Epilist 1.0: a Global Checklist of Vascular Epiphytes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gesneriaceae of Sulawesi I: an Introduction
EDINBURGH JOURNAL OF BOTANY 60 (3): 299–304 (2004) 299 DOI: 10.10M/S0960428603000258 THE GESNERIACEAE OF SULAWESI I: AN INTRODUCTION M. MENDUM*† & H. J. ATKINS* Sulawesi (Celebes) is the largest island in the biogeographic region of Wallacea. The Gesneriaceae of the island are represented by 11 genera, some of which show a very high degree of endemism. Knowledge of the origin and affinities of the flora of this island is important for an understanding of the biogeography of the area. The Gesneriaceae promise to be excellent models for phytogeographic analysis, but before this, basic taxonomic studies must be carried out. A list of the currently known genera and species is provided, and descriptions of new taxa will be published over the coming months. Keywords. Biogeography, Gesneriaceae, Indonesia, Sulawesi, Wallacea. The islands of SE Asia comprise one of the most geologically complex regions in the world (Audley-Charles, 1981; Hall, 1996, 1998), at the meeting point of three major tectonic plates. Its turbulent geological history and exceptionally high levels of biological endemism make this region of prime interest to biogeographers. Wallace’s line, one of the most important biogeographic boundaries in the world, bisects the archipelago, and was originally thought to mark the meeting point of the Oriental and Australasian fauna and flora. Since Wallace first drew his line in 1863, many others have been drawn, reflecting different hypotheses based on the distribu- tion patterns of different taxa (summarized in Scrivener et al., 1943; Simpson, 1977). The difficulty of agreeing on a single line eventually resulted in the identification of a zone of transition in the centre of Malesia (Dickerson, 1928). -
Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice. -
Generic and Subtribal Relationships in Neotropical Cymbidieae (Orchidaceae) Based on Matk/Ycf1 Plastid Data
LANKESTERIANA 13(3): 375—392. 2014. I N V I T E D P A P E R* GENERIC AND SUBTRIBAL RELATIONSHIPS IN NEOTROPICAL CYMBIDIEAE (ORCHIDACEAE) BASED ON MATK/YCF1 PLASTID DATA W. MARK WHITTEN1,2, KURT M. NEUBIG1 & N. H. WILLIAMS1 1Florida Museum of Natural History, University of Florida Gainesville, FL 32611-7800 USA 2Corresponding author: [email protected] ABSTRACT. Relationships among all subtribes of Neotropical Cymbidieae (Orchidaceae) were estimated using combined matK/ycf1 plastid sequence data for 289 taxa. The matrix was analyzed using RAxML. Bootstrap (BS) analyses yield 100% BS support for all subtribes except Stanhopeinae (87%). Generic relationships within subtribes are highly resolved and are generally congruent with those presented in previous studies and as summarized in Genera Orchidacearum. Relationships among subtribes are largely unresolved. The Szlachetko generic classification of Maxillariinae is not supported. A new combination is made for Maxillaria cacaoensis J.T.Atwood in Camaridium. KEY WORDS: Orchidaceae, Cymbidieae, Maxillariinae, matK, ycf1, phylogenetics, Camaridium, Maxillaria cacaoensis, Vargasiella Cymbidieae include many of the showiest align nrITS sequences across the entire tribe was Neotropical epiphytic orchids and an unparalleled unrealistic due to high levels of sequence divergence, diversity in floral rewards and pollination systems. and instead to concentrate our efforts on assembling Many researchers have posed questions such as a larger plastid data set based on two regions (matK “How many times and when has male euglossine and ycf1) that are among the most variable plastid bee pollination evolved?”(Ramírez et al. 2011), or exon regions and can be aligned with minimal “How many times have oil-reward flowers evolved?” ambiguity across broad taxonomic spans. -
Chapter 2.Indd
Gardens’ Bulletin Singapore 69(1): 33–65. 2017 33 doi: 10.3850/S2010098116000039 Index of names and types of Hoya (Apocynaceae: Asclepiadoideae) of Borneo M. Rodda Herbarium, Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569 [email protected] ABSTRACT. Types of all Hoya species occurring in Borneo and their synonyms are indicated and clarified. Forty-six lectotypes, nine neotypes and five epitypes are designated. Keywords. Brunei, epitype, holotype, Kalimantan, lectotype, neotype, Sabah, Sarawak Introduction The present paper is a precursor to a revision of Hoya R.Br. of Borneo. Its aim is to list all Hoya taxa occurring on the island of Borneo and their synonyms, clarify and standardize type citation, select lectotypes, epitypes and neotypes when necessary and provide an extensive list of isotypes and syntypes. The earliest description of a Hoya species that occurs in Borneo, H. multiflora Blume, was described by the German born Dutch botanist Carl Ludwig Blume in 1823, based, however, on Javanese materials. The first Hoya species based on a Bornean collection, H. imperialis Lindl., was published by Lindley (1846). Later, in 1880, Bentham published a peculiar leafless species with long photosynthetic peduncles endemic to Borneo, Astrostemma spartioides Benth. (now Hoya spartioides (Benth.) Kloppenb.). Until 1921 only nine Hoya species where known to occur in Borneo (Merrill, 1921). Nutt (2001) listed 21 species in an unpublished checklist. Lamb et al. (2014) estimated 60–70 species for Sabah alone. In the past 20 years almost 40 taxa (species and subspecies) of Hoya from Borneo have been described, mostly by Ted Green and Dale Kloppenburg (USA). -
