Dendrobium Kingianum Bidwill Ex Lindl

Total Page:16

File Type:pdf, Size:1020Kb

Dendrobium Kingianum Bidwill Ex Lindl Volume 24: 203–232 ELOPEA Publication date: 19 May 2021 T dx.doi.org/10.7751/telopea14806 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) A review of Dendrobium kingianum Bidwill ex Lindl. (Orchidaceae) with morphological and molecular- phylogenetic analyses Peter B. Adams1,2, Sheryl D. Lawson2, and Matthew A.M. Renner 3 1The University of Melbourne, School of BioSciences, Parkville 3010, Victoria 2National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne 3004, Victoria 3National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney 2000, New South Wales Author for correspondence: pbadams45@gmail.com Abstract Populations of Dendrobium kingianum Bidwill ex Lindl. from near Newcastle, New South Wales to southern and central west Queensland and encompassing all regions of the distribution were studied using field observations, morphometric analysis and nrITS sequences. A total of 281 individuals were used to construct regional descriptions of D. kingianum and 139 individuals were measured for 19 morphological characters, and similarities and differences among specimens summarised using multivariate statistical methods. Patterns of morphological variation within D. kingianum are consistent with a single variable species that expresses clinal variation, with short-growing plants in the south and taller plants in the northern part of the distribution. The nrITS gene tree suggests two subgroups within D. kingianum subsp. kingianum, one comprising northern, the other southern individuals, which may overlap in the vicinity of Dorrigo, New South Wales. The disjunct D. kingianum subsp. carnarvonense Peter B. Adams in central west Queensland, which can be distinguished by a predominately subterranean habit and a narrower labellum midlobe, was resolved sister to D. moorei F.Muell., which renders D. kingianum paraphyletic in the nrITS gene tree, but this position was not supported. Regional descriptions documenting clinal variation are provided. All previously described varieties, including D. kingianum var. pulcherrimum Rupp, are colour and growth forms of D. kingianum subsp. kingianum. Introduction Dendrobium kingianum Bidwill ex Lindl. (sect. Dendrocoryne) is a lithophyte found mainly on the eastern seaboard in the northern half of New South Wales (NSW) and southern Queensland. There are also isolated and disjunct populations in inland central west Queensland. Across this broad distribution the species is variable in plant form and floral colour. Dendrobium kingianum was discovered by European explorers in the 1830s when opening up agricultural land north of Newcastle, and was described in 1844 by John Lindley from material sent by John Carne Bidwell, and named for Bidwell’s friend Captain P.P. King of the Royal Navy. The collection location for type plants was not given but the description is consistent with those from the southern part of the range. Subsequently the known distribution was extended to the north as far as central Queensland. It has been widely cultivated in temperate zones. The species is of significant horticultural interest, and since the mid-20th century has been line bred and hybridised with other dendrobiums. There have been a number of taxa described, some separated at species level. This can create confusion for orchid hybrid registration. © 2021 Royal Botanic Gardens and Domain Trust 204 Telopea 24: 203–232, 2021 Adams, Lawson and Renner There are a small number of studies of chromosome counts (Adams 1992), pollination (Adams 1988, Adams and Lawson 1988) and fragrance biochemistry (Adams 1988, Adams and Lawson 1995). Molecular phylogeny reconstruction using nuclear ITS for the 12 species in sect. Dendrocoryne (Burke et al. 2008) resolved D. kingianum as sister to D. speciosum, a relationship also recovered using AFLP data by Simpson et al. (2018). The aims of this paper are to quantify variation within D. kingianum based on morphological and molecular phylogenetic analysis from populations across the distribution. In particular we are interested in morphological evidence relating to the potential existence of more than one species. Clements and Jones (2002) proposed that D. kingianum be split into three separate species under Thelychiton, namely, T. kingianus, T. pulcherrimus and T. carnarvonense. Neither Thelychiton nor these species have been accepted by the World Checklist of Selected Plant Families (WCSPF), Genera Orchidacearum Vol. 6 (Pridgeon et al. 2014) or a review of the systematics of Dendrobiinae (Adams 2011). We then formalise the results of this investigation, in conjunction with a taxonomic review of D. kingianum. Historical review