Chromosome Numbers and Cross-Compatibility in the Genus Cymbidium and Some Related Tropical Genera (Orchidaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Chromosome Numbers and Cross-Compatibility in the Genus Cymbidium and Some Related Tropical Genera (Orchidaceae) CHROMOSOME NUMBERS AND CROSS-COMPATIBILITY IN THE GENUS CYMBIDIUM AND SOME RELATED TROPICAL GENERA (ORCHIDACEAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE AUGUST 1977 By Kenneth W. Leonhardt Dissertation Committee: Yoneo Sagawa, Chairman Haruyuki Kamemoto Henry Y. Nakasone Philip E. Parvin William L. Theobald We certify that we have read this dissertation and that in our opinion it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Horticulture. DISSERTATION COMMITTEE (7 'Cry^o , w A Chairman Chromosome Numbers and Cross-Compatibility in the Genus Cymbidium and Some Related Tropical Genera (Orchidaceae) Abstract Investigations on chromosome numbers and cross-compatibility were made with species and hybrids of Cymbidium and other tropical genera of the family Orchidaceae. Chromosome number determinations were made of 163 plants. One hundred nineteen counts of Cymbidium clones were made of which 92 are reported for the first time. Diploid, triploid, tetraploid, hexaploid and aneuploid individuals were determined. Triploid cultivars of two species, C. insigne 'Bierii' and C. pumilum 'Yashima' were found. Forty- four counts of intergeneric hybrids and genera other than Cymbidium were made. The hybrid status of 17 progenies of intergeneric pollinations was determined by analysis of somatic chromosome numbers. Nine plants derived from colchicine treated protocorms were identified as polyploids; 8 being euploid and 1 a mixoploid. The origin of the polyploid nature of some of the hybrids not subjected to colchicine treatments is dis­ cussed. It was verified cytologically that Cymbidium did hybridize with Ansellia and Catasetum. The origin of seedlings of 6 intergeneric pollinations is discussed. The origin of the registered but questionable hybrid Phaiocymbidium Chardwarense is discussed. Cymbidium species were categorized into 3 groups (I, II, and III) based on morphological features of plants, flowers, and inflorescences. A cross-compatibility study was made utulizing 21 species and 28 hybrid Cymbidium and 26 species and hybrids of other genera. A total of 2,466 iv pollination was made with 265 (10.7%) fruits harvested of which 182 (68.7%,) contained an average of 31.3%, seeds with apparently viable embryos. One hundred forty-two fruits (53.6%, and 78.0%, of those that contained apparently viable embryos) produced seedlings. It has been demonstrated that species of groups I and II are more cross-compatible within groups than between groups. It is also demonstrated that species of groups I and II are more cross-compatible between these groups than they are with species of group III. Thirty-eight intergeneric pollinations resulted in seedlings of which 10 are confirmed hybrids, 2 are false hybrids and 26 were not verified cytologically. The discovery of a unidirectional cross-incompatibility system was made whereby Ansidium seedlings are rarely produced when Ansellia is used as a female parent and are easily produced when Cymbidium is used as a female. Individual Cymbidium species and hybrids were evaluated for their intra- and inter­ generic combining abilities. The diploid and tetraploid forms of _C. Peter Pan 'Greensleeves' were compared for 14 morphological features. A formula was developed for determining changes in symmetry as a result of polyploid induction. A discussion of various incompatibility systems in the Orchidaceae is presented. Criteria and recommendations for a breeding program designed to produce commercially acceptable Cymbidiums capable of flowering at low elevations in Hawaii are presented. V t a b l e of contents PAGE ABSTRACT.................................... iii LIST OF TABLES..................................................... vi LIST OF ILLUSTRATIONS............................................. viii INTRODUCTION...................................................... 1 LITERATURE REVIEW................................................. 2 materials and methods............................................. 12 RESULTS AND DISCUSSION............................................ 