Bulbophyllum Trongsaense (Orchidaceae: Epidendroideae: Dendrobieae), a New Species from Bhutan

Total Page:16

File Type:pdf, Size:1020Kb

Bulbophyllum Trongsaense (Orchidaceae: Epidendroideae: Dendrobieae), a New Species from Bhutan Phytotaxa 436 (1): 085–091 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.436.1.9 Bulbophyllum trongsaense (Orchidaceae: Epidendroideae: Dendrobieae), a new species from Bhutan PHUB GYELTSHEN1*, DHAN BAHADUR GURUNG2 & PANKAJ KUMAR3* 1Department of Forest and Park Services, Ministry of Agriculture and Forests, Trongsa, Bhutan. 2College of Natural Resources, Royal University of Bhutan, Lobesa, Bhutan. 3Kadoorie Farm and Botanic Garden, Lam Kam Road, Lam Tsuen, Tai Po, New Territories, Hong Kong S.A.R., P.R. China. *For correspondence: [email protected], [email protected] Abstract Bulbophyllum trongsaense is described as a new species from Trongsa district of Bhutan. Detailed morphological description, distribution, phenology, ecology and colour photographs are provided along with comparison with B. amplifolium to which it shows closest affinity. Keywords: Bulbophyllum amplifolium, B. nodosum, Endangered Introduction Orchidaceae is the largest and most diverse family of flowering plants (Pearce & Cribb 2002, Gurung 2006, Chase et al. 2015) consisting over 28,000 species in 736 genera with new species increasing day by day (Christenhusz & Byng 2016). Orchids occupy almost all habitats on earth except the glaciers; however, they show highest diversity in the tropics (Gurung 2006). Bhutan, the part of Eastern Himalayan Hotspot is home to rich flora and fauna. Pearce & Cribb (2002) recorded 369 species for Bhutan and about 579 species from other Himalayan regions, but this number is surely an underestimate and Bhutan is likely to harbor around 500 species as many parts of the country are still under surveyed (Pearce & Cribb 2002, Gurung 2006). Bulbophyllum Thouars (1822: t. 3) is one of the largest genera in the family comprising around 2,200 species distributed both in the tropics and subtropics (Pearce & Cribb 2002, Chen & Vermeulen 2009, Pridgeon et al. 2014, Chase et al. 2015, Govaerts et al. 2019). In Bhutan, the genus is represented by 36 species from 13 sections distributed mostly in Eastern, Western and Southern parts of Bhutan (Pearce & Cribb 2002, Gurung 2006). During the field survey for transmission line alignment at Dzongkhalum under Trongsa district on October 20, 2019, a charismatic epiphytic orchid, partially blooming on Toxicodendron succedaneum was discovered at the periphery of transmission line corridor at 2000 m elevation by the first author. After returning back to station, the photographs taken from the field were examined by using available literatures at hand and identified as an unusual Bulbophyllum species belonging to section Cirrhopetalum (Garay et al. 1994). On the same day, it was uploaded in the social media forum, the ‘Orchids of Bhutan’, for identification. After detail discussion with second and third authors and consultation of available literatures (Seidenfaden 1973: 1979, Pearce & Cribb 2002, Lucksom 2007, Chen et al. 2009, Pridgeon et al. 2014), it was confirmed to be a species hitherto new to science. We describe the same here as B. trongsaense and compare it with its allied species, B. amplifolium. Voucher specimens have been deposited at THIM. Taxonomy Bulbophyllum trongsaense P. Gyeltshen, D.B. Gurung & Kumar sp. nov. (Figs. 1 & 2). TYPE:—BHUTAN. Dzongkhalum Province, Trongsa District, 2000 m, 20 September 2019, P. Gyeltshen 1905 (holotype: THIM!). Accepted by Zhong-Jian Liu: 16 Feb. 2020; published: 16 Mar. 2020 85 FIGURE 1. Bulbophyllum trongsaense P. Gyeltshen, D.B.Gurung & Kumar sp. nov. A. Habit; B. Inflorescence with flowers; C. Close-up of inflorescence. Photographs by Phub Gyeltshen, plate by Pankaj Kumar. Diagnosis: Bulbophyllum trongsaense is