Review of Selected Literature and Epiphyte Classification

Total Page:16

File Type:pdf, Size:1020Kb

Review of Selected Literature and Epiphyte Classification --------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards. Oliver (1930) published a thorough general study of the sy~tematics and ecology of New Zealand vascular epiphytes. An important review of ecological life history studies of vascular epiphytes was compiled by Curtis (1952) which included more than 170 references from pre-Schimperian time onwards and covered numerous topics. Richards (1952) included a synopsis of vascular epiphyte biology in his standard textbook on the tropical rainforest. Walter (1971), and Dressler (1981) included similar epiphyte sections in their texts. A relatively brief, but to-the-point review of the ecology of tropical epiphytic orchids was presented by Holttum (1960). Two recent important papers that include large components of survey and review on general epiphyte ecology are those of Johansson (1974) and of Sanford (1974). The systematics and salient features of vascular epiphytes were discussed and reviewed by Madison (1977a). The water relations of epiphytes is an important aspect of their biology vitally related to their ecology and evolution. Gessner (1956) investigated and reviewed water economy and related physiology and anatomy of epiphytes, particularly orchids and bromeliads. He reviewed more than 40 papers. He interpreted the role of the velamen of orchid roots as that of a sponge which absorbs water rapidly by capillary action, but entry into the cortex and stele was much slower, by osmotic processes; Walter (1951) calculated however, that internal uptake rate was still very rapid when compared with 6 loss rates - the amount of water lost by a Vanda plant over a week could be absorbed into the stele within one hour. Such evidence supports the view that the physiological and anatomical devices most important in maintaining favourable water balance in epiphytic orchids are sited in the roots. Dycus & Knudson (1957) interpreted the velamen as an insulation against waterless and mechanical damage and played down the role of uptake of water and minerals. Capesius & Barthlott (1975) presented evidence supporting Wallach's (1939) and Gessners theory of the role of velamen in water (and mineral) uptake and Benzing & Ott (1981) agreed with this interpretation but rather boldly state that the passage cells of the root exodermis operate a 'one-way valve' effect (as do the foliar trichomes of the aerial bromeliads) which circumstantial evidence suggests may be the case. It has been clearly shown that this is true in the bromeliads, e.g. by Schimper (1888) and Mez (1904) but remains to be actually investigated in detail in the orchids - this is still an important need. Wallach (1939) and Dycus & Knudson presented evidence that the velamen was incapable of condensing water and gases from the atmosphere, as had been previously claimed. Sanford &Adanlawo (1973) surveyed velamen and exodermis characters in West African orchids and found a positive correlation between thickness of ve'lamen and aridity of environment. This perhaps supports the 'insulation against waterless' theory but may also relate to temporary storage of water absorbed, e.g. from night mists; the reflective qualities of the velamen surface (Benzing & Ott, 1981) may then,help reduce evaporation by keeping tissue temperature lower. Related to this is the controversy surrounding the evolution of shoot reduction in orchids and root reduction in bromeliads. Benzing & Ott (1981) argue, contrary to Rolfe (1914), that water stress ts of. secondary importance as a selection pressure producing aphylly in the monopodial orchids. However, they do not document the water saving potential of aphylly as has been done in relation to nutrient economy. They do not satisfactorily explain how the effect of the two different problems can be separated, especially since a) water and minerals are absorbed simultaneously, at least sometimes and b) both are limiting in epiphyte microhabitats, especially in the more exposed, outer ones. Also, the prevalence of leaf reduction among plant groups of arid terrestrial communities where nutrients are not limiting, cannot be ignored in this connection. They also argue that i. thick velamen inhibits root photosynthetic ability and, ii. this character correlates with aridity of microhabitat (Sanford & Adanlawo, 1974), and, 7 iii. aphyllous orchids have a thin velamen, thus, iv. aphylly is not an adaptation to water stress. However, these thickly velamen-clad orchids may simply be following a distinctly different adaptive line and thus not be comparable. An example of such a different line of adaptation to similar pressures is found in the genus BuZbophyZZum. All species investigated by the present writer (unpublished observations), have thin roots with a uniseriate veZamen, yet aphylly which has developed in two Australian species inhabiting outer, exposed microhabitats, i.e. B. rrrinutissimum and B. gZobuZifoY'l11(3, has involved transfer of photosynthetic function to tl1e pseudobulbs rather than to the roots. Benzing' s arguments favouring reduction in response to nutrient deficiency are convincing and supported by ample evidence, but the arguments against its cause by water stress ~re not so and the separation of the two influences remains a problem. Further evidence should be sought by researching e.g. rates of water loss and general water thrift of aphyllous orchids, the water status of their microhabitats, as well as their mineral relations. Benzing & Ott (1981) also g:i ve some useful suggestions on further research into the problem. Another hypothesis on the origins and causes of vegetative reduction in