35 Chromosome Numbers........................................... 35 Cross Compatibility.......................................... 96 Effects of Polyploidy on Morphology...........................135 GENERAL DISCUSSION................................................. 140 APPENDIX................................... ....................... 149 LITERATURE CITED 266 vi LIST OF TABLES TABLE DESCRIPTION PAGE I Cymbidium species used in this investigation with authors and sources of material........................... 15 II Cymbidium hybrids used in this investigation with parents and source of material.................... 19 III Species and hybrids of genera other than Cymbidium used in this investigation with authors or parents and source of material...................... ....................... 31 IV Chromosome numbers of Cymbidium species.................. 49 V Chromosome numbers of Cymbidium primary (interspecific) hybrids.......................... ...................... 57 VI Chromosome numbers of Cymbidium secondary (species as one parent) hybrids...................................... 62 VII Chromosome numbers of Cymbidium advanced hybrids......... 70 VIII Chromosome numbers of intergeneric hybrids............... 92 IX Chromosome numbers of species and hybrids of genera other than Cymbidium..................................... 94 X Summary of results of intergroup and intergeneric crosses attempted using Group I species as females.............. 108 XI Summary of results of intergroup and intergeneric crosses attempted using Group II species as females............. 109 XII Summary of results of intergroup and intergeneric crosses attempted using Group III species as females............. 110 XIII Summary of results of intergroup and intergeneric crosses attempted using Group I x III hybrids as females........... Ill XIV Summary of results of intergroup and intergeneric crosses attempted using Group III x III hybrids as females......... 112 XV Summary of results of intergroup and intergeneric crosses attempted using other hybrids (ungrouped) as females 113 XVI Summary of results of intergroup and intragroup crosses attempted using species and hybrids as males and females.......................... ....................... 114 Vll LIST OF TABLES (CONTINUED) TABLE DESCRIPTION PAGE XVII Summary of results of intergeneric and intrageneric crosses attempted using genera other than Cymbidium as females............................................... 118 XVIII Summary of results of intergeneric crosses attempted between Ansellia and Cymbidium........................... 120 XIX Cymbidium species which flowered and were tested for their crossability with various species groups, intergroup hybrids and genera other than Cymbidium....... 124 XX Cymbidium hybrids which have crossed with various species groups, intergroup'hybrids, and genera other than Cymbidium........................................... 128 XXI Measurements of diploid and tetraploid forms of Cymbidium Peter Pan 1 Greensleeves'....................... 136 XXII Evaluation of some horticultural qualities of warm temperature tolerant and fertile Cymbidium species and hybrids in the research collection................... 146 Vlll LIST OF ILLUSTRATIONS FIGURE DESCRIPTION PAGE Vegetative morphology of Phaiocymbidium Chardwarense and Phaius Ashworthianus.............................. 45 1 Phaiocymbidium Chardwarense (0.10X) 2 Phaius Ashworthianus (0.13X) Floral morphology of Phaiocymbidium Chardwarense and Phaius Ashworthianus.................................. 46 3 Phaiocymbidium Chardwarense (0.75X) 4 Phaius Ashworthianus (0.50X) Vegetative and floral morphology of Cymbidium species. 99 5 C. dayanum (0.11X) 6 C. lancifolium (0.18X) 7 C. hoosai var kinkwalan sub var fayden (0.17X) 8 C. soshin 'Tetukotsu' (0.18X) Vegetative and floral morphology of Cymbidium species. 100 9 _C. lancifolium (1.75X) 10 _C. pumilum var album (0.88X) Vegetative and floral morphology of Cymbidium species. 101 11 C. formosanum (1.06X) 12 _C. ensifolium var album (1.88X) Vegetative and floral morphology of Cymbidium species. 102 13 _C. aloifolium (0.11X) 14 _C. aloifolium (0.19X) 15 C. aloifolium (1.44X) Vegetative and floral morphology of Cymbidium species. 103 16 C. canaliculatum var sparkesii (0.17X) 17 C. canaliculatum var sparkesii (2.33X) Vegetative and floral morphology of Cymbidium species. 