Seafloor Change Around the Mississippi Barrier Islands, 1920 to 2016—The Influence of Storm Effects on Inlet and Island Morphodynamics

Total Page:16

File Type:pdf, Size:1020Kb

Seafloor Change Around the Mississippi Barrier Islands, 1920 to 2016—The Influence of Storm Effects on Inlet and Island Morphodynamics Seafloor Change Around the Mississippi Barrier Islands, 1920 to 2016—The Influence of Storm Effects on Inlet and Island Morphodynamics By James G. Flocks, Noreen A. Buster, and Owen T. Brenner Open-File Report 2019–1140 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly, Director U.S. Geological Survey, Reston, Virginia: 2020 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Flocks, J.G., Buster, N.A., and Brenner, O.T., 2020, Seafloor change around the Mississippi barrier is- lands, 1920 to 2016—The influence of storm effects on inlet and island morphodynamics: U.S. Geological Survey Open-File Report 2019–1140, 23 p., https://doi.org/10.3133/ofr20191140. ISSN 2331-1258 (online) Acknowledgments This study was funded in part by the U.S. Army Corps of Engineers Mississippi Coastal Improvement Project and builds upon the recent U.S Geological Survey reports of DeWitt and others (2018) and Buster and others (2017). The authors would like to thank Karen Morgan, David Thompson, and Stokely Klasovsky for their review of this report. iii iv Contents Abstract ...............................................................................................................................................................1 Introduction ..........................................................................................................................................................1 Setting .................................................................................................................................................................3 Storm History and Navigation Channel Maintenance ......................................................................................5 Methods ...............................................................................................................................................................7 Results and Discussion .......................................................................................................................................9 Long-term Change (1920–2016) ...................................................................................................................11 Recent Change (2009–2016) ........................................................................................................................13 Elevation Profiles ...........................................................................................................................................14 Temporal and Spatial Sedimentation Patterns ...............................................................................................18 Conclusion .........................................................................................................................................................20 References Cited ...............................................................................................................................................22 Figures 1. Maps showing regional locations, the Mississippi Barrier Islands, and the various features discussed in this report ............................................................................................................................................2 2. Satellite images showing the pre-storm and post-storm effects of Hurricane Katrina on the island morphology of West and East Ship islands ............................................................................................3 3. Digital elevation models generated from the 1920s, 2009, and 2016 bathymetric data .........................4 4. Trackline maps showing survey extent from 1916–1920; 2008–2009; and 2016 ..................................8 5. Maps showing elevation change determined by calculating the difference between DEMs for an ap- proximate 96-year period from 1920s to 2016; an approximate 7-year period from 2009 to 2016; and an approximate 89-year period from 1920 to 2009 ..............................................................................10 6. Stacked elevation profiles from the three time periods along the gulf and sound sides of estW Ship and East Ship islands, and through Camille Cut ..................................................................................15 7. Stacked elevation profiles from the three time periods longitudinally across Little Dog Keys and Dog Keys passes, Little Dog Keys Inlet, and Dog Keys Pass .....................................................................16 8. Stacked elevation profiles from the three time periods along Horn Island, longitudinally across Horn Island Pass, and onshore-offshore through the Horn Island Pass .......................................................17 9. Bar graph showing sediment volumetric change per unit area of each reference subsection for the long and short time periods; and rate of change for each reference subsection