epiphytes is put forward by Johansson (1977) supported by evidence from Ruinen (1953) on 'epiphytosis' and briefly, states that the epiphytes are partially dependent on their 'hosts' for water and nutrition and the leaves degenerated and finally became obsolete. This is not widely accepted and is certainly based on circumstantial evidence. Related to this is the controversy surrounding the nature of the relationship between epiphytes, particularly the heliophilous, "extremely aerial", oligotrophic species, and the support tree, in regard to nutrient relations. The classical viewpoint is that typical epiphytes are quite autotrophic and have no deleterious effect on the phorophyte but the evidence of Ruinen (1953) strongly suggests that some, perhaps many epiphytes are epiparasites, using mycorrhizalconnections between themselves and the cortex of the phorophyte ('epiphytosis'). Actual transfer of water and nutrients has not yet been demonstrated to confirm this and for this reason, many workers are sceptical of this theory. Radioactive tracers should be useful in clarifying this matter, though there may be such problems as leaching of salts from phorophyte foliage and their absorption by epiphytes. 8 Another line of (circumstantial) evidence used by Ruinen and later by Johansson (1977) is the decline of the host and frequent death of tree parts which support suspected epiparasitic species of epiphytes. Benzing (1979) offere:3.an alternative explanation for such morbidity and mortality. He reasoned that epiphytes which colonise early in a tree's development will establish on branches and twigs that will later die as a result of the tree's growth and ontogenetic development while the epiphytes may persist on these. However, he does not explain why the epiphytes do not also decline because of microenvironmental changes brought about by tree ontogeny, e.g. increased shading and descreased throughfall. Benzing & Seemann (1978) investigate general decline of phorophytes with heavy epiphyte loads in environments of very poor nutrient status and put forward the theory of 'nutritional piracy'. This states that oligotrophic epiphytes are very efficient at scavenging and retaining nutrients and they effectively block the cycle and deprive the phorophyte of minerals. This seems a plausible argument but needs more direct
Recommended publications
  • An Introduction to the Epiphytic Orchids of East Africa
    Sphyrarchynchus sp. Cyrtorchis crassifoHa Schltr. AN INTRODUCTION TO THE EPIPHYTIC ORCHIDS OF EAST AFRICA. By W. M. MOREAU AND R. E. MOREAU. C()IYl,tents. 1. Introduction. 2. Nomenclature and classification. 3. General ecology. 4. The orchid flower. 5. Published and unpublished sources of East African records. 6. Tentative field key to the genera. 7. Annotated check-list of species. 1. INTRODUCTION. Over fifteen thousand species of orchids have been described, the vast majority of them tropical, and the greater part of them epiphytic, that is, normally growing on trees without deriving sustenance from them. But little more than ten per cent of the majestic total belong to Tropical Africa and moreover, so far as is known at present, within that area ground orchids predominate over epiphytic in the proportion of more than three to one. There is reason to believe that these figures are a reflection rather of our ignorance than of the truth. Because the Tropical African epiphytic orchids are not characterised by the magni• ficence and opulence of those of other regions, they have not attracted the commercial collector and certainly are most imperfectly known. Yet the local orchids display a delightful diversity of adaptation and of form. None are flamboyant, but many are beautiful, some are exquisitely dainty and a few are bizarre. They appeal to the same feelings and are capable of arousing the same enthusiasms as succulents or alpine plants. Moreover, anyone who takes the comparatively little trouble required to collect and grow them has the additional satisfaction of knowing that he is contributing to scientific knowledge.
    [Show full text]
  • Dendrobium Kingianum Bidwill Ex Lindl
    Volume 24: 203–232 ELOPEA Publication date: 19 May 2021 T dx.doi.org/10.7751/telopea14806 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) A review of Dendrobium kingianum Bidwill ex Lindl. (Orchidaceae) with morphological and molecular- phylogenetic analyses Peter B. Adams1,2, Sheryl D. Lawson2, and Matthew A.M. Renner 3 1The University of Melbourne, School of BioSciences, Parkville 3010, Victoria 2National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne 3004, Victoria 3National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney 2000, New South Wales Author for correspondence: [email protected] Abstract Populations of Dendrobium kingianum Bidwill ex Lindl. from near Newcastle, New South Wales to southern and central west Queensland and encompassing all regions of the distribution were studied using field observations, morphometric analysis and nrITS sequences. A total of 281 individuals were used to construct regional descriptions of D. kingianum and 139 individuals were measured for 19 morphological characters, and similarities and differences among specimens summarised using multivariate statistical methods. Patterns of morphological variation within D. kingianum are consistent with a single variable species that expresses clinal variation, with short-growing plants in the south and taller plants in the northern part of the distribution. The nrITS gene tree suggests two subgroups within D. kingianum subsp. kingianum, one comprising northern, the other southern individuals, which may overlap in the vicinity of Dorrigo, New South Wales. The disjunct D. kingianum subsp. carnarvonense Peter B.
    [Show full text]
  • Title Floral Synomone Diversification of Sibling Bulbophyllum Species
    Floral synomone diversification of sibling Bulbophyllum Title species (Orchidaceae) in attracting fruit fly pollinators Nakahira, Masataka; Ono, Hajime; Wee, Suk Ling; Tan, Keng Author(s) Hong; Nishida, Ritsuo Citation Biochemical Systematics and Ecology (2018), 81: 86-95 Issue Date 2018-12 URL http://hdl.handle.net/2433/235528 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.; The full- text file will be made open to the public on 01 December 2019 Right in accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University Floral Synomone Diversification of Bulbophyllum Sibling Species (Orchidaceae) in Attracting Fruit Fly Pollinators Masataka Nakahiraa · Hajime Onoa · Suk Ling Weeb,c · Keng Hong Tand · Ritsuo Nishidaa, * *Corresponding author Ritsuo Nishida [email protected] a Laboratory of Chemical Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606- 8502, Japan b School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor Darul Ehsan, Malaysia c Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor Darul Ehsan, Malaysia d Tan Hak Heng Co., Johor Bahru, Johor, Malaysia 1 Abstract Floral scent is one of the crucial cues to attract specific groups of insect pollinators in angiosperms. We examined the semiochemical diversity in the interactions between “fruit fly orchids” and their pollinator fruit fly species in two genera, Bactrocera and Zeugodacus (Tephritidae: Diptera).
    [Show full text]
  • Orchids: 2017 Global Ex Situ Collections Assessment
    Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions.
    [Show full text]
  • Vascular Epiphytic Medicinal Plants As Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities
    biomolecules Review Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities Ari Satia Nugraha 1,* , Bawon Triatmoko 1 , Phurpa Wangchuk 2 and Paul A. Keller 3,* 1 Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Jawa Timur 68121, Indonesia; [email protected] 2 Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; [email protected] 3 School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, and Illawarra Health & Medical Research Institute, Wollongong, NSW 2522 Australia * Correspondence: [email protected] (A.S.N.); [email protected] (P.A.K.); Tel.: +62-3-3132-4736 (A.S.N.); +61-2-4221-4692 (P.A.K.) Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration.
    [Show full text]
  • Flora of Moreton Island
    Flora of Moreton Island Mangroves & Mangroves Saltmarsh Foredunes Seepage Areas Headland communities & Melaleuca swamp assoc. communities Sedgelands heath Wet & closed Dry heath scrubs woodlands Grassy and Open forests woodlands shrubby sites Disturbed Growth form Dicotyledons . Aizoaceae C Carpobrotus glaucescens pigface herb C Sesuvium portulacastrum sea purslane herb C Tetragonia tetragonioides New Zealand spinach herb Amaranthaceae C Achyranthes aspera chaff-flower herb * Alternanthera pungens khaki weed, bindi herb * Amaranthus viridis green amaranth herb Anacardiaceae * Schinus terebinthifolius broad-leaved pepper low tree Apiaceae C Apium prostratum var. sea celery herb prostratum C Centella asiatica pennywort herb 1 Flora of Moreton Island Mangroves & Mangroves Saltmarsh Foredunes Seepage Areas Headland communities & Melaleuca swamp assoc. communities Sedgelands heath Wet & closed Dry heath scrubs woodlands Grassy and Open forests woodlands shrubby sites Disturbed Growth form C Hydrocotyle acutiloba pennywort herb * Hydrocotyle bonariensis pennywort herb C Platysace ericoides heath platysace herb C Xanthosia pilosa woolly xanthosia herb Apocynaceae * Catharanthus roseus pink periwinkle shrub * Nerium oleander oleander tall shrub C Parsonsia straminea monkey rope climber Araliaceae C Astrotricha glabra low shrub C Astrotricha longifolia star hair bush low shrub * Schefflera actinophylla umbrella tree low tree Asclepiadaceae * Asclepias curassavica red head cotton bush low shrub C Cynanchum carnosum