104 18 C. eburneum (0.20X) 19 C. eburneum (1.10X) 20 _C. madidum (2.00X) Vegetative and floral morphology of Cymbidium species. 105 21 C.,parishii var sanderae (0.18X) 22 C. parishii var sanderae (0.46X) 23 _C. parishii var sanderae (1.07X) Floral morphology of Ansellia africana................ 121 24 Ansellia africana 'UH-10' (1.09X) ix LIST OF ILLUSTRATIONS (CONTINUED) FIGURE DESCRIPTION PAGE Vegetative and floral morphology of Cymbidium hybrids... 132 25 C. hoosai x C. lancifolium (1.25X) 26 _C. hoosai x C. lancifolium (0.16X) Vegetative and floral morphology of Cymbidium hybrids... 133 27 C. Peter Pan 1 Greensleeves' (UH-2) (0.09X) 28 C. Peter Pan 'Greensleeves1 (UH-2) (0.75X) Vegetative and floral morphology of Cymbidium hybrids... 134 29 _C. Vogelsang (0.11X) 30 C. Vogelsang (1.11X) Floral morphology of diploid and tetraploid forms of Cymbidium Peter Pan 'Greensleeves'.................... 137 31 C. Peter Pan 'Greensleeves' (UH-1), diploid, and
Recommended publications
  • Native Orchid Society South Australia
    Journal of the Native Orchid Society of South Australia Inc PRINT POST APPROVED VOLUME 25 NO. 11 PP 54366200018 DECEMBER 2001 NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA POST OFFICE BOX 565 UNLEY SOUTH AUSTRALIA 5061 The Native Orchid Society of South Australia promotes the conservation of orchids through the preservation of natural habitat and through cultivation. Except with the documented official representation from the Management Committee no person is authorised to represent the society on any matter. All native orchids are protected plants in the wild. Their collection without written Government permit is illegal. PRESIDENT: SECRETARY: Bill Dear Cathy Houston Telephone: 82962111 Telephone: 8356 7356 VICE-PRESIDENT David Pettifor Tel. 014095457 COMMITTEE David Hirst Thelma Bridle Bob Bates Malcolm Guy EDITOR: TREASURER Gerry Carne Iris Freeman 118 Hewitt Avenue Toorak Gardens SA 5061 Telephone/Fax 8332 7730 E-mail [email protected] LIFE MEMBERS Mr R. Hargreaves Mr G. Carne Mr L. Nesbitt Mr R. Bates Mr R. Robjohns Mr R Shooter Mr D. Wells Registrar of Judges: Reg Shooter Trading Table: Judy Penney Field Trips & Conservation: Thelma Bridle Tel. 83844174 Tuber Bank Coordinator: Malcolm Guy Tel. 82767350 New Members Coordinator David Pettifor Tel. 0416 095 095 PATRON: Mr T.R.N. Lothian The Native Orchid Society of South Australia Inc. while taking all due care, take no responsibility for the loss, destruction or damage to any plants whether at shows, meetings or exhibits. Views or opinions expressed by authors of articles within this Journal do not necessarily reflect the views or opinions of the Management. We condones the reprint of any articles if acknowledgement is given.
    [Show full text]
  • Catasetums and Their Kin by Sue Bottom, [email protected]
    St. Augustine Orchid Society www.staugorchidsociety.org Catasetums and Their Kin by Sue Bottom, [email protected] Do you get tired of taking care of your orchids in the winter? Wouldn’t you like an orchid you don’t have to water or fuss with during the cold winter months? The Catasetinae, consisting mainly of the Catasetums, Clowesias, Cycnoches, Mormodes and their hybrids, are a great group of orchids. Many are easy to grow and bloom once you understand their cultural needs. They explode with new growth during the summer growing season requiring copious amounts of water and fertilizer and most of them go into a deep sleep during the winter when they can be mostly ignored. You can put them in a dry corner, garage or closet and not worry about them at all during the winter as long as the temperature does not fall below 55. They are repotted in the winter during dormancy or in early spring as new growth emerges but not watered until that new growth is 4 or 5 inches tall. Simple! When you first start growing the Catasetinae, you tend to think of Catasetums, Clowesias, Cycnoches and Mormodes all as one generic group, lumped together as catasetums. You learn the basics of how they like bright light, plenty of air movement and plenty of water and fertilizer during the growing season. Once you get the fever and you start growing the different varieties, you learn about some of the differences in growing and blooming the different genera. Catasetums and Clowesias are the most easily grown of all the Catasetinae.
    [Show full text]
  • 98. SPATHOGLOTTIS Blume, Bijdr. 400. 1825. 苞舌兰属 Bao She Lan Shu Chen Xinqi (陈心启 Chen Sing-Chi); Alexandra Bell Herbs, Terrestrial
    Flora of China 25: 287–288. 2009. 98. SPATHOGLOTTIS Blume, Bijdr. 400. 1825. 苞舌兰属 bao she lan shu Chen Xinqi (陈心启 Chen Sing-chi); Alexandra Bell Herbs, terrestrial. Pseudobulbs ovoid or globose, with a few leaves. Leaf blade plicate, narrow, base contracted into a long petiole-like stalk, not articulate, apex acuminate. Inflorescence terminal, erect, racemose, arising from base of pseudobulb; peduncle with several sheaths; rachis sparsely few flowered; floral bracts shorter than pedicel and ovary. Flowers opening widely, medium- sized. Sepals similar. Petals similar to sepals but usually wider; lip not spurred, adnate to base of column, 3-lobed; lateral lobes suberect; mid-lobe clawed at base; disk and claw of mid-lobe often with keels or other appendages. Column arcuate, slender, upper part enlarged, winged, without column foot; rostellum not lobed; pollinia 8, in 2 groups, narrowly obovoid, subequal in size, waxy, commonly adherent to a solitary triangular viscidium. About 46 species: tropical Asia to Australia and the Pacific islands; three species in China. 1a. Flowers purple; floral bracts and ovary glabrous ............................................................................................................. 1. S. plicata 1b. Flowers yellow; floral bracts and ovary hairy. 2a. Inflorescence 20–50 cm, densely pubescent; lateral lobes of lip oblong, mid-lobe distinctly clawed in basal half 3–6 mm ..........................................................................................................................................................
    [Show full text]
  • An Introduction to the Epiphytic Orchids of East Africa
    Sphyrarchynchus sp. Cyrtorchis crassifoHa Schltr. AN INTRODUCTION TO THE EPIPHYTIC ORCHIDS OF EAST AFRICA. By W. M. MOREAU AND R. E. MOREAU. C()IYl,tents. 1. Introduction. 2. Nomenclature and classification. 3. General ecology. 4. The orchid flower. 5. Published and unpublished sources of East African records. 6. Tentative field key to the genera. 7. Annotated check-list of species. 1. INTRODUCTION. Over fifteen thousand species of orchids have been described, the vast majority of them tropical, and the greater part of them epiphytic, that is, normally growing on trees without deriving sustenance from them. But little more than ten per cent of the majestic total belong to Tropical Africa and moreover, so far as is known at present, within that area ground orchids predominate over epiphytic in the proportion of more than three to one. There is reason to believe that these figures are a reflection rather of our ignorance than of the truth. Because the Tropical African epiphytic orchids are not characterised by the magni• ficence and opulence of those of other regions, they have not attracted the commercial collector and certainly are most imperfectly known. Yet the local orchids display a delightful diversity of adaptation and of form. None are flamboyant, but many are beautiful, some are exquisitely dainty and a few are bizarre. They appeal to the same feelings and are capable of arousing the same enthusiasms as succulents or alpine plants. Moreover, anyone who takes the comparatively little trouble required to collect and grow them has the additional satisfaction of knowing that he is contributing to scientific knowledge.
