Flora of Moreton Island
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dendrobium Kingianum Bidwill Ex Lindl
Volume 24: 203–232 ELOPEA Publication date: 19 May 2021 T dx.doi.org/10.7751/telopea14806 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) A review of Dendrobium kingianum Bidwill ex Lindl. (Orchidaceae) with morphological and molecular- phylogenetic analyses Peter B. Adams1,2, Sheryl D. Lawson2, and Matthew A.M. Renner 3 1The University of Melbourne, School of BioSciences, Parkville 3010, Victoria 2National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne 3004, Victoria 3National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney 2000, New South Wales Author for correspondence: [email protected] Abstract Populations of Dendrobium kingianum Bidwill ex Lindl. from near Newcastle, New South Wales to southern and central west Queensland and encompassing all regions of the distribution were studied using field observations, morphometric analysis and nrITS sequences. A total of 281 individuals were used to construct regional descriptions of D. kingianum and 139 individuals were measured for 19 morphological characters, and similarities and differences among specimens summarised using multivariate statistical methods. Patterns of morphological variation within D. kingianum are consistent with a single variable species that expresses clinal variation, with short-growing plants in the south and taller plants in the northern part of the distribution. The nrITS gene tree suggests two subgroups within D. kingianum subsp. kingianum, one comprising northern, the other southern individuals, which may overlap in the vicinity of Dorrigo, New South Wales. The disjunct D. kingianum subsp. carnarvonense Peter B. -
Australian Native Plants Society Australia Hakea
AUSTRALIAN NATIVE PLANTS SOCIETY AUSTRALIA HAKEA STUDY GROUP NEWSLETTER No. 65 OCTOBER 2017 ISSN0727- 7008 Leader: Paul Kennedy 210 Aireys Street Elliminyt Vic. 3250 E mail [email protected] Tel. 03-52315569 Dear members. We have had a very cold winter and now as spring emerges the cold remains with very wet conditions. Oh how I long for some warm sunshine to brighten our day. However the Hakeas have stood up to the cold weather very well and many have now flowered. Rainfall in August was 30mm but in the first 6 days of September another 56mm was recorded making the soil very moist indeed. The rain kept falling in September with 150mm recorded. Fortunately my drainage work of spoon drains and deeper drains with slotted pipe with blue metal cover on top shed a lot of water straight into the Council drains. Most of the Hakeas like well drained conditions, so building up beds and getting rid of excess water will help in making them survive. The collection here now stands at 162 species out of a possible 169. Seed of some of the remaining species hopefully will arrive here before Christmas so that I can propagate them over summer. Wanderings. Barbara and I spent most of June and July in northern NSW and Queensland to escape the cold conditions down here. I did look around for Hakeas and visited some members’ gardens. Just to the east of Cann River I found Hakea decurrens ssp. physocarpa, Hakea ulicina and Hakea teretifolia ssp. hirsuta all growing on the edge of a swamp. -
Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Review of Selected Literature and Epiphyte Classification
--------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards. -
Pollination Ecology and Evolution of Epacrids
Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes. -
Checklist Das Spermatophyta Do Estado De São Paulo, Brasil
Biota Neotrop., vol. 11(Supl.1) Checklist das Spermatophyta do Estado de São Paulo, Brasil Maria das Graças Lapa Wanderley1,10, George John Shepherd2, Suzana Ehlin Martins1, Tiago Egger Moellwald Duque Estrada3, Rebeca Politano Romanini1, Ingrid Koch4, José Rubens Pirani5, Therezinha Sant’Anna Melhem1, Ana Maria Giulietti Harley6, Luiza Sumiko Kinoshita2, Mara Angelina Galvão Magenta7, Hilda Maria Longhi Wagner8, Fábio de Barros9, Lúcia Garcez Lohmann5, Maria do Carmo Estanislau do Amaral2, Inês Cordeiro1, Sonia Aragaki1, Rosângela Simão Bianchini1 & Gerleni Lopes Esteves1 1Núcleo de Pesquisa Herbário do Estado, Instituto de Botânica, CP 68041, CEP 04045-972, São Paulo, SP, Brasil 2Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, CEP 13083-970, Campinas, SP, Brasil 3Programa Biota/FAPESP, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, CEP 13083-970, Campinas, SP, Brasil 4Universidade Federal de São Carlos – UFSCar, Rod. João Leme dos Santos, Km 110, SP-264, Itinga, CEP 18052-780, Sorocaba, SP, Brasil 5Departamento de Botânica – IBUSP, Universidade de São Paulo – USP, Rua do Matão, 277, CEP 05508-090, Cidade Universitária, Butantã, São Paulo, SP, Brasil 6Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana – UEFS, Av. Transnordestina, s/n, Novo Horizonte, CEP 44036-900, Feira de Santana, BA, Brasil 7Universidade Santa Cecília – UNISANTA, R. Dr. Oswaldo Cruz, 266, Boqueirão, CEP 11045-907, -