similar to B. amplifolium, but differs in having rhizome with swollen nodes, up to 4.5 cm long petiole, dorsal sepal acute bearing trifurcate apex with middle forming a long clavate setae, petals obliquely falcate bearing triangular warts on both surfaces and trifurcate apex with median point extended into an elongate-clavate setae in former; against smooth regularly terete rhizome, up to 7.0 cm long petiole, dorsal sepal sub- obtuse ending up into an apex with a long setae ending in clavate tip, petals almost triangular to slightly oblique ovate bearing glabrous surface and acute apex extended into a setae with clavate tip in latter. 86 • Phytotaxa 436 (1) © 2020 Magnolia Press GYELTSHEN ET AL. FIGURE 2. Bulbophyllum trongsaense P. Gyeltshen, D.B. Gurung & Kumar sp. nov. A. Habit; B. Inflorescence; C. Flowers-dorsal, ventral and side views; D. Rhizome; E. Bracts dorsal and ventral views; F. Dorsal sepal, dorsal and ventral views; G. Petals; H. Lateral sepals-dorsal view; I. Lateral sepals-ventral view; J. Column with ovary; K. Lip-ventral view; L. Lip-side view; M. Lip-dosral view; N. Capitulum; O. Pollinia. Photographs by Phub Gyeltshen, plate by Pankaj Kumar. A NEW SPECIES OF BULBOPHYLLUM TRONGSAENSE Phytotaxa 436 (1) © 2020 Magnolia Press • 87 FIGURE 3. A.–B. Bulbophyllum trongsaense: A. Petal; B. Dorsal sepal. C.–D. Bulbophyllum amplifolium (redrawn from Seidenfaden 1973: fig. 63): C. Petal; D. Dorsal sepal. Illustrations by Pankaj Kumar. Epiphytic herbs, semi-erect. Roots terete, 3–7 cm long, 0.1–0.2 cm wide, caespitose, glabrous, mainly located below the pseudobulbs. Rhizome creeping, cylindrical, 4–13 (–14) × 0.4–0.8 cm, swollen at nodes at ca. 4–8 nodes between two pseudobulbs, woody, covered by membranous sheaths; sheaths 1.5–2.0 cm long, persistent, brown in colour; internodes of rhizome 1.0–1.7 (–2) cm long. Pseudobulbs ovoid-oblong, 3.5–7.0 cm long, 1.5–2.4 cm wide, 4.0–11.0 cm apart from each other on the rhizome, glabrous, green, slightly angular with longitudinal furrows during dry seasons. Petiole terete, 2.5–4.5 cm long, 0.4–0.5 cm wide, longitudinally channeled, glabrous, obliquely notched on the pseudobulb, green with minute black spots on the surface. Leaf blade linear-oblong to oblong-elliptic, 10.5– 20.0 cm long, 2.3–6.5 cm wide, leaf apex acute, dark green on upper surface and paler underneath, glabrous, base slightly attenuate, margin entire, thick, coriaceous to leathery, a few patches of black spots near the margins and at the base. Inflorescence sub-umbellate, erect or sub-erect, arising from the base of the pseudobulb, peduncle 16.0–29.0 cm long, (3–) 4–7 flowered, green with dark brown streaks, deflexed at distal portion whilst blooming; upper sheathing bracts, glabrous, lime green with red markings; basal bracts brownish–black, new ones light green, tubular-oblong, 0.7–1.4 cm long, 0.4–0.5 cm wide. Flowers resupinate, 4.2–5.0 (–5.5) cm long. Floral bracts oblong-lanceolate, 0.8–1.2 × 0.4–0.5 cm, apex acuminate, base truncate, glabrous, pinkish-green, surface light red spotted. Pedicel and ovary yellowish green with red spots, 1.5–2.5 cm long, 0.2–0.5 cm wide. Dorsal sepal ovate, 1.4–1.6 × 0.7–1 cm when flattened, yellow with pinkish-red spots, apex dark red, apex 3-lobed with a long setae from median lobe, setae of uniform width, base truncate, glabrous, margin entire at lower 2/3rd portion and minutely denticulate to crenulate towards upper 1/3rd portion; setae slender towards lower half to clavate towards apex, 0.7–0.8 mm long, deep maroon, minutely denticulate or rough surfaced when seen under microscope. Lateral sepals obliquely ovate to falcate, 4.0–5 cm long, 0.6–0.9 cm wide, yellow with reddish-maroon spotted, lower outer margin curled upwards and lightly fused, lower inner margin curled outwards and free, margins may become free with maturity, apex acuminate; base obliquely truncate to rounded when dissected free at base and adnate to column foot, broader and slightly twisted at base. Petals obliquely ovate to obliquely falcate, 5.5–7.0× 4.0–4.5 mm, margin dentate, yellow with dark red at the apex, falcate; apex three lobed with long median setae; setae slender, ca. 9 mm long, deep maroon, base slender, gradually broadening towards apex, almost elongate-clavate. Lip thick and fleshy, ovate–oblong, 6–7 mm long, 2.5–3.0 mm wide, glabrous, side lobes absent, margin entire, mobile, recurved, adaxially deep reddish-maroon and abaxially yellow to light maroon in colour; obtuse to rounded, base broad, auriculate. Column quadrangular with tapering base,0.8–0.9 mm long, 0.3–0.45 mm wide, forwarded and incurved foot; foot rectangular with tapering base, 4.5–5.0 mm long, 88 • Phytotaxa 436 (1) © 2020 Magnolia Press GYELTSHEN ET AL. 1.5–2.0 mm wide, adaxially reddish-maroon and abaxially yellow, minutely wing margins with maroon lining, margin entire. Stelidia falcate, broader towards center and tapering on both sides, 3.5–4.5 cm long, 0.8–0.9 mm wide, curved, apiculate with tip curved upwards, tip reddish-maroon, ca. 1 mm long. Anther cap cucullate, 2.0 mm long, 1.0–1.5 mm wide, pale yellow, margin entire on both sides, irregularly dentate on the front, front margin drawn out, glabrous, base obtuse to rounded. Pollinia yellow, 2 in one pair, ovoid, ca. 1.5 × 1.0 mm, glaucous. Fruits yellowish-green, clavate, 6.0–6.5 cm long, 1.3–1.5 cm wide, longitudinally grooved. FIGURE 4. Bulbophyllum amplifolium: A. Dorsal sepal; B. Petal. Photographs by Khyanjeet Gogoi from Assam (India). Flowering:—September–November Habitat:—Bulbophyllum trongsaense is an epiphytic orchid which grows on the primary and secondary tree trunks at around 2000 m elevation on specific host trees of Cinnamomum glanduliferum, Cornus capitata, Juglans regia, Schima wallichii, Symplocos ramosissima and Toxicodendron succedaneum. The other associated trees found in its habitat are Cordia grandis, Daphniphyllum himalayense, Glochidion velutinum and Nayariophyton zizyphifolium.
Recommended publications
  • Gastrodia Bambu (Orchidaceae: Epidendroideae), a New Species from Java, Indonesia
    Phytotaxa 317 (3): 211–218 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.317.3.5 Gastrodia bambu (Orchidaceae: Epidendroideae), A New Species from Java, Indonesia DESTARIO METUSALA1,2 & JATNA SUPRIATNA2 1Purwodadi Botanic Garden, Indonesian Institute of Sciences (LIPI), Jl. Raya Surabaya-Malang km.65, Pasuruan, East Java, Indone- sia; Email: [email protected] 2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Abstract Gastrodia bambu Metusala, a new species of Gastrodia (Orchidaceae: Epidendroideae, Gastrodieae) from Mount Merapi, Yogyakarta Province, Java, Indonesia, is described and illustrated. This new species is morphologically close to Gastrodia abscondita J.J.Sm, but differs in having a larger dark brown flower, a longer perianth tube, ovate petals, a longer and oblong- lanceolate lip, a different shape keels on lip, and a different shape column. Key words: Gastrodia, Java, Mount Merapi, holomycotrophic Introduction The genus Gastrodia R.Br (Brown 1810: 330) (Orchidaceae: Epidendroideae) is a genus of holomycotrophic terrestrial orchids that consists of approximately 80 accepted names, most of them being endemic species (Govaerts et al. 2017). This genus is characterized by having an underground fleshy rhizome, lacking functional leaves and chlorophyll, with sepals and petals connate into a 5-lobed tube, and having two mealy pollinia that lack caudicles (Seidenfaden & Wood 1992; Pridgeon et al. 2005; Cribb et al. 2010). It is widely distributed from northeastern India across southern China to Japan, eastern Siberia, the Southeast Asia, Australia, New Guinea, Solomon islands, and westwards to Madagascar, Mascarene Islands and tropical Africa (Pridgeon et al.