    [Show full text]
  • (Curculigo Orchioides) and Salam (Eulophia Compestris) Madan B
    Int J Ayu Pharm Chem REVIEW ARTICLE www.ijapc.com e-ISSN 2350-0204 A Review Article on Species used as Musali (Curculigo orchioides) and Salam (Eulophia compestris) Madan B. Tonge* *Dept. of Dravyaguna, Govt. Ayurved College Nanded (MS), India Abstract In day to day practice when we see the market samples of Musali it creates confusion in mind; which type Musali is sold by the vendor. These days various species of plants are used as Musali in different parts of India. Traditionally, Salam and Salam panja are also used as Mushali. To rule out all these differences and arrive to a definite conclusion. This is an attempt to collect the referances from samhitas and nighantus about musali. Botanically classify the species which are used as musali. Describe all the species which are in use as musali in a systematic manner. Keywords Mushali, Shweta Musali, Salam, Talmuli Greentree Group Received 09/08/16 Accepted 29/08/16 Published 10/09/16 ________________________________________________________________________________________________________ Madan B Tonge 2016 Greentree Group © IJAPC Int J Ayu Pharm Chem 2016 Vol. 5 Issue 2 www.ijapc.com 283 [e ISSN 2350-0204] Int J Ayu Pharm Chem INTRODUCTION shwveta musali few species of asparagaceae The term musali is famous in traditional family are in use and also roots of salam Indian system of medicine. Medicine with mishri and salampanja mishri are used as musali name is known to many household in musali. The word mishri is derived from India. Most commonly used as a tonic, musali, so few people call it as salam aphrodisiac, rejuvenator for increasing musali, salam panja musali.
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • Download All Notifications to a Spreadsheet for Analysis
    Kent Academic Repository Full text document (pdf) Citation for published version Hinsley, Amy Elizabeth (2016) Characterising the structure and function of international wildlife trade networks in the age of online communication. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/54427/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Characterising the structure and function of international wildlife trade networks in the age of online communication Amy Elizabeth Hinsley Durrell Institute of Conservation and Ecology School of Anthropology and Conservation University of Kent A thesis submitted for the degree of Doctor of Philosophy in Biodiversity Management March 2016 “You can get off alcohol, drugs, women, food and cars but once you're hooked on orchids you're finished." Joe Kunisch, professional orchid grower, (quoted in Hansen.
    [Show full text]
  • Pollination Biology in the Dioecious Orchid Catasetum Uncatum
    Phytochemistry 116 (2015) 149–161 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Pollination biology in the dioecious orchid Catasetum uncatum: How does floral scent influence the behaviour of pollinators? ⇑ Paulo Milet-Pinheiro a,b, , Daniela Maria do Amaral Ferraz Navarro a, Stefan Dötterl c, Airton Torres Carvalho d, Carlos Eduardo Pinto e, Manfred Ayasse b, Clemens Schlindwein f a Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, 50670-901 Recife, Brazil b Institute of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany c Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria d Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido, Avenida Francisco Mota 572, Mossoró, Rio Grande do Norte 59625-900, Brazil e Programa de Pós-Graduacão em Entomologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto-São Paulo 14040-901, Brazil f Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil article info abstract Article history: Catasetum is a neotropical orchid genus that comprises about 160 dioecious species with a remarkable Received 6 October 2014 sexual dimorphism in floral morphology. Flowers of Catasetum produce perfumes as rewards, which Received in revised form 23 February 2015 are collected only by male euglossine bees. Currently, floral scents are known to be involved in the selec- Available online 11 March 2015 tive attraction of specific euglossine species. However, sexual dimorphism in floral scent and its eventual role in the pollination of Catasetum species have never been investigated.
    [Show full text]
  • Orchids: 2017 Global Ex Situ Collections Assessment
    Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions.
    [Show full text]
  • Review of Selected Literature and Epiphyte Classification
    --------- -- ---------· 4 CHAPTER 1 REVIEW OF SELECTED LITERATURE AND EPIPHYTE CLASSIFICATION 1.1 Review of Selected, Relevant Literature (p. 5) Several important aspects of epiphyte biology and ecology that are not investigated as part of this work, are reviewed, particularly those published on more. recently. 1.2 Epiphyte Classification and Terminology (p.11) is reviewed and the system used here is outlined and defined. A glossary of terms, as used here, is given. 5 1.1 Review of Selected, Relevant Li.terature Since the main works of Schimper were published (1884, 1888, 1898), particularly Die Epiphytische Vegetation Amerikas (1888), many workers have written on many aspects of epiphyte biology and ecology. Most of these will not be reviewed here because they are not directly relevant to the present study or have been effectively reviewed by others. A few papers that are keys to the earlier literature will be mentioned but most of the review will deal with topics that have not been reviewed separately within the chapters of this project where relevant (i.e. epiphyte classification and terminology, aspects of epiphyte synecology and CAM in the epiphyt~s). Reviewed here are some special problems of epiphytes, particularly water and mineral availability, uptake and cycling, general nutritional strategies and matters related to these. Also, all Australian works of any substance on vascular epiphytes are briefly discussed. some key earlier papers include that of Pessin (1925), an autecology of an epiphytic fern, which investigated a number of factors specifically related to epiphytism; he also reviewed more than 20 papers written from the early 1880 1 s onwards.