Multi-National Conservation of Alligator Lizards
MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science. -
PGR Diversity and Economic Utilization of Orchids
Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids. -
Acrorchis, a New Genus from the Mountains of Panama and Costa Rica
Orquidea [Mex.] 12(1): 11-17. 1989. ACRORCHIS, A NEW GENUS FROM THE MOUNTAINS OF PANAMA AND COSTA RICA Robert L. Dressler Department of Natural Scien ces, Florida State Museum, University of Fl orida, Gainesville, FL 32611 ABSTRACT ACTarchis roseola is described as a new genus and species in the eubtrlbe Laeliinae. This species is frequent on some high mou n tains in Costa Rica and Panama, but was r arely collected in flower until recent years. It m ay be related to J acguiniell a . RESUMEN Se de scribe Acrarchis roseola co mo nuevo genera y es pecie de nt ro de la su bt eib u Laelii nae. Eata especie es frecu en te en algunas de las alt as montanas de Costa Rica y Panama, per c fue raramente colectada con flore s sino ha st a afios recientes. Puede estar rel aci on ada con Jacguiniella . Some plants seem to haunt one , rather Finaly, in June of 1982, we found a number of like the pro verbial bad penny. I first saw thi s plants in flower in Cerro Ari zona . With more orchid in early 1970, on a visit to Monte de la abundant material, it was clear that the elusive Cruz, Costa Rica, with Drs . William Burger and little plant is not an lsochilu s, and we had Lu is Diego Gomez. There, in a chilly, wet, enough material from Dr. Lynn S. K imsey to cloud forest I found a nondescript plant looked make drawings of the flower. It was in Febru "different". -
The Effects of Human Disturbance on Vascular Epiphyte in the Brazilian Atlantic Forest
The effects of human disturbance on vascular epiphyte in the Brazilian Atlantic Forest Edicson Parra-Sanchez Imperial College London Department of Life Science Silwood Park Campus Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) April 2018 1 “What we have to practice today is solidarity, one must not approach people to say Here we come to give the charity of our presence, to teach our science, to show you your mistakes, your ignorance, your lack of basics. We go with investigative zeal, and humble spirit, to learn in great source of wisdom which is the people.” Che Guevara 2 Declaration The data collection and work presented in this thesis is all my own. Dr Cristina Banks-Leite did provide guidance throughout my thesis. Chapters are organized as papers, and I used “we” to recognize the role of my supervisor Dr Cristina. Data sources and software are referenced along the text. The support of different people is acknowledge as follows: Data collection was done with field assistants Jordy Jerez, Manon Czuckermand and Tiago Gloria. The study design was done by ECOFOR (Biodiversity and Ecosystem Functioning in Degraded and Recovering Amazonian and Atlantic Forests). Taxa identification was done with the help of MSc Gabriel Marcusso (Piperaceae), Dr Carlos Nunes and Eric Hagsater (Orchidaceae), Ms Suzana Martins and Marcio Leofegario (Bromeliaceae), Dr Alain Chautems (Gesneriaceae), and Thomas Croat (Ferns). In chapter 2, advice on the model fitting and interpretation was provided by Dr Jack Hatfield. In chapter 3, advice on the interpretation of the n-dimension analysis was provided by Dr Thomas Guillerme (as author of the “dispRity” R package). -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Molecular Species Delimitation, Taxonomy and Biogeography of Sri Lankan Gesneriaceae Subhani Wathsala Ranasinghe Doctor of Philosophy The University of Edinburgh Royal Botanic Garden Edinburgh 2017 Declaration I hereby declare that the work contained in this thesis is my own unless otherwise acknowledged and cited. This thesis has not in whole or in part been previously presented for any degree Subhani Wathsala Ranasinghe 24th January 2017. i Abstract The plant family Gesneriaceae is represented in Sri Lanka by six genera: Aeschynanthus, Epithema, Championia, Henckelia, Rhynchoglossum and Rhynchotechum, with 13 species (plus one subspecies/variety) of which ten are endemic including the monotypic genus Championia, according to the last revision in 1981. They are exclusively distributed in undisturbed habitats, and some have high ornamental value. The species are morphologically diverse, but face a problem of taxonomic delineation, which is further complicated by the presence of putative hybrids. -
Orchid Historical Biogeography, Diversification, Antarctica and The
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the -
A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns.