Full Field Chemical Imaging of Buried Native Sub-Oxide Layers on Doped Silicon Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Full Field Chemical Imaging of Buried Native Sub-Oxide Layers on Doped Silicon Patterns Surface Science 604 (2010) 1628–1636 - doi : 10.1016/j.susc.2010.06.006 Published in Elsevier Surface Science Full field chemical imaging of buried native sub-oxide layers on doped silicon patterns a b, a a c F. de la Peña , N. Barrett , L.F. Zagonel , M. Walls , O. Renault a Univ Paris-Sud, Laboratoire de Physique des Solides, CNRS/UMR 8502, Orsay, F-91405, France b CEA, IRAMIS, SPCSI, LENSIS, F-91191 Gif-sur-Yvette, France c CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France DOI: 10.1016/j.susc.2010.06.006 a b s t r a c t Keywords: Fully energy-filtered X-ray photoelectron emission microscopy is used to analyze the Semiconductor–insulator interfaces spatial distribution of the silicon sub-oxide structure at the SiO2/Si interface as a Semiconductor–semiconductor thin film function of underlying doping pattern. Using a spectroscopic pixel-by-pixel curve fitting structures analysis, we obtain the sub-oxide binding energy and intensity distributions over the full Silicon oxides field of view. Binding energy maps for each oxidation state are obtained with a spatial Photoelectron emission resolution of 120 nm. Within the framework of a five-layer model, the experimental Synchrotron radiation photoelectron data are used to obtain quantitative maps of the sub-oxide layer thickness and also their spectroscopy spatial distribution over the p–n junctions. Variations in the sub-oxide thicknesses are Photoelectron emission microscopy (XPEEM) found to be linked to the level and type of doping. The procedure, which takes into account instrumental artefacts, enables the quantitative analysis of the full 3D dataset. 1. Introduction presence of interface dipoles [2,3]. Finally, the width of the photoelectron spectrum may be measured and thus the work function deduced. The original In silicon based micro- and nanotechnologies, the control of the quality reference for synchrotron radiation-based PES studies of this system is the and thickness of the SiO2/Si interface is of prime importance. An interface of work of the Himpsel group on Si(100) and Si(111) [4]. Other experimental several atomic layers, with a high defect concentration can result in fixed studies have been carried out by [5,6]. Several models of the interface have charges and contribute significantly to variations in electrical properties. One been proposed in the light of theoretical calculations [7–10]. However, of the limits on CMOS downscaling is the quality of the interface. The typical X-ray spot sizes are of the order of a fraction of a millimetre, therefore chemistry of the SiO2/Si interface has already been studied in the laboratory virtually no spatial information is available. Thus, PES is an area-averaged using both angle-resolved X-ray photoelectron spectroscopy (XPS) with Al technique and hence cannot address gate oxide dimensions compatible with K or Mg K X-ray sources and synchrotron radiation-based photoelectron real circuits. Downscaling in microelectronics makes the availability of spectroscopy (PES). The use of XPS to obtain accurate values for the reliable spatially resolved quantification of the interface chemical states a thickness of the SiO2 layer and the sub-oxide interfaces has attained pressing requirement. extremely high standards in order to define a universal method independent of Energy resolved X-ray photoelectron emission microscopy (XPEEM) specific laboratory conditions [1]. The precision now possible in measuring combines the required spatial and chemical state resolution. In particular, by oxide layer thickness is smaller than typical variations in silicon oxygen bond using soft X-ray excitation combined with a full energy-filtered analysis, lengths. Photoelectron spectroscopy is also non-destructive, allowing elemental, chemical and electronic structure sensitivities of classical PES with complementary analyses such as Secondary ion mass spectrometry (SIMS) to spatial resolutions on the 100 nm scale are now readily accessible with be performed a posteriori. Synchrotron radiation is particularly useful for a current PEEM instruments. Image series as a function of photoelectron kinetic detailed analysis of the SiO2/Si interface since the depth probed can be energy Ek are acquired step by step over the energy window of interest. Each changed by tuning the photon energy. Valence band PES gives information image gives the intensity as a function of position within the microscope field on the density of states and the valence band offsets, in particular on the of view (FoV). A full image series is a 3D dataset, called a Spectrum Image (SI), allowing extraction of photoemission spectra within the FoV from any area of interest (AOI) down to the pixel size. This technique was first applied in a study of silicon anodic oxidation [11], in which the effect Corresponding author. Tel.: +33 169083272; fax: +33 169088446. E-mail address: [email protected] (N. Barrett). F. de la Peña et al. / Surface Science 604 (2010) 1628–1636 doi : 10.1016/j.susc.2010.06.006 1629 2. Experiment The samples, made in the Laboratoire d'Electronique et de Technologie de l'Information (LETI) at MINATEC, CEA-Grenoble, consisted of two- dimensional doped patterns implanted into silicon in the form of lines with variable spacing and widths from 100m to 0.1m [12]. Before implantation, the silicon wafers were clean and had any surface oxide removed by standard chemical procedures. Each set of lines was identified by figures with the same doping level, giving suitable shapes for optimization of the electron optics of the PEEM instrument. Two samples were studied, Fig. 1. Phosphor and boron ions were used for the n- and p-type doping. The first sample, designated N+/P−, had N+ (representing very high n-type doping) doped zones (1020 cm−3) implanted into a P− substrate (1016 cm−3). The second, designated P+/N, had P+ (representing very high p-type doping) patterns (1020 cm−3) implanted into an N type (1017 cm−3) substrate; the latter was itself 16 −3 deposited on a Si P− wafer (10 cm ). A native oxide layer was present on both samples. Fig. 1 also illustrates schematically the expected band line-ups in such samples. The two samples are not symmetric in their preparation since in both cases the starting substrate is P−. Hence, the P+/N sample underwent a supplementary ion implantation to obtain the required doping patterns. The + − doping levels have been measured using secondary ion mass spectrometry Fig. 1. Optical micrograph of doped pattering schematic cross-section of samples N /P and + (SIMS); the results are given in Table 1. P /N. The oxide/substrate and p–n band line-ups are also shown. The spectromicroscopy experiments used a NanoESCA XPEEM system (Omicron Nanotechnology), more fully described elsewhere [16,18]. The of electrostatic charge on the Si 2p emission due to the anodic oxide was apparatus was installed on the CIPO beamline of the ELETTRA synchrotron demonstrated. Using this method, a preliminary analysis of the present system (Trieste, Italy). The incident photon energy was 127 eV, representing the best revealed doping-dependent variations in the overall oxide layer thickness compromise between the beamline undulator response and surface sensitivity. [12]. However, depending on the size of the AOIs up to 99% of the At this energy, the inelastic mean free path (IMFP) of the Si 2p electrons is information in the dataset is not used. low, thus the substrate signal is expected to reflect bent bands at the The most information is available from pixel-by-pixel curve fitting to substrate/oxide interface rather than the flat band situation. Given the depth spectra over the full field. This has already been used in XPEEM analysis to sensitivity, photoelectron diffraction contributions from the substrate are also obtain, for example, concentration maps of InAs/GaAs quantum dots and negligible. The photoelectrons are collected within a 6.1° cone around the rings [13,14]. Ga 3d and In 4d core levels, separated by 2 eV were resolved surface normal. The PEEM contrast aperture diameter was 150 μm, a trade- allowing elemental mapping of the surface. An alternative full field approach off between lateral resolution and PEEM column transmission. The double was developed by Ratto et al. [15], however, it relies on the existence of an internal reference in the sample with known composition, which is not always the case. Furthermore, the information extracted is averaged over the photoelectron escape depth. Such analysis is often, but not always, limited to elemental mapping based on well separated core levels. To accurately map the surface and sub-surface spatial variations in the chemical states and binding energies, careful handling of the dataset and flexible numerical analysis tools are required. One must correct for the microscope transmission function (or illumination) at constant kinetic energy in the FoV, the variations in the photon flux and the non-isochromaticity over the FoV [16,17]. When one does this, the inevitably better statistics gives new quantitative information on the spatial distribution of the chemical states and on sub- surface interfaces. As a test case, we have studied the interface structure of the native oxide as a function of the Si(100) substrate doping. The area- averaged Si 2p core-level studies have already shown that the interface structure is strongly dependent on the particular oxide growth conditions [4,5]. We obtain maps of the SiO2 and the sub-oxide distributions. We show that the SiO2/Si interface is not the same over p- and n-type doped patterns, and develop a model to quantify the spatial extent of the different interface sub-oxides between SiO2 and Si. Table 1 Doping levels as measured by secondary ion mass spectrometry. 4+ Fig. 2. (a) Non-isochromaticity measurement by a parabolic fit to the Si peak energy as a Sample n-type (at/cm³) p-type (at/cm³) function of the vertical (energy dispersive plane) pixel position in a region far from p–n + − 4+ 20 15 junctions for sample N /P .
Recommended publications
  • Oxidation State Slides.Key
    Oxidation States Dr. Sobers’ Lecture Slides The Oxidation State Also known as the oxidation number The oxidation state is used to determine whether an element has been oxidized or reduced. The oxidation state is not always a real, quantitative, physical constant. The oxidation state can be the charge on an atom: 2+ - MgCl2 Mg Cl Oxidation State: +2 -1 2 The Oxidation State For covalently bonded substances, it is not as simple as an ionic charge. A covalent bond is a sharing of electrons. The electrons are associated with more than one atomic nuclei. This holds the nuclei together. The electrons may not be equally shared. This creates a polar bond. The electronegativity of a covalently bonded atom is its ability to attract electrons towards itself. 3 Example: Chlorine Sodium chloride is an ionic compound. In sodium chloride, the chloride ion has a charge and an oxidation state of -1. The oxidation state of sodium is +1. 4 Example: Chlorine In a chlorine molecule, the chlorine atoms are covalently bonded. The two atoms share electrons equally and the oxidation state is 0. 5 Example: Chlorine The two atoms of a hydrogen chloride molecule are covalently bonded. The electrons are not shared equally because chlorine is more electronegative than hydrogen. There are no ions but the oxidation state of chlorine in HCl is -1 and the oxidation state of hydrogen is +1. 6 7 Assigning Oxidation States See the handout for the list of rules. Rule 1: Free Elements Free elements have an oxidation state of zero Example Oxidation State O2(g) 0 Fe(s) 0 O3(g) 0 C(graphite) 0 C(diamond) 0 9 Rule 2: Monatomic Ions The oxidation state of monatomic ions is the charge of the ion Example Oxidation State O2- -2 Fe3+ +3 Na+ +1 I- -1 V4+ +4 10 Rule 3: Fluorine in Compounds Fluorine in a compound always has an oxidation state of -1 Example Comments and Oxidation States NaF These are monatomic ions.
    [Show full text]
  • Structure-Property Relationships of Layered Oxypnictides
    AN ABSTRACT OF THE DISSERTATION OF Sean W. Muir for the degree of Doctor of Philosophy in Chemistry presented on April 17, 2012. Title: Structure-property Relationships of Layered Oxypnictides Abstract approved:______________________________________________________ M. A. Subramanian Investigating the structure-property relationships of solid state materials can help improve many of the materials we use each day in life. It can also lead to the discovery of materials with interesting and unforeseen properties. In this work the structure property relationships of newly discovered layered oxypnictide phases are presented and discussed. There has generally been worldwide interest in layered oxypnictide materials following the discovery of superconductivity up to 55 K for iron arsenides such as LnFeAsO1-xFx (where Ln = Lanthanoid). This work presents efforts to understand the structure and physical property changes which occur to LnFeAsO materials when Fe is replaced with Rh or Ir and when As is replaced with Sb. As part of this work the solid solution between LaFeAsO and LaRhAsO was examined and superconductivity is observed for low Rh content with a maximum critical temperature of 16 K. LnRhAsO and LnIrAsO compositions are found to be metallic; however Ce based compositions display a resistivity temperature dependence which is typical of Kondo lattice materials. At low temperatures a sudden drop in resistivity occurs for both CeRhAsO and CeIrAsO compositions and this drop coincides with an antiferromagnetic transition. The Kondo scattering temperatures and magnetic transition temperatures observed for these materials can be rationalized by considering the expected difference in N(EF)J parameters between them, where N(EF) is the density of states at the Fermi level and J represents the exchange interaction between the Ce 4f1 electrons and the conduction electrons.
    [Show full text]
  • Plutonium Is a Physicist's Dream but an Engineer's Nightmare. with Little
    Plutonium An element at odds with itself lutonium is a physicist’s dream but an engineer’s nightmare. With little provocation, the metal changes its density by as much as 25 percent. It can Pbe as brittle as glass or as malleable as aluminum; it expands when it solidi- fies—much like water freezing to ice; and its shiny, silvery, freshly machined surface will tarnish in minutes. It is highly reactive in air and strongly reducing in solution, forming multiple compounds and complexes in the environment and dur- ing chemical processing. It transmutes by radioactive decay, causing damage to its crystalline lattice and leaving behind helium, americium, uranium, neptunium, and other impurities. Plutonium damages materials on contact and is therefore difficult to handle, store, or transport. Only physicists would ever dream of making and using such a material. And they did make it—in order to take advantage of the extraordinary nuclear properties of plutonium-239. Plutonium, the Most Complex Metal Plutonium, the sixth member of the actinide series, is a metal, and like other metals, it conducts electricity (albeit quite poorly), is electropositive, and dissolves in mineral acids. It is extremely dense—more than twice as dense as iron—and as it is heated, it begins to show its incredible sensitivity to temperature, undergoing dramatic length changes equivalent to density changes of more than 20 percent. Six Distinct Solid-State Phases of Plutonium Body-centered orthorhombic, 8 atoms per unit cell Face-centered cubic, 4 atoms per unit cell Body-centered monoclinic, Body-centered cubic, 8 34 atoms per unit cell 2 atoms per unit cell δ δ′ ε Contraction on melting 6 γ L L 4 β Monoclinic, 16 atoms per unit cell Anomalous Thermal Expansion and Phase Instability of Plutonium Length change (%) 2 Pure Pu Pure Al α 0 200 400 600 800 Temperature (°C) 16 Los Alamos Science Number 26 2000 Plutonium Overview Table I.
    [Show full text]
  • HO2 Hydroperoxyl Radical
    Railsback's Some Fundamentals of Mineralogy and Geochemistry The multiple forms of oxygen Fully-reduced Not-fully-reduced oxygen; oxygen unstable at some time scale Mineralogists think of oxygen in Nominal its 2- oxidation state in minerals, oxidation and geochemists additionally think number -2 -1 0 about it as elemental diatomic Name of Elemental oxygen (O2) in redox geochemistry. Oxide However, that's just a beginning if state oxygen one additionally considers chemical processes in the atmosphere. As Oxide minerals Diatomic the table at right shows with its blue e.g., MgO oxygen region, atmospheric chemistry additionally deals with ozone, with Oxysalt minerals peroxide, and with oxide gases. O2 The interaction of the less-reduced e.g., CaCO3 Hydroxyl forms of oxygen with the not-fully- & MgFeSiO4 radical Ozone oxidized gases (SO2, NO, NO2, Examples 0 etc.) provides much entertainment Hydroxide minerals OH O3 in atmospheric chemistry. e.g., Al(OH) 3 Hydrogen Atomic One very important point to note here is the difference between OH, ology Hydroxide ion peroxide oxygen the highly reactive hydroxyl radical, Minera - and the hydroxide ion OH-, the OH H2O2 O entity found in water that we can Hydroperoxyl Significant think of as dissociated H2O. In the Water & its vapor in the upper table at right, the OH representing radical atmosphere the peroxide radical has a "0" H2O (>85 km) superscript to remind readers of its HO2 overall neutral charge, but most Aqueous/redox Oxide gases One O0 & authors and printers leave it simply geochemistry e.g., CO, CO , SO one O- as an unadorned "OH".
    [Show full text]
  • STRUCTURAL, ELECTRONIC PROPERTIES and the FEATURES of CHEMICAL BONDING in LAYERED 1111-OXYARSENIDES Larhaso and Lairaso: AB INITIO MODELING
    The preprint. Submitted to: Journal of Structural Chemistry STRUCTURAL, ELECTRONIC PROPERTIES AND THE FEATURES OF CHEMICAL BONDING IN LAYERED 1111-OXYARSENIDES LaRhAsO AND LaIrAsO: AB INITIO MODELING V.V. Bannikov, I.R. Shein Institute of Solid State Chemistry, Ural Branch Of Russian Academy of Sciences, 620990, Ekaterinburg, Pervomayskaya St., 91, Russia E-mail: [email protected] The comparative study of structural, electronic properties, topology of the Fermi surface, and the features of chemical bonding in layered 1111-oxyarsenides LaRhAsO and LaIrAsO has been performed based on the results of ab initio modeling of their electronic structure. It was established that only weak sensitivity with respect both to electron and hole doping is expected for LaIrAsO being non-magnetic metal, however, the Rh-containing compound should be characterized with weak band magnetism, and the hole doping is expected to be able to move its ground state away from the boundary of magnetic instability. The mentioned feature allows to consider LaRhAsO oxyarsenide as a possible “electron analogue” of LaFeAsO compound being the initial phase for the layered FeAs-superconductors. Keywords: 1111-phases, oxyarsenides, doping, band structure, Fermi surface, chemical bonding INTRODUCTION The oxychalcogenides and oxypnictides with common chemical formula Me(a)Me(b)(Ch/Pn)O (where Me(a) is atom of Y, La, Bi or 4f-metal, usually taking the oxidation state +3 in compounds, Me(b) is atom of d-metal, Ch = S, Se, Te, Pn = P, As, Sb) form the vast family of so-called layered 1111-phases [1,2] with tetragonal ZrCuSiAs-like structure which can be regarded as the sequence of [Me(a)–O] and [Me(b)–(Ch/Pn)] blocks alternating along the tetragonal axis, where each atom is characterized with coordination number = 4 (Fig.1).
    [Show full text]
  • On the New Oxyarsenides Eu5zn2as5o and Eu5cd2as5o
    crystals Article On the New Oxyarsenides Eu5Zn2As5O and Eu5Cd2As5O Gregory M. Darone 1,2, Sviatoslav A. Baranets 1,* and Svilen Bobev 1,* 1 Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; [email protected] 2 The Charter School of Wilmington, Wilmington, DE 19807, USA * Correspondence: [email protected] (S.B.); [email protected] (S.A.B.); Tel.: +1-302-831-8720 (S.B. & S.A.B.) Received: 20 May 2020; Accepted: 1 June 2020; Published: 3 June 2020 Abstract: The new quaternary phases Eu5Zn2As5O and Eu5Cd2As5O have been synthesized by metal flux reactions and their structures have been established through single-crystal X-ray diffraction. Both compounds crystallize in the centrosymmetric space group Cmcm (No. 63, Z = 4; Pearson symbol oC52), with unit cell parameters a = 4.3457(11) Å, b = 20.897(5) Å, c = 13.571(3) Å; and a = 4.4597(9) Å, b = 21.112(4) Å, c = 13.848(3) Å, for Eu5Zn2As5O and Eu5Cd2As5O, respectively. The crystal structures include one-dimensional double-strands of corner-shared MAs4 tetrahedra (M = Zn, Cd) and As–As bonds that connect the tetrahedra to form pentagonal channels. Four of the five Eu atoms fill the space between the pentagonal channels and one Eu atom is contained within the channels. An isolated oxide anion O2– is located in a tetrahedral hole formed by four Eu cations. Applying the valence rules and the Zintl concept to rationalize the chemical bonding in Eu5M2As5O(M = Zn, Cd) reveals that the valence electrons can be counted as follows: 5 [Eu2+] + 2 [M2+] + 3 × × × [As3–] + 2 [As2–] + O2–, which suggests an electron-deficient configuration.
    [Show full text]
  • The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen Over the Pdcl2–Cucl2/Γ-Al2o3 Nanocatalyst
    nanomaterials Article The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/γ-Al2O3 Nanocatalyst Lev Bruk 1, Denis Titov 1, Alexander Ustyugov 1, Yan Zubavichus 2 ID , Valeriya Chernikova 3, Olga Tkachenko 4, Leonid Kustov 4,*, Vadim Murzin 5, Irina Oshanina 1 and Oleg Temkin 1 1 Moscow Technological University, Institute of Fine Chemical Technology, Department of General Chemical Technology, Moscow 119571, Russia; [email protected] (L.B.); [email protected] (D.T.); [email protected] (A.U.); [email protected] (I.O.); [email protected] (O.T.) 2 National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; [email protected] 3 Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; [email protected] 4 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia; [email protected] 5 Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +7-499-137-2935 Received: 19 February 2018; Accepted: 30 March 2018; Published: 3 April 2018 Abstract: The state of palladium and copper on the surface of the PdCl2–CuCl2/γ-Al2O3 nanocatalyst for the low-temperature oxidation of CO by molecular oxygen was studied by various spectroscopic techniques. Using X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), freshly prepared samples of the catalyst were studied.
    [Show full text]
  • List of Oxidation States of the Elements 1
    List of oxidation states of the elements 1 List of oxidation states of the elements This is a list of all the known oxidation states of the chemical elements, excluding nonintegral values. The most common oxidation states are in bold. This table is based on Greenwood's,[1] with all additions noted. Oxidation state 0, which is found for all elements, is implied by the column with the element's symbol. The format of the table, based on one devised by Mendeleev in 1889, highlights some of the periodic trends. Ä1 H +1 He Li +1 Be +2 Ä1 B +1 +2 +3 [2] Ä4 Ä3 Ä2 Ä1 C +1 +2 +3 +4 Ä3 Ä2 Ä1 N +1 +2 +3 +4 +5 Ä2 Ä1 O +1 +2 Ä1 F Ne Ä1 Na +1 Mg +1 +2 [3] Al +1 +3 Ä4 Ä3 Ä2 Ä1 Si +1 +2 +3 +4 Ä3 Ä2 Ä1 P +1 +2 +3 +4 +5 Ä2 Ä1 S +1 +2 +3 +4 +5 +6 Ä1 Cl +1 +2 +3 +4 +5 +6 +7 Ar Ä1 K +1 Ca +2 Sc +1 +2 +3 Ä1 Ti +2 +3 +4 Ä1 V +1 +2 +3 +4 +5 Ä2 Ä1 Cr +1 +2 +3 +4 +5 +6 Ä3 Ä2 Ä1 Mn +1 +2 +3 +4 +5 +6 +7 Ä2 Ä1 Fe +1 +2 +3 +4 +5 +6 Ä1 Co +1 +2 +3 +4 +5 Ä1 Ni +1 +2 +3 +4 Cu +1 +2 +3 +4 Zn +2 Ga +1 +2 +3 Ä4 Ge +1 +2 +3 +4 Ä3 As +2 +3 +5 List of oxidation states of the elements 2 Ä2 Se +2 +4 +6 Ä1 Br +1 +3 +4 +5 +7 Kr +2 Rb +1 Sr +2 [4] [5] Y +1 +2 +3 Zr +1 +2 +3 +4 Ä1 Nb +2 +3 +4 +5 Ä2 Ä1 Mo +1 +2 +3 +4 +5 +6 Ä3 Ä1 Tc +1 +2 +3 +4 +5 +6 +7 Ä2 Ru +1 +2 +3 +4 +5 +6 +7 +8 Ä1 Rh +1 +2 +3 +4 +5 +6 Pd +2 +4 Ag +1 +2 +3 Cd +2 In +1 +2 +3 Ä4 Sn +2 +4 Ä3 Sb +3 +5 Ä2 Te +2 +4 +5 +6 Ä1 I +1 +3 +5 +7 Xe +2 +4 +6 +8 Cs +1 Ba +2 La +2 +3 Ce +2 +3 +4 Pr +2 +3 +4 Nd +2 +3 Pm +3 Sm +2 +3 Eu +2 +3 Gd +1 +2 +3 Tb +1 +3 +4 Dy +2 +3 Ho +3 Er +3 Tm +2 +3 Yb +2 +3 Lu +3 Hf +2 +3 +4 List of oxidation
    [Show full text]
  • Converting Between the Oxides of Nitrogen Using Metal–
    Chem Soc Rev View Article Online TUTORIAL REVIEW View Journal | View Issue Converting between the oxides of nitrogen using metal–ligand coordination complexes Cite this: Chem. Soc. Rev., 2015, 44,6708 Andrew J. Timmons and Mark D. Symes* À À The oxides of nitrogen (chiefly NO, NO3 ,NO2 and N2O) are key components of the natural nitrogen cycle and are intermediates in a range of processes of enormous biological, environmental and industrial importance. Nature has evolved numerous enzymes which handle the conversion of these oxides to/from other small nitrogen-containing species and there also exist a number of heterogeneous catalysts that can mediate similar reactions. In the chemical space between these two extremes exist Received 30th March 2015 metal–ligand coordination complexes that are easier to interrogate than heterogeneous systems and simpler DOI: 10.1039/c5cs00269a in structure than enzymes. In this Tutorial Review, we will examine catalysts for the inter-conversions of the various nitrogen oxides that are based on such complexes, looking in particular at more recent examples www.rsc.org/chemsocrev that take inspiration from the natural systems. Creative Commons Attribution 3.0 Unported Licence. Key learning points (1) The key role of nitrogen oxides (especially nitrite) in the nitrogen cycle. (2) The coordination chemistry in the active sites of the various nitrogen oxide reductase enzymes. (3) How nitrite binds to, and is reduced at, metal ligand coordination complexes. (4) The various platforms that have been used for NO reduction. (5) Nitrate reduction with metal ligand coordination complexes. This article is licensed under a 1. Introduction Open Access Article.
    [Show full text]
  • 2013-‐08-‐04 1 Oxidation and Reduction
    2013-08-04 Rules for Assigning B) Oxidation State Determination Oxidation State (O.S.)* 1. O.S. of an atom in pure element = 0 Oxidation and Reduction For an atom, electrons can be lost or gained during a 2. O.S. of monoatomic ion = charge chemical reaction. 3. O.S. of Oxygen (O) is -2 in most of its covalent and ionic compounds (-1 in peroxides). If electrons are lost: OXIDATION The state becomes more positive 4. O.S. of H is +1 when combined with a non-metal 5. O.S. of H is -1 when combined with a metal If electrons are gained: REDUCTION The state becomes more negative 6. O.S. of Fluorine (F) is -1 in compounds 7. The sum of O.S. is 0 in compounds Oxidation State (O.S.) or Oxidation Number (O.N.) Number of electrons lost or gained during a chemical 8. The sum of O.S. equals charge in ions change * A compilation from different textbooks Elements with Fixed Oxidation States (O.S.)* Instead of memorizing elements that show different O.S., remember those that have a fixed one: Group 1 (IA) elements: Always +1 Group 2 (IIA) elements: Always +2 Aluminum, Al, and Scandium, Sc: Always +3 Zinc, Zn, and Cadmium, Cd: Always +2 Silver, Ag: Always +1 * A compilation from different textbooks 1 2013-08-04 OXIDATION STATE DETERMINATION EXERCISES Assign oxidation state (O.S.) to each element in the following compounds: a) SO3 i) CrCl3 2- 2- b) SO3 j) CrO4 2- c) KMnO4 k) Cr2O7 d) MnO2 l) HClO4 e) HNO3 m) HClO3 f) S8 n) HClO2 g) CH2Cl2 o) HClO h) SCl2 p) K2SO4 2 2013-08-04 C) A Nomenclature Proposal MORE GENERAL OBSERVATIONS Problematic of Nomenclature Coverage in Textbooks • Flow charts of various complexities (relatively often!) Flow charts, rules, … and tables, tables, tables … (Memorization!) ü From 3-box flow charts to 14-box ones GENERAL OBSERVATIONS • Link with acid/base concepts (sometimes, but rarely!) • Appears in chapters 2 or 3 of textbooks (often!) ü So, it is to be covered “at once”; as a single topic.
    [Show full text]
  • Surface and Corrosion Chemistry of PLUTONIUM
    Surface and Corrosion Chemistry of PLUTONIUM John M. Haschke, Thomas H. Allen, and Luis A. Morales s 252 Los Alamos Science Number 26 2000 Surface and Corrosion Chemistry of Plutonium Elemental plutonium, the form in which most of the weapons-grade material exists, is a reactive metal. When exposed to air, moisture, and common elements such as oxygen and hydrogen, the metal surface readily corrodes and forms a powder of small plutonium-containing particles. Being easily airborne and inhaled, these particles pose a much greater risk of dispersal during an accident than the original metal. The present emphasis on enhancing nuclear security through safe mainte- nance of the nuclear stockpile and safe recovery, handling, and storage of surplus plutonium makes it more imperative than ever that the corrosion of plutonium be understood in all its manifestations. etallic plutonium was first a Los Alamos pioneer in plutonium initiated spontaneously at room temper- prepared at Los Alamos in corrosion, was prescient when he ature and advanced into the plutonium M1944, during the Manhattan wrote, “Most investigators are inclined metal at a rate of more than 1 centime- 10 Project. After samples became avail- to concentrate their attention on PuO2, ter per hour (cm/h), or a factor of 10 able, scientists studied the properties which can be well characterized, and faster than the corrosion rate in dry of the metal, including its reactions to ignore other compounds that may air. The reaction generated excessive with air, moisture, oxygen, and hydro- contribute to the overall corrosion temperatures and started under condi- gen. Extensive investigation of pluto- behavior” (Wick 1980).
    [Show full text]
  • Chemistry of the Main Group Elements: Chalcogens Through Noble Gases Sections 8.7-8.10
    Chemistry of the Main Group Elements: Chalcogens through Noble Gases Sections 8.7-8.10 Monday, November 9, 2015 Oxygen • Forms compounds with every element except He, Ne, and Ar • Two naturally occurring allotropes: O2 and O3 • O2 has two unpaired electrons and a triplet ground state that moderates its reactivity Oxygen Both O2 and O3 are powerful oxidants remember G nFE Partial reduction of O2 gives hydrogen peroxide Hydrogen peroxide synthesis is achieved with anthraquinone 0 H2/Pd Oxides An oxide is any compound with an oxygen in the 2– oxidation state; there are three types, • basic oxides are formed with metals and give basic solutions when dissolved in water CaO H 2O Ca OH 2 2 MgO 2H Mg H 2O • acidic oxides are formed with p-block elements and give acid solutions when dissolved in water N2O5 H 2O 2HNO3 Sb2O5 2OH 5H 2O 2Sb OH 6 • amphoteric oxides can act as either acids or bases 2 ZnO 2H Zn H 2O 2 ZnO 2OH H 2O Zn OH 4 Sulfur Sulfur has many allotropes • S2, S3, S6, S7, α-S8, β-S8, γ-S8, ... , S20 Considered ‘soft’ compared to oxygen, it bonds strongly to most transition metals μ2-sulfide μ3-sulfide μ4-sulfide Sulfur Halides There are seven different sulfur fluorides... +I +I +II +II 0 +III +I S2F2 SSF2 SF2 FSSF3 +VI +IV +V +V SF4 S2F10 SF6 ...but for the other halogens only S2X2 and SX2 complexes are known S xsCl S Cl xsCl2 SCl 8 2 2 2 FeCl3 2 Halogens Chemistry of the halogens is dominated by the drive to complete the octet.
    [Show full text]