of taxonomy Dendrobium kingianum is a variable species. In the late 19th and early 20th centuries, varietal status was proposed for particular plants with distinctive features, often flower colour and plant habit e.g. D. kingianum var. pallidum F.M.Bailey, D. kingianum var. silcockii F.M.Bailey, D. kingianum var. aldersoniae F.M.Bailey and D. kingianum var. album Williams. In 1943, Rupp described D. kingianum var. pulcherrimum Rupp for very short plants with comparatively large flowers from the upper Hastings River in the southern part of the range, and noted that few variations of the species were sufficiently constant to warrant even varietal rank. A description of the historical varieties and a subspecies are given below with comments. Dendrobium kingianum Bidwill ex Lindl. The protologue of D. kingianum (Lindley 1844) was based on a single cultivated plant shipped from Australia to England by J.C. Bidwill, purchased by the Loddiges brothers possibly in 1842 (Lindley 1845), and cultivated. The plant’s pseudobulbs were 4–5 inches long, bearing two leaves, and two-flowered inflorescences. D. (Desmotrichum) Kingianum; pseudobulbis ovatis in collum longum extensis apice bioliis, foliis ovalibus emarginatis, pedunculo terminali (2-floro foliis aequali ?), sepalis ovatis mento emarginato, petalis obovatis apiculatis duplo brevioribus, labelli trilobi pubescentis laciniis lateralibus acutis intermedia paulo longiore transverse rhombea angulis lateralibus rotundatis apiculi acuto axi elevata trilineata apice tridentata. This curious epiphyte was bought by the Messrs. Loddiges at the sale of Mr Bidwill’s New Holland Plants. It has pseudo-bulbs between four and five inches long, tapered from an ovate base into a very long and narrow neck, on the top of which stand two oblong emarginate dark-green rather wavy leaves. Between these is a flower-stalk having two pink flowers gaily spotted with crimson in the inside. It will probably flower more profusely when in better health, and will then be a plant of considerable interest. The following year Lindley (1845) published a longer treatment of the plant, including a colour illustration, and noted three flowered inflorescences and four-leaved canes. Mueller (1862) provided a description including the same characters as Lindley’s, but based on a specimen collected by Charles Stuart from the Severn River in New England, presumably from high altitude on the edge of the New England escarpment, where D. kingianum is common even today: Caulibus breviusculis pauciarticulatis basi sensim incrassatis, foliis 2-4 terminalibus ovato-lanceolatis, corymbo terminalia pauciflora, floribus roseo-purpureis, sepalis semilanceolato-ovatis petala ovato- lanceolata aequantibus, labello sepalis subaequilongo albo vittis purpureis striato trilobo, lobis lateralibus deltoideis, medio subreniformi apiculato integro, earinis tribus flavis usequ ad basin lobi medii extensis. In Nova Anglia haud procul a fluvio Severn. C. St. In indice orchidearum horti Schilleriani sequentes species Dendrobii Novo-Hollandicas nuperius enumerantur: D. calamiforme Lodd., D. lineolatum H.G.Rchb. (D. teres Lindl. nec R.Br.) Nondum vidi Dendrobium monoliforme (McLeay inedit), quod a viro reverendo R.L. King prope sinum Botany Bay in rupibus muscosis repertum et raritate minutie sicut caulibus subtiliter moniliformibus insigne dicitur. Hoc Forsan Bolbophyllis adscibendum est. Bentham’s description of D. kingianum in Flora Australiensis (1873: p. 280) encompassed more natural variation, with stems 3–6 inches tall, and 1–3 inflorescences per pseudobulb. He suggested Bidwill’s plant may have come from Moreton Bay, and cited specimens collected at ‘Biron’ (possibly Byron Bay) by Leichardt, and at New England collected by C. Stuart, so encompassing the elevational range occupied by the species: A review of Dendrobium kingianum Bidwill ex Lindl. (Orchidaceae) Telopea 24: 203–232, 2021 205 Stems usually 3 to 6 in. high, striate with prominent angles, thickened at the base. Leaves at the summit of the stem 3 to 5, lanceolate or oblong-lanceolate, acute, 3 to 4 in. long. Racemes within or above the leaves 1 to 3, longer than the leaves. Flowers of a reddish purple, on pedicels of 1/4 to 1/2 in. Bracts very small. Sepals broadly lanceolate, the lower ones much falcate, 4 lines long in some specimens, fully 5 in others. Petals about as long, but narrower. Spur conical, slightly incurved, about 3 lines long. Labellum not much shorter than the sepals, not undulate, the lateral lobes very prominent, almost oblong, obtuse, the middle lobe scarcely longer, but very broad, almost reniform, the disk with 3 raised lines or plates extending to the base of the middle lobe, but not beyond.—Bot. Mag. t. 4527; F. Muell Fragm. iii.
