2013-‐08-‐04 1 Oxidation and Reduction

Total Page:16

File Type:pdf, Size:1020Kb

2013-‐08-‐04 1 Oxidation and Reduction 2013-08-04 Rules for Assigning B) Oxidation State Determination Oxidation State (O.S.)* 1. O.S. of an atom in pure element = 0 Oxidation and Reduction For an atom, electrons can be lost or gained during a 2. O.S. of monoatomic ion = charge chemical reaction. 3. O.S. of Oxygen (O) is -2 in most of its covalent and ionic compounds (-1 in peroxides). If electrons are lost: OXIDATION The state becomes more positive 4. O.S. of H is +1 when combined with a non-metal 5. O.S. of H is -1 when combined with a metal If electrons are gained: REDUCTION The state becomes more negative 6. O.S. of Fluorine (F) is -1 in compounds 7. The sum of O.S. is 0 in compounds Oxidation State (O.S.) or Oxidation Number (O.N.) Number of electrons lost or gained during a chemical 8. The sum of O.S. equals charge in ions change * A compilation from different textbooks Elements with Fixed Oxidation States (O.S.)* Instead of memorizing elements that show different O.S., remember those that have a fixed one: Group 1 (IA) elements: Always +1 Group 2 (IIA) elements: Always +2 Aluminum, Al, and Scandium, Sc: Always +3 Zinc, Zn, and Cadmium, Cd: Always +2 Silver, Ag: Always +1 * A compilation from different textbooks 1 2013-08-04 OXIDATION STATE DETERMINATION EXERCISES Assign oxidation state (O.S.) to each element in the following compounds: a) SO3 i) CrCl3 2- 2- b) SO3 j) CrO4 2- c) KMnO4 k) Cr2O7 d) MnO2 l) HClO4 e) HNO3 m) HClO3 f) S8 n) HClO2 g) CH2Cl2 o) HClO h) SCl2 p) K2SO4 2 2013-08-04 C) A Nomenclature Proposal MORE GENERAL OBSERVATIONS Problematic of Nomenclature Coverage in Textbooks • Flow charts of various complexities (relatively often!) Flow charts, rules, … and tables, tables, tables … (Memorization!) ü From 3-box flow charts to 14-box ones GENERAL OBSERVATIONS • Link with acid/base concepts (sometimes, but rarely!) • Appears in chapters 2 or 3 of textbooks (often!) ü So, it is to be covered “at once”; as a single topic. ü Explanations on “hydrogen -ate/ite” ions (sometimes!) • Appears in end-of-textbook appendices (sometimes!) • Naming of hydrated salts (sometimes!) ü Very brief coverage, condensed guidelines • The “-ide”, “-ate”, and “-ite” cases (how are they • Tables of common ions (always!) linked and how they differ?) ü Monoatomic and polyatomic ions ü (and to the “-ic” and “-ous” ones too!) v Separated or altogether! • The Stock system (not always mentioned!) ü Oxidation states (charges) of metals (in figures or tables) Language of Chemistry: Important Elements to Know Part 1: Elements and Periodic Table Elements (Symbol/Name) to Know (I) Elements (Symbol/Name) to Know (II) 1. H Hydrogen 13. Al Aluminum 25. Mn Manganese (NOT Mg) 38. Sr Strontium 2. He Helium 14. Si Silicon 26. Fe Iron 47. Ag Silver 3. Li Lithium 15. P Phosphorus (from Latin Ferrum) (from Latin Argentum) 4. Be Beryllium (NOT Phosphorous) 27. Co Cobalt (NOT Copper) 50. Sn Tin 5. B Boron (NOT Potassium) 28. Ni Nickel (NOT N) (from Latin Stannum) 6. C Carbon (NOT Ca) 16. S Sulfur (or Sulphur) 29. Cu Copper (NOT Co) 53. I Iodine 7. N Nitrogen (NOT Ni) 17. Cl Chlorine (NOT clorine) (from Latin Cuprum) 56. Ba Barium 8. O Oxygen 18. Ar Argon (NOT Arsenic) 30. Zn Zinc 78. Pt Platinum 9. F Fluorine 19. K Potassium (NOT P) 31. Ga Gallium 79. Au Gold (from Latin Aurum) (NOT Flourine) (from Latin Kalium) 32. Ge Germanium 80. Hg Mercury 10. Ne Neon 20. Ca Calcium (NOT Carbon) 33. As Arsenic (NOT Ar) (from Latin Hydrargyrum) 11. Na Sodium 21. Sc Scandium 34. Se Selenium (NOT S) 82. Pb Lead (from Latin Natrium) 22. Ti Titanium 35. Br Bromine (from Latin Plumbum) 12. Mg Magnesium (NOT Mn) 23. V Vanadium 36. Kr Krypton 92. U Uranium 24. Cr Chromium 3 2013-08-04 Types of Chemical Compounds Language of Chemistry: Part 2: Binary Acids and Compounds Acid-Base Models: 1. A metal + a non-metal (e.g. NaCl) Brønsted-Lowry: + Leads to ionic compounds! Acids are H donors, Bases are H+ acceptors (need at least 1 atom with a lone pair). 2. A non-metal + another non-metal (e.g. CO2) - + Leads to covalent (or molecular) compounds! HF(aq) ⇌ F (aq) + H (aq) Acid conj. base + - NH3(aq) + H2O(l) ⇌ NH4 (aq) + OH (aq) Base conj. acid Binary Covalent Compounds List of Binary Acids and Acids Binary Acids, Related Ions, and Covalent Compounds Covalent Covalent Acid Acid Related Ion Compound Compound Formula Name Ion Name Formula Name Groups 16/17 elements combined with hydrogen give binary covalent compounds in the gas state (g). HF(aq) Hydrofluoric acid F- Fluoride HF(g) Hydrogen fluoride Example: HCl(g) is Hydrogen chloride HCl(aq) Hydrochloric acid Cl- Chloride HCl(g) Hydrogen chloride HBr(aq) Hydrobromic acid Br- Bromide HBr(g) Hydrogen bromide Group 16/17 elements combined with hydrogen give binary acids when dissolved in water (aq). HI(aq) Hydroiodic acid I- Iodide HI(g) Hydrogen iodide S2- Sulfide Example: HCl(aq) is Hydrochloric Acid H2S(aq) Hydrosulfuric acid H2S(g) Dihydrogen sulfide HS- Hydrogen sulfide ® François Gauvin 2005 Nomenclature Names of Binary Binary Compounds Ionic Compounds 1. Name the metal first. (BINARY: made of only two elements) If the metal can have more than one oxidation state, the latter is specified by a Roman numeral between Ionic or Covalent Compound? parentheses (Stock System). There is NO SPACE BETWEEN METAL NAME AND OPENING Compound contains a metal Compound contains PARENTHESIS. or ammonium ion (NH +) only nonmetals 4 Example: Cu+ and Cu2+ (copper cations) Cu+ is copper(I) ion; NOT copper (I) Name as an Name as a Cu2+ is copper(II) ion; NOT copper (II) Ionic Compound Covalent compound 4 2013-08-04 Names of Binary Example 1 Ionic Compounds Name the following binary compound: 2. Then name the non-metal (i.e. the anion) FeCl2 by changing the ending of the non-metal Fe (metal) with Cl (non-metal) name to -ide (-ide suffix). → Ionic compound Fe is iron (no fixed O.S.); Cl is chlorine. Refer to parent binary acid for ion name. Name non-metal with –ide suffix: chloride. Oxidation state of metal: For example: Chloride is from Hydrochloric acid, HCl, so it is Cl– Hydrochloric acid, HCl(aq) leads to In this compound, O.S.(Fe) is +2 → iron(II) chloride (Cl-) ion So the name is Iron(II) chloride. Naming Binary Example 2 Covalent Compounds Name the following binary compound: Compounds made of two PF5 non-metallic elements Both P and F are non-metals. the more “metallic” element is No hydrogen in compound listed first → Covalent compound (to the left or below); Most “metallic” is Phosphorus, The other element is treated Fluorine is treated as an anion → fluoride. as an anion; Use prefixes to indicate the number of atoms. Prefixes are used to specify So the name is Phosphorus pentafluoride. the number of atoms Example 3 Example 4 Give the formula of the following binary compound: Give the formula of the following binary compound: Calcium Oxide Diphosphorus pentasulfide Calcium is a metal → Ionic compound Its symbol is Ca. Phosphorus is a non-metal. Its symbol is P. Its oxidation state is fixed at +2 (Group 2 element). Sulfide is the anion of sulfur, S; another non-metal. 