Coolum Community Native Nursery ABN: 50 944 517 759
Coolum Community Native Nursery ABN: 50 944 517 759 Authorised Propagator Queensland: APQ 056316 Protected Plant Growing Licence: WIGL18127217 January 2021 Stock List Prices, incl GST, at the end of this list. Please note these numbers vary with sales Ph: (07) 5473 9322 www.coolumnatives.com [email protected] 157 Warran Rd Yaroomba Qld 4573 Tuesday to Friday 7.30 - 3.30 & Saturday 8.30 - 12.30. (Open Monday by appointment). January 2021 Botanical Name Common Name Pot size Avail now in 1 month in 3months Acacia cincinnata Coil Pod Wattle Tube 50 Acacia fimbriata Fringed Wattle Tube 10 Acacia longissima Narrow Leaved Wattle Tube 75 Acacia hubbardiana Prickly Moses Tube 120 Acacia melanoxylon Blackwood Tube 75 Acacia myrtifolia Myrtle Wattle Tube 150 Acacia sophorae Coastal Wattle Tube 175 Acacia suaveolens Sweet Wattle Tube 250 Acacia ulicifolia Prickly Moses Tube 100 Acmena hemilampra Broad Leaved Lilly Pilly Tube 350 Alectryon coriaceus Beach Birds Eye Tube 200 Allocasuarina emuina Mt Emu Oak Tube 100 Allocasuarina littoralis River She Oak Tube 100 Allocasuarina thalassoscopica Mt Coolum She Oak Tube 75 Allocasuarina torulosa Forest Oak Tube 100 Aotus lanigera Wooly Aotus Tube 350 Archontophoenix cunninghamiana Bangalow Palm 200mm 5 Austromyrtus dulcis Midjim Berry Tube 550 Banksia aemula Wallum Banksia Tube 300 Banksia integrifolia Coastal Banksia Tube 600 Banksia oblongifolia Dwarf Banksia Tube 150 Banksia spinulosa Golden candlesticks Tubes 75 Brachychiton acerifolius Flame Tree Tube 30 Caesia parviflora var vittata Grass Lilly -
Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008
Comprehensive Coastal Assessment September 2008 Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008 This document may not be re-produced without prior written permission from the Department of Environment and Climate Change (NSW). Department of Environment and Climate Change (NSW) 59-61 Goulburn Street (PO Box A290) Sydney South NSW 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (information & publications requests) TTY: (02) 9211 4723 Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au Requests for information regarding this document are best directed to: Paul Sheringham Locked Bag 914 North East Branch Environmental Protection and Regulation Division Department of Environment and Climate Change Coffs Harbour NSW 2450 Phone: (02) 6659 8253 The documented may be cited as: Sheringham, P.R., Dr. Benwell, A., Gilmour, P., Graham, M.S., Westaway, J., Weber, L., Bailey, D., & Price, R. (2008). Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast. A report prepared by the Department of Environment and Climate Change for the Comprehensive Coastal Assessment. Department of Environment and Climate Change (NSW), Coffs Harbour, NSW. Editing: P.J. Higgins. Design and layout: Dee Rogers ISBN 978 1 74122 857 1 DECC 2008/316 Printed on recycled paper CCA08 Far North Coast Targeted Vegetation Survey TARGETED VEGETATION SURVEY OF FLOODPLAINS AND LOWER SLOPES ON THE FAR NORTH COAST P.R. Sheringham, Dr. A. Benwell, P. Gilmour, M.S. Graham, J. Westaway, L. Weber, D. Bailey, & R. Price CCA08 SEPTEMBER 2008 CCA08 Far North Coast Targeted Vegetation Survey Credits Paul Sheringham: Botanist and project manager, and responsible for the survey and stratification of sites, data entry, numerical analysis and writing of this report. -
Apium Prostratum Subsp. Prostratum Var. Filiforme
Apium prostratum subsp. prostratum var. filiforme COMMON NAME New Zealand celery SYNONYMS Petroselinum prostratum (Labill ex Vent.) DC., Helosciadium prostratum (Labill. ex Vent.) Bunge in Lehm., Petroselinum filiforme A.Rich., Apium filiforme (A.Rich.) Hook., Apium australe auct. non Pet.-Thou. FAMILY Apiaceae AUTHORITY Apium prostratum subsp. prostratum var. filiforme (A.Rich.) Kirk FLORA CATEGORY Vascular – Native ENDEMIC TAXON No ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Herbs - Dicotyledons other than Composites Apium aff. prostratum subsp. prostratum var. NVS CODE filiforme, April 2006, Pautahanui. Photographer: APIPVF Jeremy Rolfe CHROMOSOME NUMBER 2n = 22 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened DISTRIBUTION Indigenous. In New Zealand known from the Kermadec, Three Kings, North, South, Stewart and Antipodes Islands. Also in eastern Australia as far north as Brisbane and along the whole coastline of southern Australia and Tasmania HABITAT Coastal and lowland. Very rarely montane. Common on rock ledges, boulder falls, cliff faces, within petrel scrub on damp seepages, in peaty turf, saltmarshes, within estuaries on mud banks, around brackish ponds, and lagoons. Also found in freshwater systems such as around lake and tarn sides, along streams and rivers and in wet hollows occasionally well Apium aff. prostratum subsp. prostratum var. inland, and sometimes at considerable elevations. filiforme, April 2006, Pautahanui. Photographer: Jeremy -