Loading...
Loading...
Loading...
Loading...
Loading...

25 pages remaining, click to load more.

Recommended publications
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • One New Endemic Plant Species on Average Per Month in New Caledonia, Including Eight More New Species from Île Art (Belep Islan
    CSIRO PUBLISHING Australian Systematic Botany, 2018, 31, 448–480 https://doi.org/10.1071/SB18016 One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection Gildas Gâteblé A,G, Laure Barrabé B, Gordon McPherson C, Jérôme Munzinger D, Neil Snow E and Ulf Swenson F AInstitut Agronomique Néo-Calédonien, Equipe ARBOREAL, BP 711, 98810 Mont-Dore, New Caledonia. BEndemia, Plant Red List Authority, 7 rue Pierre Artigue, Portes de Fer, 98800 Nouméa, New Caledonia. CHerbarium, Missouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA. DAMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, F-34000 Montpellier, France. ET.M. Sperry Herbarium, Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA. FDepartment of Botany, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden. GCorresponding author. Email: gateble@iac.nc Abstract. The New Caledonian biodiversity hotspot contains many micro-hotspots that exhibit high plant micro- endemism, and that are facing different types and intensities of threats. The Belep archipelago, and especially Île Art, with 24 and 21 respective narrowly endemic species (1 Extinct,21Critically Endangered and 2 Endangered), should be considered as the most sensitive micro-hotspot of plant diversity in New Caledonia because of the high anthropogenic threat of fire. Nano-hotspots could also be defined for the low forest remnants of the southern and northern plateaus of Île Art. With an average rate of more than one new species described for New Caledonia each month since January 2000 and five new endemics for the Belep archipelago since 2009, the state of knowledge of the flora is steadily improving.
    [Show full text]
  • Orchid of the Month for June, 2015 Oncidium Longipes by Bruce Adams
    Orchid of the Month for June, 2015 Oncidium Longipes by Bruce Adams Figure 1: Oncidium longipes When I first fell in love with orchids, about forty years ago, Oncidium was my favorite genus. I loved the intricate flowers on long sprays, often with a wonderful fragrance. At that time, I worked as a volunteer in the orchid house at Planting Fields Arboretum. After repotting plants, I had the opportunity to take home back bulbs, and received pieces of Oncidium sphacelatum, O. flexuosum, and others that I can no longer remember. Every year they had an orchid auction, and for the extravagant price of five dollars, I purchased a multi-lead plant of O. ornithorhyncum. I became familiar with many of the various species, and at the time was a bit of an Oncidium expert. Forty years later, I’ve forgotten much, and with the recent changes in nomenclature maybe I wasn’t ever really an Oncidium expert, but rather a Trichocentrum, Gomesa, and Tolumnia expert! What hasn’t changed is my fondness for this vast genus (or group of genera). Plants can get quite large, such as Oncidium sphacelatum, which can easily can fill a twelve-inch pot, sending out three foot spikes with hundreds of flowers. But there are also miniatures like Oncidium harrisonianum, which can be contained in a three or four inch pot and sports short sprays of pretty little yellow flowers with brown spots. In fact, most Oncidium flowers are a variation of yellow and brown, although Oncidium ornithorhyncum produces pretty purple pink flowers, while Oncidium phalaenopsis and its relatives have beautiful white to red flowers, often spotted with pink.
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • Review of Selected Literature and Epiphyte Classification
    --------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards.