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Flora Survey, Glen Innes Management Area, Northern Region
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. FOREST RESOURCES SERIES NO. 23 FLORA SURVEY, GLEN INNES MANAGEMENT AREA, NORTHERN REGION BY DOUG BINNS , ,ft~:t'" , , , FORESTRY COMMISSION OF NEW SOUTH WALES .,, / t' \ FLORA SURVEY, GLEN INNES MANAGEMENT AREA NORTHERN REGION by ~, , DOUGBINNS FOREST ECOLOGY AND SILVICULTURE SECTION RESEARCH DIVISION FORESTRY COMMISSION OF NEW SOUTH WALES SYDNEY 1992 Forest Resources Series No. 23 October, 1992 ­, . , Published by: Forestry Commission ofNew South Wales, Research Division, 27 Oratava Avenue, West Pennant Hills, 2125 P.O. Box 100, Beecroft 2119 Australia. Copyright © 1992 by Forestry Commission ofNew South Wales ODC 17--05(944) ISSN 1033-1220 ISBN 0 7305 9649 4 J-' L Flora Survey, Glen Innes Management Area. -i- Northem Region TABLE OF CONTENTS PAGE INTRODUCTION 1 METHODS 1 1. Plot!.JOcation ; 1 2. Floristic and Vegetation Structural Data .4 3. Habitat Data ; 4 4. Limitations 4 5. Taxonomy andNomenclature 5 6. Data Analysis 6 RESULTS 6 1. Floristics 6 2. Overstorey Communities : 7 3. Comparison ofNew South Wales Forestry Commission Forest Types as Mapped .. 12 and Overstorey Floristic Communities 4. Non-eucalypt (tlUnderstorey") Floristic Communities 14 5. !.JOgging Impact 17 6. Fire Impact 18 DISCUSSION 18 1. General 18 2. Significant Plant Species 18 3. Conservation Status ofPlant Communities 25 4 Impact of!.JOgging 29 5.
    [Show full text]
  • Movements of Floral Parts and Roles of the Tooth On
    Journal of Pollination Ecology, 24(17), 2018, pp 157-163 — Short Communication — MOVEMENTS OF FLORAL PARTS AND ROLES OF THE TOOTH ON THE COLUMN WALL OF BULBOPHYLLUM PRAETERVISUM (ORCHIDACEAE) FLOWER IN POLLINATION BY DACINI FRUIT FLIES (DIPTERA: TEPHRITIDAE) Tan, Keng Hong*1,2 and Tan, Lin Tze3 1Mobula Research Sdn. Bhd., 20, Jalan Tan Jit Seng, 11200 Penang, Malaysia 2Academy of Sciences Malaysia, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, 50480 Kuala Lumpur, Malaysia 3Bachemer Strasse, 20, Bonn, 53179 Germany Abstract—Bulbophyllum is the largest genus of the orchid family, with about 2000 species that are mainly pollinated by flies. Flowers of many Bulbophyllum species under the Sections Sestochilos and Beccariana specifically attract Dacini fruit flies, Bactrocera and Zeugodacus species, as pollinators. Non-nectar producing and non-resupinate solitary flowers of Bu. pratervisum emit specific and pleasant floral fragrances to specifically attract and reward male fruit flies. Slippery surfaces on their lateral sepals aid in pollination. Although pollinia removal by male fruit flies has been observed frequently, deposition of pollinia to complete pollination (by two males of Ba. albistrigata and Z. caudatus) has only been observed recently. Field observations show two previously unreported movements of floral parts – a) petals and medial sepal during daily closing and reopening of flowers, and b) the spring-loaded and hinged lip during removal and deposition of pollinia by a male fruit fly. Additionally, a third (novel) movement has been observed, either when the flower closes for the night to protect the stigma, or after a fly has deposited the pollinia onto the stigma, the 'acute tooth' on each column wall folds inwards specifically to secure the newly deposited pollinia.
