Vascular Epiphytic Medicinal Plants As Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities

Total Page:16

File Type:pdf, Size:1020Kb

Vascular Epiphytic Medicinal Plants As Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities biomolecules Review Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities Ari Satia Nugraha 1,* , Bawon Triatmoko 1 , Phurpa Wangchuk 2 and Paul A. Keller 3,* 1 Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Jawa Timur 68121, Indonesia; [email protected] 2 Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; [email protected] 3 School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, and Illawarra Health & Medical Research Institute, Wollongong, NSW 2522 Australia * Correspondence: [email protected] (A.S.N.); [email protected] (P.A.K.); Tel.: +62-3-3132-4736 (A.S.N.); +61-2-4221-4692 (P.A.K.) Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration. These epipythes have the potential to furnish drug lead compounds, especially for treating cancers, and thus warrant indepth investigations. Keywords: epiphytes; medicinal plants; phytochemistry; pharmacology; drug leads 1. Introduction Epiphytes are plants that grow on other plants and are often known as air plants. They are mostly found in moist tropical areas on canopy tree-tops, where they exploit the nutrients available from leaf and other organic debris. These plants exist within the plantae and fungi kingdom. The term epiphyte itself was first introduced in 1815 by Charles-François Brisseau de Mirbel in “Eléments de physiologie végétale et de botanique” [1]. Epiphytes can be categorized into vascular and non-vascular epiphytic plants; the latter includes the marchantiophyta (liverworts), anthocerotophyta (hornworts), and bryophyta (mosses). The common epiphytes are mosses, ferns, liverworts, lichens, and the orchids. Epiphytes fall under two major categories: As holo- and hemi-epiphytes. While orchids are a good example of holo-epiphytes, the strangler fig is a hemi-epiphyte. Although geological studies have proposed the existence of epiphytes since the pleistone epoch, an epiphyte was first depicted in “the Badianus Manuscript” by Martinus de la Cruz in 1552, which showed the Vanilla fragrans, a hemi-epiphytic orchid, being used by the tribal communities in latin America for fragrance and aroma, usually hung around their neck [1]. Biomolecules 2020, 10, 181; doi:10.3390/biom10020181 www.mdpi.com/journal/biomolecules Biomolecules 2020, 10, 181 2 of 66 Biomolecules 2020, 10, x 2 of 57 Epiphytes have been a source of of food food and and medicine medicine for for thousands thousands of of years. years. Since Since they they grow grow in in a aunique unique ecological ecological environment, environment, they they produce produce in interestingteresting secondary secondary metabolites metabolites that that often show exciting biologicalbiological activities.activities. There There are are notable notable reviews on non-vascular epiphytes, bryophyta, regardingregarding theirtheir phytochemicalphytochemical andand pharmacologicalpharmacological activitiesactivities [[2–5].2–5]. There are also extensive reviews on epiphyticepiphytic lichenslichens coveringcovering secondarysecondary metabolitesmetabolites andand theirtheir pharmacologicalpharmacological activitiesactivities [[6–9].6–9]. The only availableavailable reviewreview on on vascular vascular epiphytes epiphytes related related to medicinalto medicinal uses uses was was focused focused on Orchidaceae on Orchidaceae [10]. Therefore,[10]. Therefore, to the to best the of best our knowledge,of our knowledge, there is nothere extensive is no extensiv databasee database of vascular of epiphytesvascular epiphytes regarding theirregarding medicinal their contribution.medicinal contribution. There areare 27,614 27,614 recorded recorded species species of of vascular vascular epiphytes epiphytes belonging belonging to73 to families73 families and and 913 genera913 genera [11]. Vascular[11]. Vascular epiphyte epiphyte species arespecies commonly are commonl found iny pteridophyta,found in pteridophyta, gymnosperms, gymnosperms, and angiosperms and plantangiosperms groups, plant which groups, are mostly which found are mostly in the found moist tropicalin the moist areas tropical on canopy areas tree on canopy tops, where tree tops, they exploitswhere they the exploits nutrients the available nutrients from available leaf and from other leaf organic and other debris organic [12,13 debris]. In this [12,13]. study, In information this study, oninformation vascular epiphyticon vascular medicinal epiphytic plant medicinal species plan wast species collected