    [Show full text]
  • Journal of the Royal Horticultural Society of London
    I 3 2044 105 172"381 : JOURNAL OF THE llopl lortimltoal fbck EDITED BY Key. GEORGE HEXSLOW, ALA., E.L.S., F.G.S. rtanical Demonstrator, and Secretary to the Scientific Committee of the Royal Horticultural Society. VOLUME VI Gray Herbarium Harvard University LOXD N II. WEEDE & Co., PRINTERS, BEOMPTON. ' 1 8 8 0. HARVARD UNIVERSITY HERBARIUM. THE GIFT 0F f 4a Ziiau7- m 3 2044 i"05 172 38" J O U E N A L OF THE EDITED BY Eev. GEOEGE HENSLOW, M.A., F.L.S., F.G.S. Botanical Demonstrator, and Secretary to the Scientific Committee of the Royal Horticultural Society. YOLUME "VI. LONDON: H. WEEDE & Co., PRINTERS, BROMPTON, 1 8 80, OOUITOIL OF THE ROYAL HORTICULTURAL SOCIETY. 1 8 8 0. Patron. HER MAJESTY THE QUEEN. President. The Eight Honourable Lord Aberdare. Vice- Presidents. Lord Alfred S. Churchill. Arthur Grote, Esq., F.L.S. Sir Trevor Lawrence, Bt., M.P. H. J". Elwes, Esq. Treasurer. Henry "W ebb, Esq., Secretary. Eobert Hogg, Esq., LL.D., F.L.S. Members of Council. G. T. Clarke, Esq. W. Haughton, Esq. Colonel R. Tretor Clarke. Major F. Mason. The Rev. H. Harpur Crewe. Sir Henry Scudamore J. Denny, Esq., M.D. Stanhope, Bart. Sir Charles "W. Strickland, Bart. Auditors. R. A. Aspinall, Esq. John Lee, Esq. James F. West, Esq. Assistant Secretary. Samuel Jennings, Esq., F.L S. Chief Clerk J. Douglas Dick. Bankers. London and County Bank, High Street, Kensington, W. Garden Superintendent. A. F. Barron. iv ROYAL HORTICULTURAL SOCIETY. SCIENTIFIC COMMITTEE, 1880. Chairman. Sir Joseph Dalton Hooker, K.C.S.I., M.D., C.B.,F.R.S., V.P.L.S., Royal Gardens, Kew.
    [Show full text]
  • Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits
    plants Article Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits Surya Diantina 1,2,*, Craig McGill 1, James Millner 1, Jayanthi Nadarajan 3 , Hugh W. Pritchard 4 and Andrea Clavijo McCormick 1 1 School of Agriculture and Environment, Massey University, Tennent Drive, 4410 Palmerston North, New Zealand; c.r.mcgill@massey.ac.nz (C.M.); j.p.millner@massey.ac.nz (J.M.); a.c.mccormick@massey.ac.nz (A.C.M.) 2 Indonesia Agency for Agricultural Research and Development (IAARD), Jl. Ragunan 29, Pasar Minggu, Jakarta Selatan 12540, Indonesia 3 The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand; jayanthi.nadarajan@plantandfood.co.nz 4 Royal Botanic Gardens Kew, Wellcome Trust Millennium Building, Wakehurst, Ardingly, West Sussex RH17 6TN, UK; h.pritchard@kew.org * Correspondence: S.Diantina@massey.ac.nz or suryadiantina@litbang.pertanian.go.id Received: 5 December 2019; Accepted: 17 January 2020; Published: 29 January 2020 Abstract: Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared various seed morphological traits, i.e., seed and pod shape, seed colour and size, embryo size, and air volume for six orchid species; and explored whether taxonomy, biogeographical origin, or growth habit are important determinants of seed morphology. We investigated this on two tropical epiphytic orchid species from Indonesia (Dendrobium strebloceras and D.
    [Show full text]
  • Jones Cross 2006 Index
    AN INDEX AND ORCHID SPECIES CROSS REFERENCE TO JONES, D.L. (2006) A Complete Guide to Native Orchids of Australia including the Island Territories Compiled by David Gillingham - A.N.O.S. (Qld) Kabi Group Inc. Contents: Page 1: Contents Explanations/Introduction References General Comments Page 2: The Jones "Dendrobium Alliance" - Comments, Notes, Cross Index Page 3: The Jones "Bulbophyllum Alliance" - Cross Index Page 4: The Jones "Vanda Alliance" - Notes, Cross Index Page 5: The Jones "Miscellaneous Epiphytes" - Notes, Cross Index Page 6: The Dendrobium speciosum/Thelychiton speciosus Complex Explanations/Introduction: There can be little doubt that David Jones's (2006) book A Complete Guide to Native Orchids of Australia including the Island Territories provides probably the most current and most comprehensive coverage of Australia's native orchids available between one set of covers. However whether, and to what extent, the very substantial taxonomic restructure presented in the book is accepted by the professional botanical community, only time will tell. In the meantime, while many orchid growers will enthusiastically embrace these new taxonomies, many others will exercise their valid right to continue labelling their orchids using the older taxa, waiting for the dust to settle on the scientific debate. In either regard there are difficulties for users of Jones's book, in their attempt to relate many of these new taxa to older species descriptors. The individual species entries in the text provide no prior taxonomic information whatever; and the index is of limited assistance, and far from complete regarding taxonomic descriptors commonly used over the past decade or so.