during the same time periods ..................................................................................................................................................19 Tables 1. Tropical storms passing within 185 kilometers of Ship Island since 1920 ..............................................6 2. Accretion and erosion volumes, net change, and rate of change for the reference subsections that represent key morphologic features .....................................................................................................12 v Conversion Factors International System of Units to U.S. customary units Multiply By To obtain Length centimeter (cm) 0.3937 inch (in.) meter (m) 3.281 foot (ft) millimeter (mm) 0.03937 inch (in.) kilometer (km) 0.6214 mile (mi) kilometer (km) 0.5400 mile, nautical (nmi) meter (m) 1.094 yard (yd) Datum Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88, GEOID12A), and converted to mean lower low water (MLLW) for analysis purposes. Units of all vertical measurements are in meters. Horizontal coordinate information is referenced in the geographic coordinates World Geodetic System of 1984 (WGS 84); however, data were projected into Universal Transverse Mercator (UTM) coordinate system for analysis purposes. Abbreviations DEM digital elevation models EAARL Experimental Advanced Airborne Research Lidar Geoid12B vertical datum NAVD88 GIS geographic information system GMT Generic Mapping Tools GOM Gulf of Mexico GUIS Gulf Islands National Seashore H-sheets hydrographic sheets ka kilo annum, thousand calendar years ago kts knots m3 cubic meters mb millibars MHW mean high water MLLW mean lower low water mm millimeters MS Mississippi Sound MsCIP Mississippi Coastal Improvement Project NAD83 North American 1983 datum NAVD88 North American Vertical Datum of 1988 nmi nautical mile NOAA National Oceanic and Atmospheric Administration NPS National Park Service SPCMSC St. Petersburg Coastal and Marine Science Center T transects USACE U.S. Army Corps of Engineers USGS U.S. Geological Survey UTM Universal Transverse Mercator v.e. vertical exaggeration WGS84 World Geodetic System of 1984 WHCMSC Woods Hole Coastal and Marine Science Center yr year vi Seafloor Change Around the Mississippi Barrier Islands, 1920 to 2016—The Influence of Storm Effects on Inlet and Island Morphodynamics By James G. Flocks, Noreen A. Buster, and Owen T. Brenner Abstract The Mississippi Barrier Islands in the northern Gulf of Mexico experienced high rates of spatial change over recorded history. Wave-induced sediment transport induced island migration, landward retreat, and inlet evolution. These processes can be measured using repeat bathymetric surveys to analyze elevation change over time. This study analyzes digital elevation models created from three time periods where bathymetric data have been collected: the 1920s, 2009, and 2016. The models are compared to assess volumetric change between surveys and characterize morpho- logic responses to natural and human-influenced processes. Although all the islands within the study area experienced a loss of area over the period of study, the nearshore and tidal inlets experience both accretion and erosion that vary spatially and temporally. Major morphologic changes include westward island migration, expanding ebb-tidal deltas, and changes in inlet dimensions. This study is a collaboration between the U.S. Geological Survey, the U.S. Army Corps of Engineers, and the National Park Service to establish baseline physical and pre-restoration morphologic conditions preceding a major restoration of the islands as part of the Mississippi Coastal Improvement Project. Introduction The barrier island platform located offshore of the State of Mississippi in the Gulf of Mexico supports five islands: Cat, West Ship, East Ship, Horn, and Petite Bois (fig. 1), although the island system has a history
Recommended publications
  • Historical Changes in the Mississippi-Alabama Barrier Islands and the Roles of Extreme Storms, Sea Level, and Human Activities
    HISTORICAL CHANGES IN THE MISSISSIPPI-ALABAMA BARRIER ISLANDS AND THE ROLES OF EXTREME STORMS, SEA LEVEL, AND HUMAN ACTIVITIES Robert A. Morton 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 30∞18'0"N 30∞18'0"N 30∞20'0"N Horn Island 30∞20'0"N Petit Bois Island 30∞16'0"N 30∞16'0"N 30∞18'0"N 30∞18'0"N 2005 2005 1996 Dauphin Island 1996 2005 1986 1986 30∞16'0"N Kilometers 30∞14'0"N 0 1 2 3 4 5 1966 30∞16'0"N 1950 30∞14'0"N 1950 Kilometers 1917 0 1 2 3 4 5 1917 1848 1849 30∞14'0"N 30∞14'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞12'0"N 30∞10'0"N 30∞10'0"N 88∞46'0"W 88∞44'0"W 88∞42'0"W 88∞40'0"W 88∞38'0"W 88∞36'0"W 88∞34'0"W 88∞32'0"W 88∞30'0"W 88∞28'0"W 88∞26'0"W 88∞24'0"W 88∞22'0"W 88∞20'0"W 88∞18'0"W 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W 30∞16'0"N Cat Island Ship Island 30∞16'0"N 2005 30∞14'0"N 1996 30∞14'0"N 1986 Kilometers 1966 0 1 2 3 30∞14'0"N 1950 30∞14'0"N 1917 1848 Fort 2005 Massachusetts 1995 1986 Kilometers 1966 0 1 2 3 30∞12'0"N 1950 30∞12'0"N 1917 30∞12'0"N 30∞12'0"N 1848 89∞10'0"W 89∞8'0"W 89∞6'0"W 89∞4'0"W 88∞58'0"W 88∞56'0"W 88∞54'0"W 88∞52'0"W Open-File Report 2007-1161 U.S.