    [Show full text]
  • Bulbophyllum Lamb, Spec
    BLUMEA 38 (1994) 335-348 Notes on Bulbophylunae(Orchidaceae) from Borneo J.J. Vermeulen & A. Lamb Summary all and one ofthe Trias are described, originat- Nine new species of the genus Bulbophyllum genus are ing from Borneo. Notes on two more Bornean species of Bulbophyllum given. additional the informationon BorneanBulbophyllum species given This paper is to The Trias is in Vermeulen (1991). It adds nine new species to the checklist. genus Two other Bulbo- recorded for the first time from Borneo, with one new species. have been reduced into phyllum species are mentionedwhich appear to incorrectly synonymy in Vermeulen (1991). 1. Bulbophyllum habrotinum J. J. Vermeulen & A. Lamb, spec. nov. (sect. Cirrhopetalum) — Fig. 1 adaxialiter Bulbophyllum habrotinumJ.J. Vermeulen & A. Lamb, a B. makoyano in labello verru- — Leiden cult. (De 913245 (L). coso differt. Typus: Vogel) 1-2.5 0.9-2.8 Rhizome creeping, 2.5-3 mm diam.Pseudobulbs ovoid, cm apart, Petiole 5-10 7- by 0.6-1.1 cm, somewhat flattened or not. mm. Leaf blade elliptic, index obtuse. 4.5-9 20 by 2-3 cm, 3.5-10, tip Inflorescence usually single, cm, 8 Rhachis 6-9-flowered. Peduncle 4.3-8.7 cm; bracts c. 4, the longest c. mm. Floral bracts 4-5 Pedicel and nodding, 0.2-0.3 cm. ovate, mm, tip acute. ovary Flowers in all the little 6-7 mm. pendulous, a whorl, open at same time, opening. 3.5-4 index often Median sepal elliptic, 4.2-4.5 by mm, 1.1-1.3, tip acuminate, rather thin; surface Lateral with a terminal hair; margins long ciliate; glabrous.
    [Show full text]
  • Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
    TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice.
    [Show full text]
  • Dendrobium Kingianum Bidwill Ex Lindl
    Volume 24: 203–232 ELOPEA Publication date: 19 May 2021 T dx.doi.org/10.7751/telopea14806 Journal of Plant Systematics plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL • ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) A review of Dendrobium kingianum Bidwill ex Lindl. (Orchidaceae) with morphological and molecular- phylogenetic analyses Peter B. Adams1,2, Sheryl D. Lawson2, and Matthew A.M. Renner 3 1The University of Melbourne, School of BioSciences, Parkville 3010, Victoria 2National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne 3004, Victoria 3National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney 2000, New South Wales Author for correspondence: [email protected] Abstract Populations of Dendrobium kingianum Bidwill ex Lindl. from near Newcastle, New South Wales to southern and central west Queensland and encompassing all regions of the distribution were studied using field observations, morphometric analysis and nrITS sequences. A total of 281 individuals were used to construct regional descriptions of D. kingianum and 139 individuals were measured for 19 morphological characters, and similarities and differences among specimens summarised using multivariate statistical methods. Patterns of morphological variation within D. kingianum are consistent with a single variable species that expresses clinal variation, with short-growing plants in the south and taller plants in the northern part of the distribution. The nrITS gene tree suggests two subgroups within D. kingianum subsp. kingianum, one comprising northern, the other southern individuals, which may overlap in the vicinity of Dorrigo, New South Wales. The disjunct D. kingianum subsp. carnarvonense Peter B.
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.F.)
    UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES Département de Biologie et Ecologie Végétales Mémoire pour l’obtention du Diplôme d’Etudes Approfondies (D.E.A.) En Biologie et Ecologie Végétales OPTION : ECOLOGIE VEGETALE INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.f.) Présenté par RANDRIANINDRINA Veloarivony Rence Aimée (Maître ès Sciences) Soutenu publiquement le, 31 Janvier 2008 Devant la Commission de jury composée de : Président : Pr. RAJERIARISON Charlotte Examinateurs : Dr. RABAKONANDRIANINA Elisabeth Dr. FALINIAINA Lucien Rapporteurs : Dr. RAKOUTH Bakolimalala Dr. EDWARD Louis Jr. 1 UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES Département de Biologie et Ecologie Végétales Mémoire pour l’obtention du Diplôme d’Etudes Approfondies (D.E.A.) En Biologie et Ecologie Végétales OPTION : ECOLOGIE VEGETALE INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.f.) Présenté par RANDRIANINDRINA Veloarivony Rence Aimée (Maître ès Sciences) Soutenu publiquement le, 31 Janvier 2008 Devant la Commission de jury composée de : Président : Pr. Charlotte RAJERIARISON Examinateurs : Dr. Elisabeth RABAKONANDRIANINA Dr Lucien. FALINIAINA Rapporteurs : Dr. Bakolimalala RAKOUTH Dr. Louis Jr. EDWARD 2 REMERCIEMENTS En premier lieu, nous voudrions rendre gloire à Dieu pour sa bienveillance et sa bénédiction. Mené à terme ce mémoire, est le fruit de la collaboration entre