2+ So its charge is 2+, Ca . Oxide is the anion of oxygen, O; the non-metal. Both elements of this compound are non-metals. Its charge is 2-, O2- (so O.S. of oxide ion is -2). → Covalent compound Combine the two ions in order to cancel the positive and negative Prefixes in the compound name literally tell us what the charges. formula is: In this case, the 2+ charge of Ca cancels the 2- charge of O. Therefore, the formula should contain 1 Ca with 1 O. Di- means 2 and penta- means 5. So the formula is CaO. So the formula is P2S5. 5 2013-08-04 Example 5 Language of Chemistry: Give the formula of the following binary compound: Part 3: Oxoacids (HaZbOc) and Polyatomic Ion Compounds Chromium(III) oxide Case of Sulfuric Acid (loss of first H+ ion): Chromium is a metal (symbol is Cr) → Ionic compound. Its oxidation state is NOT fixed, but its value is +3 as - + 3+ H2SO4(aq) → HSO4 (aq) + H (aq) stated by the Roman numeral in the name, Cr cation. Acid conj. base Oxide is the anion of oxygen, O; the non-metal. 2- Its charge is 2-, O (so O.S. of oxide ion is -2). HSO - ANION 4 Combine the two ions in order to cancel the positive and negative + charges. Case of sulfuric Acid (loss of second H ion): In this case, 2 Cr3+ ions (total charge 6+) would cancel the charge of 3 O2- ions (total charge 6-). - 2- + HSO4 (aq) → SO4 (aq) + H (aq) Therefore, the formula should contain 2 Cr with 3 O. Acid conj. base 2- So the formula is Cr2O3. SO4 ANION Language of Chemistry: Nomenclature of Nomenclature of Polyatomic Ion Compounds Polyatomic Ion Compounds 1. Name the metal (or ammonium ion) first. If the metal can have more than one Binary or Polyatomic ion Compound? oxidation state, the latter is specified by a Roman numerals between parentheses (Stock System). There is NO SPACE Compound contains only Compound contains MORE BETWEEN METAL NAME AND OPENING TWO elements than TWO elements (including O) PARENTHESIS. Name as a Name as a Polyatomic 2. Name the anion from its parent oxoacid, Binary Compound Ion Compound using the –ate or –ite suffix depending on the name of the parent oxoacid (see next slide).
Recommended publications
  • Naming Polyatomic Ions and Acids Oxyanions
    Oxyanions Naming Polyatomic Ions and Oxyanions Acids Oxyanions- negative ions containing Oxyanions may contain the prefix oxygen. “hypo-”, less than, or “per-”, more than. These have the suffix “-ate” or “-ite” For example - “-ate” means it has more oxygen atoms ClO4 Perchlorate bonded, “-ite” has less - ClO3 Chlorate For example - ClO2 Chlorite 2- SO4 sulfate ClO- Hypochlorite 2- SO3 sulfite Acids Naming acids Naming Acids Certain compounds produce H+ ions in Does it contain oxygen? water, these are called acids. If it does not, it gets the prefix “hydro-” and If it does contain an oxyanion, then the suffix “-ic acid” replace the ending. You can recognize them because the neutral compound starts with “H”. HCl If the ending was “–ate”, add “-ic acid” Hydrochloric acid If the ending was “–ite”, add “-ous acid” For example HCl, H2SO4, and HNO3. HF Don’t confuse a polyatomic ion with a H2SO4 Sulfuric Acid Hydrofluoric acid neutral compound. H2SO3 Sulfurous Acid HCN HCO - is hydrogen carbonate, not an acid. 3 Hydrocyanic acid Examples Examples Nomenclature (naming) of Covalent compounds HNO3 HNO3 Nitric Acid HI HI Hydroiodic acid H3AsO4 H3AsO4 Arsenic Acid HClO2 HClO2 Chlorous Acid 1 Determining the type of bond Covalent bonding is very Covalent bonding is very First, determine if you have an ionic different from ionic naming compound or a covalent compound. similar to ionic naming A metal and a nonmetal will form an You always name the one that is least Ionic names ignored the subscript ionic bond. electronegative first (furthest from because there was only one possible Compounds with Polyatomic ions form fluorine) ratio of elements.
