilling in desert terrains of northwestern China Bimin Zhang a,b,c,⁎, Xueqiu Wang b,c, Qinghua Chi b,c, Wensheng Yao b,c,HanliangLiub,c, Xin Lin b,c a School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China b Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China c Key Laboratory for Geochemical Exploration Technology, MLR, Langfang 065000, China article info abstract Article history: Desert terrains are widespread in northwestern and northern China, and these areas present particular Received 22 December 2014 challenges for exploration. In recent years, partial extraction techniques have been proven to be effective in Revised 9 June 2015 the search for concealed deposits in arid desert terrains in some cases. However, we still lack an understanding Accepted 13 June 2015 of the dispersion patterns of ore-forming elements in regolith. In this study, air reverse circulation drillings Available online 19 June 2015 were used to create three-dimensional (3D) distribution patterns of elements in regolith over the Jinwozi gold deposit in China, which is covered by tens of metres of regolith, in order to trace the migration of elements Keywords: Geochemical patterns and to understand the dispersion -
Further Notes on Terra Rossa and Related Soils Near Kfar Hahoresh Archaeological Site, Israel
Further notes on terra rossa and related soils near Kfar HaHoresh archaeological site, Israel Tsatskin A., Gendler T.S. in Zdruli P. (ed.), Steduto P. (ed.), Kapur S. (ed.). 7. International meeting on Soils with Mediterranean Type of Climate (selected papers) Bari : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 50 2002 pages 109-120 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=4002024 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Tsatskin A., Gendler T.S. Further notes on terra rossa and related soils near Kfar HaHoresh archaeological site, Israel. In : Zdruli P. (ed.), Steduto P. (ed.), Kapur S. (ed.). 7. International meeting on Soils with Mediterranean Type of Climate (selected papers). Bari : CIHEAM, 2002. p. 109-120 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 50) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -
List M - Soils - German and French Equivalents of English Terms
LIST M - SOILS - GERMAN AND FRENCH EQUIVALENTS OF ENGLISH TERMS AMERICAN GERMAN FRENCH AMERICAN GERMAN FRENCH Acrisols Acrisol Sol-mediterraneen Gray podzolic soils Podsolierter grauer Podzol Albolls Boden Alfisols Gray warp soils Paternia Sol-peu-evolue or Alluvial soils Auen-Boden Sol-d’alluvions Sol-d’alluvions Alpine meadow soils Alpiner Wiesen- Sol-hydromorphe Gray wooded soils boden Ground-water podzols Gley-Podsol Podzol Andepts Ground-water Grundwasser- Laterite Andosols Andosol Sol-peu-evolue laterite soils Laterite roche- Grumosols Grumosol Vertisol volcanique Half bog soils Anmoor Tourbe Aqualfs Halomorphic soils Salz-Boden Sol-halomorphe Aquents Halosols Halosols Sal-halomorphe Aquepts Hemists Aquods High moor Hochmoor Tourbe Aquolls Histosols Aquox Humic gley soils Humus Gley Boden Aquults Sol-humique-a-gley Arctic tundra soils Arktische Tundra Sol-de-toundra Humic soils Humus-reiche- Sol-riche-en- Boden Boden humus Arenosols Arenosol Sol-brut sable Humods Arents Hydromorphic soils Hydromorpher- Sol-hydro- Argids Boden morphique Aridisols Inceptisols Azonal soils Roh-Boden Sol-brut Intrazonal soils Intrazonaler Boden Sol Black earth use Schwarzerde Chernozem Kastanozems Chernozems Krasnozems Krasnozem Krasnozem Bog soils Moorboden Tourbe laterites Laterit-Boden Sol-lateritique Boreal frozen taiga Sol-gele Latosols Latosol Sol-ferralitique soils Lithosols Gesteins-roh-Boden Sol-squelettique Boreal taiga and Sol Low-humic gley soils forest soils Luvisols Luvisols Sol lessivage Brown desert steppe Burozem Sierozem Mediterranean -
[Propiedades Hidraulicasl Del Un Nitisol En Kabete, Kenya]
Tropical and Subtropical Agroecosystems, 15 (2012): 595 - 609 SOIL HYDRAULIC PROPERTIES OF A NITISOL IN KABETE, KENYA [PROPIEDADES HIDRAULICASL DEL UN NITISOL EN KABETE, KENYA] G.N. Karukua*, C.K.K. Gachenea, N. Karanjaa, W. Cornelisb, H. Verplanckeb and G. Kironchia, aFaculty of Agriculture, University of Nairobi. P. O. Box 29053- 00625 Kangemi, Nairobi, Kenya. Email: [email protected]: b Department of Soil Management and Soil care, University Ghent, Coupure Links 653, B-9000 Gent, Belgium, *Corresponding author SUMMARY positively by soil organic matter. The Van Genuchten parameters of air entry value (α) and pore size Water relations are among the most important distribution (n) indicated that pore size distribution physical phenomena that affect the use of soils for was not even in the AP and AB horizons. The field agricultural, ecological, environmental, and capacity was attained at higher matric potential