was using collected search using engines search (Web engines of Science, (Web Scifinderof Science, Scholar, Scifinder prosea, Scholar, prota, prosea, Google prota, scholar), Google medicinal scholar), plant medicinal books (Plant plant Resourcesbooks (Plant of South-EastResources Asia:of South-East Medicinal Asia: and PoisonousMedicinal Plantsand Poisonous [14–16], Plant Plants Resources [14–16], of Plant South-East Resources Asia: of Cryptogams: South-East FernsAsia: andCryptogams: Fern Allies Ferns [17], and Mangrove Fern Allies Guide [17], for South-EastMangrove AsiaGuide [18 for], MedicinalSouth-East Plants Asia of[18], the Medicinal Asia-Pacific Plants [19], Medicinalof the Asia-Pacific Plants of the[19], Guiana Medicinal [20], IndianPlants Medicinal of the Guiana Plants [[20],21,22 ],Indian Medicinal Medicinal Plants ofPlants Bhutan [21,22], [23], Medicinal Plants and aromatic of Bhutan plants [23], Medicinal of Indian and Ocean aromatic islands: plants Madagascar, of Indian Ocean Comoros, islands: Seychelles Madagascar, and MascarenesComoros, Seychelles [24]), and theand Indonesian Mascarenes Medicinal [24]), and Plants the Database Indonesian [25 ].Medicinal Scientific namesPlants ofDatabase the epiphytic [25]. medicinalScientific names plant species of the wereepiphytic compared medicinal against plant the Plantlistspecies databasewere compared for accepted against names the toPlantlist avoid redundancydatabase for [26accepted]. The time-frame names to avoid threshold redundancy for data coverage[26]. The wastime-frame from the threshold earliest available for data datacoverage until earlywas from 2020. the Nevertheless, earliest available empirical data knowledgeuntil early 2020. regarding Nevertheless, traditional empirical medicinal knowledge plants was regarding passed throughtraditional generations medicinal plants using was verbal passed or written through communication, generations using with verbal verbal or written communication communication, highly practicedwith verbal by remotecommunication tribes [27 ,highly28]. It ispracticed possible by that remote some oraltribes traditional [27,28]. It medical is possible knowledge that some may oral not betraditional reported medical and therefore knowledge not captured may not in be this reported review. an Ind thistherefore current not study, captured we collected in this review. and reviewed In this 185current epiphytic study, medicinal we collected plants and reported reviewed in the185 literature,epiphytic coveringmedicinal ethnomedicinal plants reported uses in the of epiphytes,literature, theircovering phytochemical ethnomedicinal studies uses and of the epiphytes, pharmacological their phytochemical activities. The studies data collection and the approachpharmacological used is presentedactivities. The in Figure data 1coll. ection approach used is presented in Figure 1. Figure 1. Schematic data collection approach. 2. Ethnopharmacological Information of Vascular EpiphyticEpiphytic MedicinalMedicinal PlantsPlants 2.1. Vascular Epiphytic Medicinal Plant SpeciesSpecies Distribution within PlantPlant FamiliesFamilies InIn thisthis componentcomponent of the study, wewe collatedcollated andand analysedanalysed 185185 ofof thethe medicinallymedicinally used epiphytic plantsplants speciesspecies usingusing ethnopharmacologicalethnopharmacological information.information. This This data data (Table (Table 11)) includesincludes thethe namename ofof species, plant family, areasareas wherewhere thethe epiphytesepiphytes areare usedused inin traditionaltraditional medicines,medicines, part(s)part(s) of the plant being used in medication,medication, how thethe medicinemedicine waswas prepared,prepared, andand indications.indications. Of the 185 medicinally used epiphytes,epiphytes, 53 53 species species were were ferns ferns (mostly (mostly polipodiaceae), polipodiaceae), with with 132 132 species species belonging belonging
Recommended publications
  • An Integrated Orchid Functional Genomics Database