    [Show full text]
  • Plant Communities of Selected Dunes and Sandy Areas of Florida - As Laboratories for High School Biology
    PLANT COMMUNITIES OF SELECTED DUNES AND SANDY AREAS OF FLORIDA - AS LABORATORIES FOR HIGH SCHOOL BIOLOGY By WILLIAM YANCEY BENNETT A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF EDUCATION UNIVERSITY OF FLORIDA June, 1961 ACKNOWLEDGMENTS The writer wishes to thank Prof. Erdman West for valuable assistance in plant identification. Sincere ap- preciation is due Dr. N. E. Bingham, chairman of the super- visory committee, for his direction and advice during the preparation of this work. Gratitude is extended to Dr. E. 3. Ford, of the supervisory committee, for his advice on special botanical problems and for his criticism of the manuscript* The author is indebted to other members of the supervisory committee, Drs. Douglas E. 3cates, Clara M. Olson and Robert D. Powell for their constructive criticism of the manuscript. Especial gratitude is expressed for the late Dr. Leon N. Henderson, whose interest and encouragement were so val- uable to the writer. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii LIST OF TABLES v LIST OF ILLUSTRATIONS . vi Chapter I. INTRODUCTION 1 t T Statement of the Problem Limitations and Definition of Terms Selection of Areas Plan of Dissertation II. ORIGIN OF FLORIDA SANDS . 9 Geological History Soil Types III. FINDINGS . « 25 Nature of a Plant Community Specific Plant Communities Samples of Vegetational Communities Summary IV. PLANT COMMUNITIES USED AS LABORATORIES 103 Introduction Facts to be Investigated in All Plant Communities Some Observable Factors Found in Plant Communities Equipment to be Included in Preparations for Activities Planning a Field Trip Summary iii Page Chapter 7.
    [Show full text]
  • FSU ETD Template
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 Crawl Out through the Fallout?: Civil Defense, the Cold War, and American Memory Matthew Byrne Storey Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES “CRAWL OUT THROUGH THE FALLOUT?” CIVIL DEFENSE, THE COLD WAR, AND AMERICAN MEMORY By MATTHEW BYRNE STOREY A Thesis submitted to the Department of History in partial fulfillment of the requirements for the degree of Master of Arts 2017 Matthew Byrne Storey defended this thesis on March 24, 2017 The members of the supervisory committee were: Jennifer Koslow Professor Directing Thesis Michael Creswell Committee Member Jonathan Grant Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii For my parents iii TABLE OF CONTENTS List of Figures ............................................................................................................................. v Abstract ..................................................................................................................................... vi 1. INTRODUCTION .................................................................................................................. 1 2. THE OFFICIAL NARRATIVE OF CIVIL DEFENSE ........................................................