    [Show full text]
  • Understanding Pigments: the Third Step to Higher Quality And
    Understanding Pigments: The Third Mark Harber October, 2000 Step to Higher Quality and Consistency Putting great color in your product is part of the pigments. However, they are less opaque and systems approach for resolving issues of sub- would have to be used at higher loading levels to standard properties and appearance. achieve similar whiteness and opacity. This article on pigments is the third in a four-part Titanium Dioxide is used in the majority of the series about the interrelationship of the material products made by the cast polymer industry. Tita- components used in marble and solid surface nium Dioxide-based colors include most whites, manufacturing. These AOC-authored articles re- pastels, earth tones and off-whites such as bone, spond to the challenge that the cast polymer in- ivory, beige or biscuit. As noted in Table 1, non- dustries aspire to higher standards of quality and white synthetic oxides are combined with Titani- consistency. Because resolving cast polymer is- um Dioxide to create pastels and earth tones for sues requires a systems approach, other articles cultured marble and solid surface applications. in this series address resins, gel coats and pro- cessing. All articles begin with background infor- Phthalocyanine pigments, or "Phthalos," impart mation on the main subject matter, followed by deep colors such as the automotive "Hunter ten related issues and guidelines. Green" of a sport utility vehicle or the high strength Blue used in ballpoint pens. Because A BACKGROUND ON COLORANTS they are so deep when used by themselves, In their natural state, cast polymer resins meet a Phthalo Blue and Phthalo Green are normally variety of performance requirements but are lack- blended with other pigments, many times Titani- ing in the color that draws the customer to the um Dioxide.
    [Show full text]
  • Acetate C2H3O2 Or CH3COO Or CH3CO2 Ammonium NH4
    Name:_____________________ Memorization For AP Chem Polyatmic Ions AP Chemistry Polyatomic Ion list - - - Acetate C2H3O2 or CH 3COO or CH 3CO 2 + Ammonium NH 4 - Ammonium Carbonate NH 4CO 3 Cyanide CN - 2- Carbonate CO 3 2- Dichromate Cr 2O7 - Dihydrogen phosphate H2PO 4 - Hydrogen carbonate HCO 3 - Hydrogen sulfate HSO 4 - Hydronium H3O Hydroxide OH - 2- Monohydrogen Phosphate HPO 4 - Nitrate NO 3 - Nitrite NO 2 2- Oxalate C2O4 - Permanganate MnO 4 3- Phosphate PO 4 2- Sulfate SO 4 2- Sulfite SO 3 Hypochlorite ClO - - Chlorite ClO 2 - Chlorate ClO 3 - Perchlorate ClO 4 2- Chromate CrO 4 2- Silicate SiO 3 Thiocyanate SCN - 2- Thiosulfate S2O3 - Bromate BrO 3 2- Selenate SeO 4 - Bisulfite HSO 3 Name:_____________________ Memorization For AP Chem Rules for Naming an Acid When the name of the anion ends in –ide, the acid name begins with the prefix hydro-, the stem of the anion has the suffix –ic and it is followed by the word acid. -ide becomes hydro _____ic Acid Cl- is the Chloride ion so HCl = hydrochloric acid When the anion name ends in –ite, the acid name is the stem of the anion with the suffix –ous, followed by the word acid. -ite becomes ______ous Acid - ClO 2 is the Chlorite ion so HClO 2 = Chlorous acid. When the anion name ends in –ate, the acid name is the stem of the anion with the suffix –ic, followed by the word acid. -ate becomes ______ic Acid - ClO 3 is the Chlorate ion so HClO 3 = Chloric acid. Rules for Naming Ionic Compounds 1.
    [Show full text]
  • 4.2 Ionic Bonds Vocabulary: Ion – Polyatomic Ion – Ionic Bond – Ionic Compound – Chemical Formula – Subscript –
    4.2 Ionic Bonds Vocabulary: Ion – Polyatomic ion – Ionic bond – Ionic compound – Chemical formula – Subscript – Crystal - An ion is an atom or group of atoms that has an electric charge. When a neutral atom loses a valence electron, it loses a negative charge. It becomes a positive ion. When a neutral atom gains an electron, it gains a negative charge and becomes a negative ion. Common Ions: Name Charge Symbol/Formula Lithium 1+ Li+ Sodium 1+ Na+ Potassium 1+ K+ Ammonium 1+ NH₄+ Calcium 2+ Ca²+ Magnesium 2+ Mg²+ Aluminum 3+ Al³+ Fluoride 1- F- Chloride 1- Cl- Iodide 1- I- Bicarbonate 1- HCO₃- Nitrate 1- NO₃- Oxide 2- O²- Sulfide 2- S²- Carbonate 2- CO₃²- Sulfate 2- SO₄²- Notice that some ions are made of several atoms. Ammonium is made of 1 nitrogen atom and 4 hydrogen atoms. Ions that are made of more than 1 atom are called polyatomic ions. Ionic bonds: When atoms that easily lose electrons react with atoms that easily gain electrons, valence electrons are transferred from one type to another. The transfer gives each type of atom a more stable arrangement of electrons. 1. Sodium has 1 valence electron. Chlorine has 7 valence electrons. 2. The valence electron of sodium is transferred to the chlorine atom. Both atoms become ions. Sodium atom becomes a positive ion (Na+) and chlorine becomes a negative ion (Cl-). 3. Oppositely charged particles attract, so the ions attract. An ionic bond is the attraction between 2 oppositely charged ions. The resulting compound is called an ionic compound. In an ionic compound, the total overall charge is zero because the total positive charges are equal to the total negative charges.
    [Show full text]
  • Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13374 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-25481-6 Toxicology; National Research Council 356 pages 6 x 9 PAPERBACK (2012) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.
    [Show full text]
  • Ionic Compound Ratios Time: 1 -2 Class Periods
    Collisions Lesson Plan Ionic Compound Ratios Time: 1 -2 class periods Lesson Description In this lesson, students will use Collisions to explore the formation of ionic compounds and compound ratios. Key Essential Questions 1. What makes up an ionic compound? 2. Are ionic compounds found in common ratios? Learning Outcomes Students will be able to determine the ionic compound ratio of an ionic compound. Prior Student Knowledge Expected Cations are postiviely charged ions and anions are negatively charged ions. Lesson Materials • Individual student access to Collisions on tablet, Chromebook, or computer. • Projector / display of teacher screen • Accompanying student resources (attached) Standards Alignment NGSS Alignment Science & Enginnering Practices Disciplinary Core Ideas Crosscutting Concepts • Developing and using • HS-PS-12. Construct and • Structure and Function models revise an explanation for the • Construcing explanations outcome of a simple chemical and designing solutions rection based on the outermost electron states of atoms, trends int he periodic table, and knowl- edge of the partterns of chemi- cal properties. www.playmadagames.com ©2018 PlayMada Games LLC. All rights reserved. 1 PART 1: Explore (15 minutes) Summary This is an inquiry-driven activity where students will complete the first few levels of the Collisions Ionic Bonding game to become introduced to the concept of ionic bonding and compound ratios. Activity 1. Direct students to log into Collisions with their individual username and password. 2. Students should enter the Ionic Bonding game and play Levels 1-6 levels. 3. Have your students answer the following questions during gameplay: 1. What combination of ions did you use to successfully match a target? 2.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Chapter 1: Atoms, Molecules and Ions
    Previous Chapter Table of Contents Next Chapter Chapter 1: Atoms, Molecules and Ions Section 1.1: Introduction In this course, we will be studying matter, “the stuff things are made of”. There are many ways to classify matter. For instance, matter can be classified according to the phase, that is, the physical state a material is in. Depending on the pressure and the temperature, matter can exist in one of three phases (solid, liquid, or gas). The chemical structure of a material determines the range of temperatures and pressures under which this material is a solid, a liquid or a gas. Consider water for example. The principal differences between water in the solid, liquid and gas states are simply: 1) the average distance between the water molecules; small in the solid and the liquid and large in the gas and 2) whether the molecules are organized in an orderly three-dimensional array (solid) or not (liquid and gas). Another way to classify matter is to consider whether a substance is pure or not. So, matter can be classified as being either a pure substance or a mixture. A pure substance has unique composition and properties. For example, water is a pure substance (whether from Texas or Idaho, each water molecule always contains 2 atoms of hydrogen for 1 atom of oxygen). Under the same atmospheric pressure and at the same ambient temperature, water always has the same density. We can go a little further and classify mixtures are either homogeneous or heterogeneous. In a homogeneous mixture, for example, as a result of mixing a teaspoon of salt in a glass of water, the composition of the various components and their properties are the same throughout.