    Orchidstra: An Integrated Orchid Functional Genomics Database Special Focus Issue Chun-lin Su1,3, Ya-Ting Chao1,3, Shao-Hua Yen1, Chun-Yi Chen1, Wan-Chieh Chen1, Yao-Chien Alex Chang2 and Ming-Che Shih1,* 1Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan 2Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan. 3These authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; Fax, +886-2-26515693. (Received November 9, 2012; Accepted January 5, 2013) A specialized orchid database, named Orchidstra (URL: Abbreviations: BLAST, basic local alignment search tool; – Databases http://orchidstra.abrc.sinica.edu.tw), has been constructed CAM, crassulacean acid metabolism; EIF5A, eukaryotic trans- to collect, annotate and share genomic information for lation initiation factor 5A; EST, expressed sequence tag; GO, orchid functional genomics studies. The Orchidaceae is a Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and large family of Angiosperms that exhibits extraordinary bio- Genomes; miRNA, microRNA; NGS, next-generation sequen- diversity in terms of both the number of species and their cing; SRA, sequence read archive; TSA, transcriptome distribution worldwide. Orchids exhibit many unique biolo- shotgun assembly. gical features; however, investigation of these traits is cur- rently constrained due to the limited availability of genomic information. Transcriptome information for five orchid spe- Introduction cies and one commercial hybrid has been included in the Orchidaceae, the orchid family, diverged from the Liliaceae Orchidstra database. Altogether, these comprise >380,000 and Amaryllidaceae, is the largest family of Angiosperms, with non-redundant orchid transcript sequences, of which >800 genera and >25,000 species.
    [Show full text]
  • An Introduction to the Epiphytic Orchids of East Africa
    Sphyrarchynchus sp. Cyrtorchis crassifoHa Schltr. AN INTRODUCTION TO THE EPIPHYTIC ORCHIDS OF EAST AFRICA. By W. M. MOREAU AND R. E. MOREAU. C()IYl,tents. 1. Introduction. 2. Nomenclature and classification. 3. General ecology. 4. The orchid flower. 5. Published and unpublished sources of East African records. 6. Tentative field key to the genera. 7. Annotated check-list of species. 1. INTRODUCTION. Over fifteen thousand species of orchids have been described, the vast majority of them tropical, and the greater part of them epiphytic, that is, normally growing on trees without deriving sustenance from them. But little more than ten per cent of the majestic total belong to Tropical Africa and moreover, so far as is known at present, within that area ground orchids predominate over epiphytic in the proportion of more than three to one. There is reason to believe that these figures are a reflection rather of our ignorance than of the truth. Because the Tropical African epiphytic orchids are not characterised by the magni• ficence and opulence of those of other regions, they have not attracted the commercial collector and certainly are most imperfectly known. Yet the local orchids display a delightful diversity of adaptation and of form. None are flamboyant, but many are beautiful, some are exquisitely dainty and a few are bizarre. They appeal to the same feelings and are capable of arousing the same enthusiasms as succulents or alpine plants. Moreover, anyone who takes the comparatively little trouble required to collect and grow them has the additional satisfaction of knowing that he is contributing to scientific knowledge.
    [Show full text]
  • The Diversity of Wild Orchids in the Southern Slope of Mount Merapi, Yogyakarta, Indonesia Eight Years After the 2010 Eruption
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 9, September 2020 E-ISSN: 2085-4722 Pages: 4457-4465 DOI: 10.13057/biodiv/d210964 The diversity of wild orchids in the southern slope of Mount Merapi, Yogyakarta, Indonesia eight years after the 2010 eruption FEBRI YUDA KURNIAWAN1,2,♥, FAUZANA PUTRI2,3, AHMAD SUYOKO2,3, HIMAWAN MASYHURI2,3, MAYA PURQI SULISTIANINGRUM2,3, ENDANG SEMIARTI3,♥♥ 1Postgraduate School, Universitas Gadjah Mada. Jl. Teknika Utara, Sleman 55281, Yogyakarta, Indonesia. Tel./fax. +62-274-544975, email: [email protected] 2Biology Orchid Study Club (BiOSC), Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia 3Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia. Tel./fax.: +62-274-580839, email: [email protected] Manuscript received: 21 August 2020. Revision accepted: 31 August 2020. Abstract. Kurniawan FY, Putri F, Suyoko A, Masyhuri H, Sulistianingrum MP, Semiarti E. 2020. The diversity of wild orchids in the southern slope of Mount Merapi, Yogyakarta, Indonesia eight years after the 2010 eruption. Biodiversitas 21: 4457-4465. The ecosystem of the slopes of Mount Merapi is mountain tropical forest which is frequently affected by volcanic activities. The dynamics of the volcano affect the diversity and abundance of orchids in the ecosystem. Tritis is an area included in the Turgo Hill of the southern slope of Mount Merapi and is under the management of Mount Merapi National Park. The ecosystem in Tritis area classified as lower mountain forest and it has been affected by Mount Merapi eruption. This study aimed to do an inventory of orchid species in Tritis to know the diversity and abundance of orchids that exist in this area.
    [Show full text]
  • Download All Notifications to a Spreadsheet for Analysis
    Kent Academic Repository Full text document (pdf) Citation for published version Hinsley, Amy Elizabeth (2016) Characterising the structure and function of international wildlife trade networks in the age of online communication. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/54427/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Characterising the structure and function of international wildlife trade networks in the age of online communication Amy Elizabeth Hinsley Durrell Institute of Conservation and Ecology School of Anthropology and Conservation University of Kent A thesis submitted for the degree of Doctor of Philosophy in Biodiversity Management March 2016 “You can get off alcohol, drugs, women, food and cars but once you're hooked on orchids you're finished." Joe Kunisch, professional orchid grower, (quoted in Hansen.
    [Show full text]
  • PGR Diversity and Economic Utilization of Orchids
    Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids.
    [Show full text]
  • Toskar Newsletter
    TOSKAR NEWSLETTER A Quarterly Newsletter of the Orchid Society of Karnataka (TOSKAR) Vol. No. 4; Issue: ii; 2017 THE ORCHID SOCIETY OF KARNATAKA www.toskar.org ● [email protected] From the Editor’s Desk TOSKAR NEWSLETTER 21st June 2017 The much-awaited monsoon has set in and it is a sight to see EDITORIAL BOARD shiny green and happy leaves and waiting to put forth their best (Vide Circular No. TOSKAR/2016 Dated 20th May 2016) growth and amazing flowers. Orchids in tropics love the monsoon weather and respond with a luxurious growth and it is also time for us (hobbyists) to ensure that our orchids are fed well so that Chairman plants put up good vegetative growth. But do take care of your Dr. Sadananda Hegde plants especially if you are growing them in pots and exposed to continuous rains, you may have problems! it is alright for mounted plants. In addition, all of us have faced problems with Members snails and slugs, watch out for these as they could be devastating. Mr. S. G. Ramakumar Take adequate precautions with regard to onset of fungal and Mr. Sriram Kumar bacterial diseases as the moisture and warmth is ideal for their multiplication. This is also time for division or for propagation if Editor the plants have flowered. Dr. K. S. Shashidhar Many of our members are growing some wonderful species and hybrids in Bangalore conditions and their apt care and culture is Associate Editor seen by the fantastic blooms. Here I always wanted some of them Mr. Ravee Bhat to share their finer points or tips for care with other growers.
    [Show full text]
  • Orchids: 2017 Global Ex Situ Collections Assessment
    Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions.
    [Show full text]
  • Review of Selected Literature and Epiphyte Classification
    --------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article Journal's Webpage in Redalyc.Org Scientific Information System Re
    Lankesteriana ISSN: 1409-3871 Lankester Botanical Garden, University of Costa Rica Pedersen, Henrik Æ.; Find, Jens i.; Petersen, Gitte; seberG, Ole On the “seidenfaden collection” and the multiple roles botanical gardens can play in orchid conservation Lankesteriana, vol. 18, no. 1, 2018, January-April, pp. 1-12 Lankester Botanical Garden, University of Costa Rica DOI: 10.15517/lank.v18i1.32587 Available in: http://www.redalyc.org/articulo.oa?id=44355536001 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative LANKESTERIANA 18(1): 1–12. 2018. doi: http://dx.doi.org/10.15517/lank.v18i1.32587 ON THE “SEIDENFADEN COLLECTION” AND THE MULTIPLE ROLES BOTANICAL GARDENS CAN PLAY IN ORCHID CONSERVATION HENRIK Æ. PEDERSEN1,3, JENS I. FIND2,†, GITTE PETERSEN1 & OLE SEBERG1 1 Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1353 Copenhagen K, Denmark 2 Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark 3 Author for correspondence: [email protected] † Deceased 2nd December 2016 ABSTRACT. Using the “Seidenfaden collection” in Copenhagen as an example, we address the common view that botanical garden collections of orchids are important for conservation. Seidenfaden collected live orchids all over Thailand from 1957 to 1983 and created a traditional collection for taxonomic research, characterized by high taxonomic diversity and low intraspecific variation. Following an extended period of partial neglect, we managed to set up a five-year project aimed at expanding the collection with a continued focus on taxonomic diversity, but widening the geographic scope to tropical Asia.
    [Show full text]
  • Diversity of Limestone Orchids in Selected Areas
    UNIVERSITI PUTRA MALAYSIA DIVERSITY OF LIMESTONE ORCHIDS IN CENTRAL AND NORTHERN PADAWAN, KUCHING, SARAWAK MICHAEL LIM YEE LIANG FS 2008 14 DIVERSITY OF LIMESTONE ORCHIDS IN CENTRAL AND NORTHERN PADAWAN, KUCHING, SARAWAK MICHAEL LIM YEE LIANG MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA 2008 DIVERSITY OF LIMESTONE ORCHIDS IN CENTRAL AND NORTHERN PADAWAN, KUCHING, SARAWAK By MICHAEL LIM YEE LIANG Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science Jan 2008 I certify that an Examination Committee has met on 11 January 2008 to conduct the final examination of Michael Lim Yee Liang on his Master of Science thesis entitled “Diversity of Limestone Orchids in Central and Northern Padawan, Kuching, Sarawak” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Master of Science. Members of the Examination Committee were as follows: Hishamuddin Omar, PhD Lecturer Faculty of Science Universiti Putra Malaysia (Chairman) Janna Ong Abdullah, PhD Lecturer Faculty of Biotechnology and Biomolecular Science Universiti Putra Malaysia (Internal Examiner) Umi Kalsom Yusuf, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner) Mohamed Abdul Majid, PhD Professor Faculty of Science University of Malaya (External Examiner) HASANAH MOHD. GHAZALI, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia Date: 1 April 2008 vii This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.
    [Show full text]
  • Medicinal Properties of Some Dendrobium Orchids – a Review
    J Appl Adv Res 2019: 4(4) Journal of Applied and Advanced Research, 2019: 4(4) 119128 http://dx.doi.org/10.21839/jaar.2019.v4i4.72 ISSN 2519-9412 / © 2019 Phoenix Research Publishers Review Article – Ethnobotany Medicinal properties of some Dendrobium orchids – A review M. Koperuncholan1, R. Praveena1, K. Ganeshkumari1, J. Vanithamani1, P. Muruganantham1 ,1٭T. Ramesh P. Renganathan2 1Department of Botany, Srimad Andavan Arts and Science College (Autonomous) Tiruchirappalli –620005, Tamil Nadu, India 2Department of Botany (DDE), Annamalai University Annamalainagar – 608 002, Tamil Nadu, India (Received: 19-01-2019; Accepted 22-08-2019; Published Online 26-08-2019) Corresponding author٭ Abstract Orchids are known for their aesthetic qualities, and they are often used as decorative items in homes, offices, and public places. While most people admire them for their good looks, others have found practical uses for them. Since a long time ago, people from various parts of the world have used orchids for medicinal purposes. However, the use of orchids in medicine has declined over the years because not enough research has been done to determine their effectiveness and adverse effects. Key words: Medicinal, orchids, Dendrobium Introduction distributed in Taiwan (Lin, 1975). D. candidum is native to the regions of Southern China. In the mountain ranges of Yun- Dendrobium is the second largest genus in the family Orchidaceae. It exhibits a vast diversity in vegetative and Nan, Guang-Xi, Gui-Zhou, and Fu-Jian provinces of China, this species is distributed at an elevation of 900–1500m above floral characteristics and is of considerable interest due to its broad geographic distribution and high value of hybrids as a sea level, with an annual average temperature of 12–188C and floricultural commodity (Hawkes, 1970; Jones et al., 1998).
    [Show full text]
  • Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
    Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation.
    [Show full text]