    [Show full text]
  • The Hurricane-Tornado
    July 1965 John S. Smith 453 THEHURRICANE-TORNADO JOHN S. SMITH Weather Bureau Forecast Center, Chicago, 111. ABSTRACT Climatological data in recent years have become sufficient for the further study of tornadoes which occur in hurricane systems. Several characteristics of the hurricane tornado are determined from data for an 8-yr. period by plotting the center positions of each hurricane and its associated tornadoes. The data show: (1) a comparison betweenhurricane and non-hurricane tornadoes; (2) a “Significant Sector” fortornado-genesis; (3) a “Preferred Quadrant” of the hurricane for tornado-genesis; (4) the mostfavorable time of dayfor tornado occurrence; (5) tornado frequencies with,respect to various speeds and distances of the hurricane on and off shore; (6) a tenative hurricane model. 1. INTRODUCTION the “Preferred Quadrant.” Other significant patterns are established from the relationship of the tornado to the Although considerable research has been done on the hurricane. forecasting problemspresented byboth tornadoes and hurricanes, relatively little investigation has been made 2. GENERALCLIMATOLOGY intothe forecasting problems of tornadoesassociated with hurricanes. In this study of the hurricane-tornado Of 15 hurricanes that entered the United States from problem,a climatological analysishas been made by the Gulf of Mexico andthrough the Atlantic Coastal plottingthe center position of eachhurricane and its States, 11 produced tornadoes. Atotal of 98 tornadoes associated tornadoes. was produced during the period from hurricane Connie in August 1955, to hurricane Carla in September 1961. Of Recognition of hurricane tornadoes prior to 1955 was the hurricanes producing tornadoes, the average number apparently limited-unless therehas beensuddena of tornadoes per hurricane is 9, although hurricanes Audrey rash of hurricane-tornadoesin recent years, for since and Carla spawned more than 20 tornadoes each.
    [Show full text]
  • Louisiana Hurricane History
    Louisiana Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Climatology of Tropical Cyclones in Louisiana 3 List of Louisiana Hurricanes 8 Spanish Conquistadors and the Storm of 1527 11 Hurricanes of the Eighteenth Century 11 Hurricanes of the Early Nineteenth Century 14 Hurricanes of the Late Nineteenth Century 17 Deadliest Hurricane in Louisiana History - Chenier Caminanda (1893) 25 Hurricanes of the Early Twentieth Century 28 Hurricanes of the Late Twentieth Century 37 Hurricanes of the Early Twenty-First Century 51 Acknowledgments 57 Bibliography 58 2 Climatology of Tropical Cyclones in Louisiana “We live in the shadow of a danger over which we have no control: the Gulf, like a provoked and angry giant, can awake from its seeming lethargy, overstep its conventional boundaries, invade our land and spread chaos and disaster” - Part of “Prayer for Hurricane Season” read as Grand Chenier every weekend of summer (Gomez). Some of the deadliest tropical storms and hurricanes to ever hit the United States have struck the Louisiana shoreline. Memorable storms include Andrew in 1992, Camille in 1969, Betsy in 1965, Audrey in 1957, the August Hurricane of 1940, the September Hurricane of 1915, the Cheniere Caminanda hurricane of October 1893, the Isle Dernieres storm of 1856, and the Racer’s Storm of 1837. These storms claimed as many as 3000 lives from the area....with Audrey having the highest death toll in modern times in the United States from any tropical cyclone, with 526 lives lost in Cameron and nine in Texas. Louisiana has few barrier islands; therefore, the problem of overpopulation along the coast slowing down evacuation times, such as Florida, does not exist.
    [Show full text]
  • Characteristics of Tornadoes Associated with Land-Falling Gulf
    CHARACTERISTICS OF TORNADOES ASSOCIATED WITH LAND-FALLING GULF COAST TROPICAL CYCLONES by CORY L. RHODES DR. JASON SENKBEIL, COMMITTEE CHAIR DR. DAVID BROMMER DR. P. GRADY DIXON A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geography in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2012 Copyright Cory L. Rhodes 2012 ALL RIGHTS RESERVED ABSTRACT Tropical cyclone tornadoes are brief and often unpredictable events that can produce fatalities and create considerable economic loss. Given these uncertainties, it is important to understand the characteristics and factors that contribute to tornado formation within tropical cyclones. This thesis analyzes this hazardous phenomenon, examining the relationships among tropical cyclone intensity, size, and tornado output. Furthermore, the influences of synoptic and dynamic parameters on tornado output near the time of tornado formation were assessed among two phases of a tropical cyclone’s life cycle; those among hurricanes and tropical storms, termed tropical cyclone tornadoes (TCT), and those among tropical depressions and remnant lows, termed tropical low tornadoes (TLT). Results show that tornado output is affected by tropical cyclone intensity, and to a lesser extent size, with those classified as large in size and ‘major’ in intensity producing a greater amount of tornadoes. Increased values of storm relative helicity are dominant for the TCT environment while CAPE remains the driving force for TLT storms. ii ACKNOWLEDGMENTS I would like to thank my advisor and committee chair, Dr. Jason Senkbeil, and fellow committee members Dr. David Brommer and Dr. P. Grady Dixon for their encouragement, guidance and tremendous support throughout the entire thesis process.
    [Show full text]
  • Florida Commission on Hurricane Loss Projection Methodology
    FLORIDA COMMISSION ON HURRICANE LOSS PROJECTION METHODOLOGY November 2018 Submission March 12, 2019 Revision Florida Hurricane Model 2019a A Component of the CoreLogic North Atlantic Hurricane Model in Risk Quantification and EngineeringTM Submitted under the 2017 Standards of the FCHLPM 1 Irvine, CA Oakland, CA Boulder, CO Austin, TX Westlake, TX March 12, 2019 Madison, WI Milwaukee, WI Floyd Yager, Chair London, UK Florida Commission on Hurricane Loss Projection Methodology Paris, France c/o Donna Sirmons Florida State Board of Administration 1801 Hermitage Boulevard, Suite 100 Tallahassee, FL 32308 Dear Floyd Yager: I am pleased to inform you that CoreLogic, Inc. is ready for the Commission’s review and re-certification of the Florida Hurricane Model component of its Risk Quantification and EngineeringTM software for use in Florida. As required by the Commission, enclosed are the data and analyses for the General, Meteorological, Vulnerability, Actuarial, Statistical, and Computer Standards, updated to reflect compliance with the Standards set forth in the Commission’s Report of Activities as of November 1, 2017. In addition, the CoreLogic Florida Hurricane Model has been reviewed by professionals having credentials and/or experience in the areas of meteorology, engineering, actuarial science, statistics, and computer science, as documented in the signed Expert Certification (Forms G-1 to G-6). We have also completed the Editorial Certification (Form G-7). The following changes were made to the model between the previously accepted submission (Florida Hurricane Model 2017a) and the current submission (Florida Hurricane Model 2019a): 1. The probabilistic hurricane database has been regenerated to be consistent with the National Hurricane Center’s HURDAT2 data set as of May 1, 2018.
    [Show full text]
  • Rainfall & Storm Surge Combined Effects Modeling
    Upper Barataria Basin Risk Reduction Modeling: Phase 2 – Rainfall & Storm Surge Combined Effects Modeling Nancy Powell (ARCADIS), Haihong Zhao (ARCADIS), Shan Zou (ARCADIS), Hugh Roberts (ARCADIS), Don Resio (University of North Florida), David Johnson (RAND), and Ryan Clark (The Water Institute of the Gulf) Produced for and Funded by: Coastal Protection & Restoration Authority of Louisiana and Lafourche Basin Levee District July 8, 2015 INTEGRATING APPLIED RESEARCH | LINKING KNOWLEDGE TO ACTION | BUILDING PARTNERSHIPS ABOUT THE WATER INSTITUTE OF THE GULF The Water Institute of the Gulf is a not-for-profit, independent research institute dedicated to advancing the understanding of coastal, deltaic, river, and water resource systems, both within the Gulf Coast and around the world. This mission supports the practical application of innovative science and engineering, providing solutions that benefit society. For more information, visit www.thewaterinstitute.org. SUGGESTED CITATION Powell, N.1, Zhao, H. 1, Zou, S. 1, Roberts. H. 1, Resio, D.2, Johnson, D.3, & Clark, R.4 (2014). Project Development and Implementation Program: Upper Barataria Basin Risk Reduction Modeling: Phase 2 – Rainfall & Storm Surge Combined Effects Modeling. The Water Institute of the Gulf. Funded by the Coastal Protection and Restoration Authority under Task Order 18 Contract No. 2503-12-58. Baton Rouge, LA. 1 ARCADIS 2 University of North Florida 3 RAND Corporation 4 The Water Institute of the Gulf Preface This study was performed for the Coastal Protection and Restoration Authority of Louisiana (CPRA) and Lafourche Basin Levee District (LBLD) under the Project Development and Implementation Program. The program was proposed in the 2012 Coastal Master Plan to provide a defined process for projects to be added to the analysis of projects for the 2017 Master Plan or be incorporated into the 2012 Master Plan in between the legislatively required 5-year updates and be eligible for funding through the Annual Plan.