at - engineering purposes. To formulate soil-water 5kPa for Bt1 while Bt2 and AP, AB, Bt2 and Bt3 was at relationships, soil hydraulic properties are required as -10kPa.The functional relationship, K(θ) = aθb that essential inputs. The most important hydraulic deals with water redistribution as a result of soil properties are the soil-water retention curve and the hydraulic properties and evaporative demand of the hydraulic conductivity. The objective of this study atmosphere was highly correlated to soil moisture was to determine the soil hydraulic properties of a content and texture with R2 values > 0.85. Nitisol, at Kabete Campus Field Station. Use of an internal drainage procedure to characterize the Key words: Soil water retention; hydraulic hydraulic properties and soil and water retention conductivity; water content; field capacity; permanent curves allowed for the establishment of the moisture wilting point; Van Genuchten parameters and matric potential at field capacity and permanent wilting point. -
Seção V - Gênese, Morfologia E Classificação Do Solo
EVALUATION OF MORPHOLOGICAL, PHYSICAL AND CHEMICAL CHARACTERISTICS... 573 SEÇÃO V - GÊNESE, MORFOLOGIA E CLASSIFICAÇÃO DO SOLO EVALUATION OF MORPHOLOGICAL, PHYSICAL AND CHEMICAL CHARACTERISTICS OF FERRALSOLS AND RELATED SOILS(1) E. KLAMT(2) & L. P. VAN REEUWIJK(3) SUMMARY Morphological, physical and chemical data of 58 soil profiles of Ferralsols and low activity clay Cambisols, Lixisols, Acrisols and Nitisols and of Alisols of the International Soil Reference and Information Centre (ISRIC) collection, described and sampled in eighteen different countries of tropical and subtropical regions, were selected to analyse their consistency and, or, variability and to search for properties to better describe and differentiate them. The soil profile descriptions were based on the guidelines of FAO and the FAO endorsed analytical methods of ISRIC. Frequence diagrams of the data show an asymmetric positively skewed and leptokurtic distribution for sand and silt fractions, specific surface, exchangeable bases and cation exchange capacity. Clustering soil colour hues, values and chromas rendered four distinct clusters, respectively of Rhodic, Rhodic/Xanthic (Haplic), Xanthic and Humic properties. The same technique applied to particle size distribution also originated four clusters, respectively of fine loamy, fine silty, clayey and fine clayey soils. Most of the soils analysed are acid, with low base saturation, except for Rhodic Nitisols and Rhodic Ferralsols, which present low exchangeable aluminium. Higher and variable values of this property are found in the other soil classes studied. Cation exchange capacity is also low and related to the kaolinitic and oxihydroxydic composition of the clay material. Regression analysis applied to cation exchange capacity resulted in low correlations with clay and silt content and higher with organic carbon and specific surface and clay content. -
Distribution of Rare Earth Elements in Sediments of the Marine Lake Mir (Dugi Otok, Croatia)
geosciences Article Distribution of Rare Earth Elements in Sediments of the Marine Lake Mir (Dugi Otok, Croatia) Željka Fiket * ID , Marina Mlakar and Goran Kniewald Rudjer Boškovi´cInstitute, Division for Marine and Environmental Research, Bijeniˇcka54, Zagreb 10000, Croatia; [email protected] (M.M.); [email protected] (G.K.) * Correspondence: zeljka.fi[email protected]; Tel. +385-1-456-1036; Fax.: +385-1-468-242 Received: 6 July 2018; Accepted: 7 August 2018; Published: 10 August 2018 Abstract: The Lake Mir represents a small, isolated, and shallow marine lake situated in the south-eastern part of the Dugi otok Island, in a karstic landscape of the eastern Adriatic coast. The surrounding karstic background, with occasional occurrences of red soil, characterizes the sediments in the lake as coarse grained and carbonate rich. Previous studies suggested the prevailing influence of the lake bathymetry, that is, the proportion of carbonates and grain size characteristics of the sediments, on the variability of the element composition of the lake sediments. To confirm previous assumptions and obtain a better understanding of the factors influencing sediment composition of this marine lake, the distribution of rare earth elements in sediments of the Lake Mir and the nearby Telaš´cicaBay, as well as surrounding soils, was investigated. In the lake sediments, the sum of rare earth elements, including Y (hereinafter referred as SREY), ranged from 10.6 mg kg−1 to 25.3 mg kg−1; in the Telaš´cicaBay sediments, SREY were higher compared to the lake and ranged from 56.4 mg kg−1 to 85.2 mg kg−1, while the highest SREY, from 83.3 mg kg−1 to 227 mg kg−1, were observed in soils surrounding the lake.