    [Show full text]
  • Pollination and the Evolution of Floral Traits: Selected Studies in the Cape Flora
    -~ Pollination and the evolution of floral traits: selected studies in the Cape flora by STEVEN D. JOHNSON Thesis submitted for the degree of Doctor of Philosophy in the Depart~ent of Botany at the University of Cape Town University of Cape Town September 1994 -~ /~... ~: .. _:•..,:_:_· •.,t--,,;__··_·.;.· ~: -~---· .·· "'--··......... .__,,.,/""/_·(, f·; Ti"~ Ul:-.:w~<iy ,~.j f""·:r· · 7"~'"r) '~as!~-~ ()n ~~i;rc·~l '! (J th~; ri~;;t··~;· ref·;~.;·.~:-.;(: t~;::. ti·Js;'.~--i~:! \:~;,·o;~ , H or in pert. Cc-.;7~yrighL i:> ::::;:;d by tho i:;u:~tc~'. j _ I . I \_:•:::7~""?.:;:.-~~-:f?::.."~:;.<t :"'' '"1:,~~- ;-_._.- ·_::_·:.: ':_:;:_;-::··: ,...~-: o-: .... : c»·-_· -~.c: ~ ' '-' \,j ) The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town -. Statement The conception, planning, execution and writing of this study was entirely my own except in the specific instances mentioned below. Some of the chapters are adapted from published papers which were coauthored with either one of my supervisors, William Bond and Kim Steiner. Their contributions were mainly through discussions and suggestions on how to improve the manuscripts. The cladistic analysis in Chapter 4 was done in collaboration with Peter Linder who is an authority in this field. Appendix B is a paper written by Kim Steiner, with Vin Whitehead and myself as coauthors.
    [Show full text]
  • Cattle Creek Ecological Assessment Report
    CATTLE CREEK CCCATTLE CCCREEK RRREGIONAL EEECOSYSTEM AND FFFUNCTIONALITY SSSURVEY Report prepared for Santos GLNG Feb 2021 Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au This page left blank for double-sided printing purposes. Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au Document Control Sheet Project Number: 0213 Project Manager: Andrew Daniel Client: Santos Report Title: Cattle Creek Regional Ecosystem and Functionality Survey Project location: Cattle Creek, Bauhinia, Southern Queensland Project Author/s: Andrew Daniel Project Summary: Assessment of potential ecological constraints to well pad location, access and gathering. Document preparation and distribution history Document version Date Completed Checked By Issued By Date sent to client Draft A 04/09/2020 AD AD 04/09/2020 Draft B Final 02/02/2021 AD AD 02/02/2021 Notice to users of this report CopyrighCopyright: This document is copyright to Terrestria Pty Ltd. The concepts and information contained in this document are the property of Terrestria Pty Ltd. Use or copying of this document in whole or in part without the express permission of Terrestria Pty Ltd constitutes a breach of the Copyright Act 1968. Report LimitationsLimitations: This document has been prepared on behalf of and for the exclusive use of Santos Pty Ltd. Terrestria Pty Ltd accept no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party. Signed on behalf of Terrestria Pty Ltd Dr Andrew Daniel Managing Director Date: 02 February 2021 Terrestria Pty Ltd File No: 0213 CATTLE CREEK REGIONAL ECOSYSTEM AND FUNCTIONALITY SURVEY Table of Contents 1.0 INTRODUCTION ...............................................................................................................
    [Show full text]
  • A.N.P.S.A. Fern Study Group Newsletter Number 143
    A.N.P.S.A. Fern Study Group Newsletter Number 143 ISSN 1837-008X DATE: June, 2019 LEADER: Peter Bostock, 54/260 Cliveden Avenue, CORINDA, Qld 4075. Tel. 07 3096 1054, mobile: 0421 113 955; email: [email protected] TREASURER: Dan Johnston, 9 Ryhope St, BUDERIM, Qld 4556. Tel. 07 5445 6069, mobile: 0429 065 894; email: [email protected] (note change of email address) NEWSLETTER EDITOR: Peter Bostock, contact as above. Program for South-east Queensland Region Peter Bostock Sunday 7th July 2019. Excursion to Bryces Road/Joyners Ridge Road, Mt Glorious. Meet along roadside between Mt Glorious Cafe and lower entrance to Maiala (D’Aguilar NP) at 9:30 am. Entrance to the walk is via set of steps on the southern side of Mt Glorious Road (or walk around the locked gate!). We last attempted a visit to Bryces Rd in August 2017 but had to make alternate plans due to hazard reduction burns in the area. Leader’s comment: this newsletter is a month late, as recipients will realise; this walk was quite successful, rain held off and a full report will be in the next newsletter. Sunday 4th August 2019. Excursion to Witches Falls, Mt Tamborine. Meet at 9:30 am at the roadside parking area, on Main Western Road between Hartley Rd and West Rd. Witches Falls circuit is a steep walk, with Grade 3 difficulty (suitable for most ages and fitness levels; some bushwalking experience recommended; tracks may have short, steep hill sections, a rough surface and many steps). See the Qld Department of Environment and Science website at : https://parks.des.qld.gov.au/parks/tamborine/ about.html#witches for further information.
    [Show full text]