    [Show full text]
  • FLORIDA HAZARDOUS WEATHER by DAY (To 1994)
    FLORIDA HAZARDOUS WEATHER BY DAY (to 1994) SEPTEMBER 1 1941 - 1930 - Sarasota Co. - Tornado near Sarasota injured one person. 1 1963 - afternoon - Bay Co., Mexico Beach - Lightning killed a person and injured another while they were standing on a jetty. 1 1964 - afternoon - Lee Co., Ft. Myers - Lightning killed a person and injured another. 1 1983 - 1600 - Polk Co., Frostproof - Lightning killed a high school football player at practice. 1 1996 1430 - Dade Co., Miami Beach - Five persons taking shelter from the rain under a palm tree were injured when lightning struck the tree. 2 1935 - Keys - The Great Labor Day Hurricane - This famous Labor Day Storm was only 40 miles in diameter, but it remains the most intense U. S. landfalling hurricane on record. It killed 408 people in Florida, mostly by drowning, making it the 5th deadliest U. S. hurricane on record. Winds reached 200 mph, and the barometer dropped to 26.35 inches at Long Key. A rescue train sent to remove World War I veterans and residents from the Florida Keys was swept from the tracks. The tracks of the Flagler Railroad were washed from the Long Key viaduct at an elevation of 30 feet above mean low water. A survey by the U. S. Corp. of Engineers sometime after the storm found that the tide level never reached the rails there, but the hurricane surge and wind driven waves superimposed on the tide probably helped in carrying the tracks away. 2 1959 - afternoon - Broward Co., Ft. Lauderdale - A sign blown down by the wind struck a man on the street and killed him.
    [Show full text]
  • In Congo Plot;
    ...... ■ \- •.■ ■ ■-: '\ WEDNESbAY» SErtEMBER H WO PAGE TWENTY-POtJR Avenge Dally Net Preaa Run The WeathM jianrlr^Btfr lEtt^tthts f|mUt fdrtfeeWMkIMM raneeet ef V, B. SNeMP a M n Mki ISM OlM ey. M t -M «M l SapIptS Seer 13,125 IB OSe. Mday elee^* ■ ••len’ ebaeoa aC fale.ll0e\lB Sari: eeStfeeAMtS e f ( “ ■ ‘ Manchester'— A CUy of Village Charm T f HU' It:::: VOL. LXXDC. NO. 295 (TWENTY-FOUR PAGES— IN TWQ SECTIONS) MANCHESTER, CONN^ THURSDAY, SEPTEMBER 15, 1960 AMeHtatag rage SB) PRICE nVE CENTS ■''n' :.A Nixon Declares ^oleSf Czechs Join He’s Not 100 % i i Soviet in Political For Any Group in Congo Plot; St. Louis, Sept. 15 (IP)— I ‘‘.'"Vi'-'V'-jj Vice President Richard M, Nixon told the International Association of Machinists he Berlin, Sept. 15 (yp)— In-< pleasure there wUl'be on the other Would never, as president, be creased activity by Red jet side." . “iOO per cent” for the pro­ The Polish snd Csechoslovak gram of any group in Amer- fighters w as reported today as missions announced their goyim:^ Poland and Czechoslovakia ments have joined Bkist Germany iQa. YOU In denouncing as ill^ a l docu­ TTie,^ Republican presidential joined the Communist politi­ ments the West German passports candldttte^eclared It is the obli­ C o n g o le s e U.S. Claims cal squeeze on Berlin.' gation of the president to work ior Wastem pllota Mid there la a carried by West Berliners. They said any who travel across the Interest " o f all the people of eonsiderable Increaae In patrol the United Sttltes 'in d not to set work by Soviet MIG’a In the air their frontlirs must have their T roops for visas stamped on separate pieces one group against another^’ Red Smear -f- f corridors to Berlin.