    [Show full text]
  • Synopsis of the Trichocentrum-Clade (Orchidaceae, Oncidiinae)
    SyNOPSIS OF THE TRICHOCENTRUM-CLADE (ORCHIDACEAE, ONCIDIINAE) WILLIAM CETZAL-IX,1–3 GERMÁN CARNEVALI,1, 4 AND GUSTAVO ROMERO-GONZÁLEZ1, 4 Abstract: We present a synopsis of the Trichocentrum-clade of Oncidiinae. In this revision, we recognize 85 taxa assigned to four genera: Cohniella with 23 species in five complexes and two natural hybrids; Lophiaris with 27 species and eight natural hybrids, six of which are yet to be named; Trichocentrum with 27 species and two subspecies; and Lophiarella with three species. Cohniella yuroraensis is referred to the synonymy of C. ultrajectina, C. allenii and C. christensoniana to the synonymy of C. nuda, and C. croatii to C. lacera. Trichocentrum perezii is referred to the synonymy of Lophiaris andreana. A key to the genera of the Trichocentrum-clade is presented as well as keys to the complexes or groups of species and, when applicable, natural hybrids of Cohniella, Lophiarella, Lophiaris, and Trichocentrum. Keywords: Cohniella, geographic distribution, Lophiarella, Lophiaris, nomenclature, Trichocentrum The Trichocentrum Poeppig & Endlicher clade of endemic), Venezuela (3 endemic) all with 14 taxa, Honduras Oncidiinae, as circumscribed here, includes four genera: with 12 taxa, and Bolivia (one endemic), Guatemala, and Cohniella Pfitzer, Lophiarella Szlachetko, Mytnik-Ejsmont El Salvador all with 11 taxa. Other countries are represented & Romowicz, Lophiaris Rafinesque, and Trichocentrum by fewer than 10 taxa (Table 1). (Carnevali et al., 2013). Some authors recognize this clade Characters used to recognize taxa and hybrids within as a single genus using a broad definition forTrichocentrum the genera are primarily floral, such as the size and color (Williams et al., 2001; Sosa et al., 2001; Chase, 2009; (especially color patterns) of the flowers, shape and Neubig et al., 2012).
    [Show full text]
  • Partial Endoreplication Stimulates Diversification in the Species-Richest Lineage Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.091074; this version posted May 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Partial endoreplication stimulates diversification in the species-richest lineage of 2 orchids 1,2,6 1,3,6 1,4,5,6 1,6 3 Zuzana Chumová , Eliška Záveská , Jan Ponert , Philipp-André Schmidt , Pavel *,1,6 4 Trávníček 5 6 1Czech Academy of Sciences, Institute of Botany, Zámek 1, Průhonice CZ-25243, Czech Republic 7 2Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague CZ-12801, Czech Republic 8 3Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria 9 4Prague Botanical Garden, Trojská 800/196, Prague CZ-17100, Czech Republic 10 5Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague CZ- 11 12844, Czech Republic 12 13 6equal contributions 14 *corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.091074; this version posted May 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 15 Abstract 16 Some of the most burning questions in biology in recent years concern differential 17 diversification along the tree of life and its causes.
    [Show full text]
  • Jones Cross 2006 Index
    AN INDEX AND ORCHID SPECIES CROSS REFERENCE TO JONES, D.L. (2006) A Complete Guide to Native Orchids of Australia including the Island Territories Compiled by David Gillingham - A.N.O.S. (Qld) Kabi Group Inc. Contents: Page 1: Contents Explanations/Introduction References General Comments Page 2: The Jones "Dendrobium Alliance" - Comments, Notes, Cross Index Page 3: The Jones "Bulbophyllum Alliance" - Cross Index Page 4: The Jones "Vanda Alliance" - Notes, Cross Index Page 5: The Jones "Miscellaneous Epiphytes" - Notes, Cross Index Page 6: The Dendrobium speciosum/Thelychiton speciosus Complex Explanations/Introduction: There can be little doubt that David Jones's (2006) book A Complete Guide to Native Orchids of Australia including the Island Territories provides probably the most current and most comprehensive coverage of Australia's native orchids available between one set of covers. However whether, and to what extent, the very substantial taxonomic restructure presented in the book is accepted by the professional botanical community, only time will tell. In the meantime, while many orchid growers will enthusiastically embrace these new taxonomies, many others will exercise their valid right to continue labelling their orchids using the older taxa, waiting for the dust to settle on the scientific debate. In either regard there are difficulties for users of Jones's book, in their attempt to relate many of these new taxa to older species descriptors. The individual species entries in the text provide no prior taxonomic information whatever; and the index is of limited assistance, and far from complete regarding taxonomic descriptors commonly used over the past decade or so.