    [Show full text]
  • Confronting Assumptions About Spontaneous Autogamy
    Botanical Journal of the Linnean Society, 2009, 161, 78–88. With 4 figures Confronting assumptions about spontaneous autogamy in populations of Eulophia alta (Orchidaceae) in south Florida: assessing the effect of pollination treatments on seed formation, seed germination and seedling developmentboj_992 78..88 TIMOTHY R. JOHNSON1*, SCOTT L. STEWART2, PHILIP KAUTH1, MICHAEL E. KANE1 and NANCY PHILMAN1 1Plant Restoration, Conservation and Propagation Biotechnology Lab, Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611-0675, USA 2Horticulture and Agriculture Programs, Kankakee Community College, 100 College Drive, Kankakee, IL 60901, USA Received 1 June 2009; accepted for publication 7 July 2009 The breeding system of the terrestrial orchid Eulophia alta was investigated in south Florida where it has previously been reported as an auto-pollinated species. The effect of breeding system on seed viability and germinability and seedling development was also investigated. Incidences of spontaneous autogamy in E. alta were rare at the study site, resulting in only 7.1% of observed flowers forming capsules. In addition, hand pollination resulted in significantly greater capsule formation when flowers were subjected to induced autogamy (46.4%), artificial geitonogamy (64.3%) and xenogamy at both short (pollen source 10–100 m away; 42.9%) and long (pollen source > 10 km away; 67.9%) distances. Pollen source had little effect on seed viability and germinability or seedling growth rates. However, seed resulting from spontaneous autogamy developed more slowly than seed originating from the other treatments. These data indicate that spontaneous autogamy is rare in E. alta and that naturally forming capsules may be the result of unobserved pollination events.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article Journal's Webpage in Redalyc.Org Scientific Information System Re
    Lankesteriana ISSN: 1409-3871 Lankester Botanical Garden, University of Costa Rica Pedersen, Henrik Æ.; Find, Jens i.; Petersen, Gitte; seberG, Ole On the “seidenfaden collection” and the multiple roles botanical gardens can play in orchid conservation Lankesteriana, vol. 18, no. 1, 2018, January-April, pp. 1-12 Lankester Botanical Garden, University of Costa Rica DOI: 10.15517/lank.v18i1.32587 Available in: http://www.redalyc.org/articulo.oa?id=44355536001 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative LANKESTERIANA 18(1): 1–12. 2018. doi: http://dx.doi.org/10.15517/lank.v18i1.32587 ON THE “SEIDENFADEN COLLECTION” AND THE MULTIPLE ROLES BOTANICAL GARDENS CAN PLAY IN ORCHID CONSERVATION HENRIK Æ. PEDERSEN1,3, JENS I. FIND2,†, GITTE PETERSEN1 & OLE SEBERG1 1 Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1353 Copenhagen K, Denmark 2 Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark 3 Author for correspondence: [email protected] † Deceased 2nd December 2016 ABSTRACT. Using the “Seidenfaden collection” in Copenhagen as an example, we address the common view that botanical garden collections of orchids are important for conservation. Seidenfaden collected live orchids all over Thailand from 1957 to 1983 and created a traditional collection for taxonomic research, characterized by high taxonomic diversity and low intraspecific variation. Following an extended period of partial neglect, we managed to set up a five-year project aimed at expanding the collection with a continued focus on taxonomic diversity, but widening the geographic scope to tropical Asia.
    [Show full text]