    [Show full text]
  • Florida Commission on Hurricane Loss Projection Methodology
    FLORIDA COMMISSION ON HURRICANE LOSS PROJECTION METHODOLOGY November 2020 Submission April 30, 2021 Version Florida Hurricane Model 2021a A Component of the CoreLogic North Atlantic Hurricane Model in Risk Quantification and EngineeringTM v21 Submitted under the 2019 Standards of the FCHLPM 1 Irvine, CA Oakland, CA San Diego, CA Boulder, CO Austin, TX April 30, 2021 Irving, TX Milwaukee, WI Floyd Yager, Chair London, UK Florida Commission on Hurricane Loss Projection Methodology c/o Donna Sirmons Florida State Board of Administration 1801 Hermitage Boulevard, Suite 100 Tallahassee, FL 32308 Dear Floyd Yager: I am pleased to inform you that CoreLogic, Inc. is ready for the Commission’s review and re-certification of the Florida Hurricane Model component of its Risk Quantification and EngineeringTM v21 software for use in Florida. As required by the Commission, enclosed are the data and analyses for the General, Meteorological, Vulnerability, Actuarial, Statistical, and Computer Standards, updated to reflect compliance with the Standards set forth in the Commission’s Report of Activities as of November 1, 2019. In addition, the CoreLogic Florida Hurricane Model has been reviewed by professionals having credentials and/or experience in the areas of meteorology, engineering, actuarial science, statistics, and computer science, as documented in the signed Expert Certification (Forms G-1 to G-6). We have also completed the Editorial Certification (Form G-7). The following changes were made to the model between the previously accepted submission (Florida Hurricane Model 2019a) and the current submission (Florida Hurricane Model 2021a): 1. The probabilistic hurricane database has been regenerated to be consistent with the National Hurricane Center’s HURDAT2 data set as of April 28, 2020.
    [Show full text]
  • Florida Commission on Hurricane Loss Projection Methodology
    FLORIDA COMMISSION ON HURRICANE LOSS PROJECTION METHODOLOGY November 2016 Submission April 12, 2017 Revision Florida Hurricane Model 2017a A Component of the CoreLogic North Atlantic Hurricane Model in Risk Quantification and EngineeringTM Submitted under the 2015 Standards of the FCHLPM 1 Irvine, CA Oakland, CA Boulder, CO Austin, TX Westlake, TX April 12, 2017 Madison, WI Milwaukee, WI Lorilee Medders, Chair London, UK Florida Commission on Hurricane Loss Projection Methodology Paris, France c/o Donna Sirmons Florida State Board of Administration 1801 Hermitage Boulevard, Suite 100 Tallahassee, FL 32308 Dear Lorilee Medders: I am pleased to inform you that CoreLogic, Inc. is ready for the Commission’s review and re-certification of the Florida Hurricane Model component of its Risk Quantification and EngineeringTM software for use in Florida. As required by the Commission, enclosed are the data and analyses for the General, Meteorological, Vulnerability, Actuarial, Statistical, and Computer Standards, updated to reflect compliance with the Standards set forth in the Commission’s Report of Activities as of November 1, 2015. In addition, the CoreLogic Florida Hurricane Model has been reviewed by professionals having credentials and/or experience in the areas of meteorology, engineering, actuarial science, statistics, and computer science, as documented in the signed Expert Certification (Forms G-1 to G-6). We have also completed the Editorial Certification (Form G-7). The following changes were made to the model between the previously accepted submission (Florida Hurricane Model 2015a) and the current submission (Florida Hurricane Model 2017a): 1. The probabilistic hurricane database has been regenerated to be consistent with the National Hurricane Center’s HURDAT2 data set as of June 9, 2015.
    [Show full text]