    [Show full text]
  • Flora of Moreton Island
    Flora of Moreton Island Mangroves & Mangroves Saltmarsh Foredunes Seepage Areas Headland communities & Melaleuca swamp assoc. communities Sedgelands heath Wet & closed Dry heath scrubs woodlands Grassy and Open forests woodlands shrubby sites Disturbed Growth form Dicotyledons . Aizoaceae C Carpobrotus glaucescens pigface herb C Sesuvium portulacastrum sea purslane herb C Tetragonia tetragonioides New Zealand spinach herb Amaranthaceae C Achyranthes aspera chaff-flower herb * Alternanthera pungens khaki weed, bindi herb * Amaranthus viridis green amaranth herb Anacardiaceae * Schinus terebinthifolius broad-leaved pepper low tree Apiaceae C Apium prostratum var. sea celery herb prostratum C Centella asiatica pennywort herb 1 Flora of Moreton Island Mangroves & Mangroves Saltmarsh Foredunes Seepage Areas Headland communities & Melaleuca swamp assoc. communities Sedgelands heath Wet & closed Dry heath scrubs woodlands Grassy and Open forests woodlands shrubby sites Disturbed Growth form C Hydrocotyle acutiloba pennywort herb * Hydrocotyle bonariensis pennywort herb C Platysace ericoides heath platysace herb C Xanthosia pilosa woolly xanthosia herb Apocynaceae * Catharanthus roseus pink periwinkle shrub * Nerium oleander oleander tall shrub C Parsonsia straminea monkey rope climber Araliaceae C Astrotricha glabra low shrub C Astrotricha longifolia star hair bush low shrub * Schefflera actinophylla umbrella tree low tree Asclepiadaceae * Asclepias curassavica red head cotton bush low shrub C Cynanchum carnosum
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008
    Comprehensive Coastal Assessment September 2008 Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast © Department of Environment and Climate Change (NSW), 2008 This document may not be re-produced without prior written permission from the Department of Environment and Climate Change (NSW). Department of Environment and Climate Change (NSW) 59-61 Goulburn Street (PO Box A290) Sydney South NSW 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (information & publications requests) TTY: (02) 9211 4723 Fax: (02) 9995 5999 Email: info@environment.nsw.gov.au Website: www.environment.nsw.gov.au Requests for information regarding this document are best directed to: Paul Sheringham Locked Bag 914 North East Branch Environmental Protection and Regulation Division Department of Environment and Climate Change Coffs Harbour NSW 2450 Phone: (02) 6659 8253 The documented may be cited as: Sheringham, P.R., Dr. Benwell, A., Gilmour, P., Graham, M.S., Westaway, J., Weber, L., Bailey, D., & Price, R. (2008). Targeted Vegetation Survey of Floodplains and Lower Slopes on the Far North Coast. A report prepared by the Department of Environment and Climate Change for the Comprehensive Coastal Assessment. Department of Environment and Climate Change (NSW), Coffs Harbour, NSW. Editing: P.J. Higgins. Design and layout: Dee Rogers ISBN 978 1 74122 857 1 DECC 2008/316 Printed on recycled paper CCA08 Far North Coast Targeted Vegetation Survey TARGETED VEGETATION SURVEY OF FLOODPLAINS AND LOWER SLOPES ON THE FAR NORTH COAST P.R. Sheringham, Dr. A. Benwell, P. Gilmour, M.S. Graham, J. Westaway, L. Weber, D. Bailey, & R. Price CCA08 SEPTEMBER 2008 CCA08 Far North Coast Targeted Vegetation Survey Credits Paul Sheringham: Botanist and project manager, and responsible for the survey and stratification of sites, data entry, numerical analysis and writing of this report.
    [Show full text]