NZPCN Conference 2015 Field Trip Huriawa
NZPCN Conference 2015 Field Trip Huriawa Table of Contents Introduction 1 Acaena novaezelandiae 2 Apium prostratum subsp. prostratum var. filiforme 3 Cotula australis 4 Hebe elliptica 5 Myoporum laetum 6 Olearia avicenniifolia 7 Phormium tenax 8 Senecio glomeratus subsp. glomeratus 9 Solanum laciniatum 10 Tetragonia implexicoma 11 Made on the New Zealand Plant Conservation Network website – www.nzpcn.org.nz Copyright All images used in this book remain copyright of the named photographer. Any reproduction, retransmission, republication, or other use of all or part of this book is expressly prohibited, unless prior written permission has been granted by the New Zealand Plant Conservation Network ([email protected]). All other rights reserved. © 2015 New Zealand Plant Conservation Network Huriawa, or Karitane Peninsula, is a rugged headland that protects the small coastal fishing port of Karitane at the mouth of the Waikouaiti River. It is famous for its pä, built originally by Käti Mamoe and known as Pa Katata but strengthened and expanded by the Käi Tahu fighting chief, Te Wera, about 1750. It was regarded as the strongest defensive structure of its type in Otago and one of the most impressive earthworks in Te Waipounamu (South Island) from preEuropean times. The Crown returned ownership of the reserve to Te Rünanga o Ngai Tahu as part of the historic Ngai Tahu Claims Settlement Act of 1998. Today it is jointly managed by Kati Huirapa Rünaka ki Puketeraki and the Department of Conservation under a protected private land (PPL) agreement. History There were some fortified pä in the south, but the colder southern climate meant that vegetable crops such as kumara, a staple part of the diet in warmer northern areas could not be grown. -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. -
Edible Native Plants Cheeseberry Leptecophylla Juniperina Coast Beardheath Or Native Currant Coast Daisybush Olearia Axillaris Coastal Wattle Acacia Longifolia Subsp
Copperleaf Snowberry Gaultheria hispida Ants Delight Acrotriche serrulata Barilla or Grey Saltbush Atriplex cinerea Bidgee-widgee Acaena novae-zelandiae Bower Spinach Tetragonia implexicoma Cape Barren Tea Correa alba Copperleaf Snowberry Gaultheria hispida Running Postman Kennedia prostrata Woolly Teatree Leptospermum lanigerum Edible Native Plants Cheeseberry Leptecophylla juniperina Coast Beardheath or Native Currant Coast Daisybush Olearia axillaris Coastal Wattle Acacia longifolia subsp. sophorae Cranberry Heath Astroloma humifusum OF TASMANIA subsp. juniperina Yellow Everlastingbush Ozothamnus obcordatus Key PART OF PLANT USED Underground Leaves/Leaf Bases Flowers Fruit Part Creeping Strawberry Pine Cutting Grass Gahnia grandis Erect Currantbush Leptomeria drupacea Grasstree, yamina or Green Appleberry Billardiera mutabilis Microcachrys tetragona Geebung Persoonia spp. Yacca Xanthorrhoea australis Purple Appleberry Meristem/Bud Exudate/Sap Seeds PREPARATION AND USE Snack Process Cook Eat Raw Tea Sweet Drink Flavouring CAUTION Hazard / Toxin Harvest Kills Plant Heartberry Aristotelia peduncularis Kangaroo Apple Solanum laciniatum Leeklily Bulbine spp. Lemon-leaf Heathmyrtle Baeckea gunniana Macquarie Vine or Blue Flaxlily Dionella spp. River Mint Mentha australis Native Grape Muehlenbeckia spp. Manfern or lakri Dicksonia antarctica or Milkmaids Burchardia umbellata Mountain Pepper Tasmannia lanceolata Native Cherry Exocarpus cupressiformis Native Ivyleaf Violet Viola hederacea Native Raspberry Rubus pavifolius Cyathea ssp. Native Bluebell Wahlenbergia spp. More information Cautionary Notes This poster is only a guide to what’s potentially edible. - sance so be cautious. Consume any new or unfamiliar food in small quantities. Ensure fruits are fully ripe. Note it’s often best not to ingest seeds or pips. cultivation and contemporary use of our edible native plants is still an evolving art and science. Source plants for your garden from native plant nurseries.