    [Show full text]
  • The New York Botanical Garden
    Vol. XV DECEMBER, 1914 No. 180 JOURNAL The New York Botanical Garden EDITOR ARLOW BURDETTE STOUT Director of the Laboratories CONTENTS PAGE Index to Volumes I-XV »33 PUBLISHED FOR THE GARDEN AT 41 NORTH QUBKN STRHBT, LANCASTER, PA. THI NEW ERA PRINTING COMPANY OFFICERS 1914 PRESIDENT—W. GILMAN THOMPSON „ „ _ i ANDREW CARNEGIE VICE PRESIDENTS J FRANCIS LYNDE STETSON TREASURER—JAMES A. SCRYMSER SECRETARY—N. L. BRITTON BOARD OF- MANAGERS 1. ELECTED MANAGERS Term expires January, 1915 N. L. BRITTON W. J. MATHESON ANDREW CARNEGIE W GILMAN THOMPSON LEWIS RUTHERFORD MORRIS Term expire January. 1916 THOMAS H. HUBBARD FRANCIS LYNDE STETSON GEORGE W. PERKINS MVLES TIERNEY LOUIS C. TIFFANY Term expire* January, 1917 EDWARD D. ADAMS JAMES A. SCRYMSER ROBERT W. DE FOREST HENRY W. DE FOREST J. P. MORGAN DANIEL GUGGENHEIM 2. EX-OFFICIO MANAGERS THE MAYOR OP THE CITY OF NEW YORK HON. JOHN PURROY MITCHEL THE PRESIDENT OP THE DEPARTMENT OP PUBLIC PARES HON. GEORGE CABOT WARD 3. SCIENTIFIC DIRECTORS PROF. H. H. RUSBY. Chairman EUGENE P. BICKNELL PROF. WILLIAM J. GIES DR. NICHOLAS MURRAY BUTLER PROF. R. A. HARPER THOMAS W. CHURCHILL PROF. JAMES F. KEMP PROF. FREDERIC S. LEE GARDEN STAFF DR. N. L. BRITTON, Director-in-Chief (Development, Administration) DR. W. A. MURRILL, Assistant Director (Administration) DR. JOHN K. SMALL, Head Curator of the Museums (Flowering Plants) DR. P. A. RYDBERG, Curator (Flowering Plants) DR. MARSHALL A. HOWE, Curator (Flowerless Plants) DR. FRED J. SEAVER, Curator (Flowerless Plants) ROBERT S. WILLIAMS, Administrative Assistant PERCY WILSON, Associate Curator DR. FRANCIS W. PENNELL, Associate Curator GEORGE V.
    [Show full text]
  • Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
    THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae.
    [Show full text]
  • The Orchid Flora of the Colombian Department of Valle Del Cauca Revista Mexicana De Biodiversidad, Vol
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Kolanowska, Marta The orchid flora of the Colombian Department of Valle del Cauca Revista Mexicana de Biodiversidad, vol. 85, núm. 2, 2014, pp. 445-462 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42531364003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 85: 445-462, 2014 Revista Mexicana de Biodiversidad 85: 445-462, 2014 DOI: 10.7550/rmb.32511 DOI: 10.7550/rmb.32511445 The orchid flora of the Colombian Department of Valle del Cauca La orquideoflora del departamento colombiano de Valle del Cauca Marta Kolanowska Department of Plant Taxonomy and Nature Conservation, University of Gdańsk. Wita Stwosza 59, 80-308 Gdańsk, Poland. [email protected] Abstract. The floristic, geographical and ecological analysis of the orchid flora of the department of Valle del Cauca are presented. The study area is located in the southwestern Colombia and it covers about 22 140 km2 of land across 4 physiographic units. All analysis are based on the fieldwork and on the revision of the herbarium material. A list of 572 orchid species occurring in the department of Valle del Cauca is presented. Two species, Arundina graminifolia and Vanilla planifolia, are non-native elements of the studied orchid flora. The greatest species diversity is observed in the montane regions of the study area, especially in wet montane forest.
    [Show full text]