    [Show full text]
  • Introduction to Chemistry
    Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable.
    [Show full text]
  • Nitrogen Dioxide
    Common Name: NITROGEN DIOXIDE CAS Number: 10102-44-0 RTK Substance number: 1376 DOT Number: UN 1067 Date: May 1989 Revision: April 2000 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Nitrogen Dioxide can affect you when breathed in. * If you think you are experiencing any work-related health * Nitrogen Dioxide may cause mutations. Handle with problems, see a doctor trained to recognize occupational extreme caution. diseases. Take this Fact Sheet with you. * Contact can irritate and burn the skin and eyes with * Exposure to hazardous substances should be routinely possible eye damage. evaluated. This may include collecting personal and area * Breathing Nitrogen Dioxide can irritate the nose and air samples. You can obtain copies of sampling results throat. from your employer. You have a legal right to this * Breathing Nitrogen Dioxide can irritate the lungs causing information under OSHA 1910.1020. coughing and/or shortness of breath. Higher exposures can cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of WORKPLACE EXPOSURE LIMITS breath. OSHA: The legal airborne permissible exposure limit * High levels can interfere with the ability of the blood to (PEL) is 5 ppm, not to be exceeded at any time. carry Oxygen causing headache, fatigue, dizziness, and a blue color to the skin and lips (methemoglobinemia). NIOSH: The recommended airborne exposure limit is Higher levels can cause trouble breathing, collapse and 1 ppm, which should not be exceeded at any even death. time. * Repeated exposure to high levels may lead to permanent lung damage. ACGIH: The recommended airborne exposure limit is 3 ppm averaged over an 8-hour workshift and IDENTIFICATION 5 ppm as a STEL (short term exposure limit).
    [Show full text]
  • Oxidation State Slides.Key
    Oxidation States Dr. Sobers’ Lecture Slides The Oxidation State Also known as the oxidation number The oxidation state is used to determine whether an element has been oxidized or reduced. The oxidation state is not always a real, quantitative, physical constant. The oxidation state can be the charge on an atom: 2+ - MgCl2 Mg Cl Oxidation State: +2 -1 2 The Oxidation State For covalently bonded substances, it is not as simple as an ionic charge. A covalent bond is a sharing of electrons. The electrons are associated with more than one atomic nuclei. This holds the nuclei together. The electrons may not be equally shared. This creates a polar bond. The electronegativity of a covalently bonded atom is its ability to attract electrons towards itself. 3 Example: Chlorine Sodium chloride is an ionic compound. In sodium chloride, the chloride ion has a charge and an oxidation state of -1. The oxidation state of sodium is +1. 4 Example: Chlorine In a chlorine molecule, the chlorine atoms are covalently bonded. The two atoms share electrons equally and the oxidation state is 0. 5 Example: Chlorine The two atoms of a hydrogen chloride molecule are covalently bonded. The electrons are not shared equally because chlorine is more electronegative than hydrogen. There are no ions but the oxidation state of chlorine in HCl is -1 and the oxidation state of hydrogen is +1. 6 7 Assigning Oxidation States See the handout for the list of rules. Rule 1: Free Elements Free elements have an oxidation state of zero Example Oxidation State O2(g) 0 Fe(s) 0 O3(g) 0 C(graphite) 0 C(diamond) 0 9 Rule 2: Monatomic Ions The oxidation state of monatomic ions is the charge of the ion Example Oxidation State O2- -2 Fe3+ +3 Na+ +1 I- -1 V4+ +4 10 Rule 3: Fluorine in Compounds Fluorine in a compound always has an oxidation state of -1 Example Comments and Oxidation States NaF These are monatomic ions.
    [Show full text]
  • Monoatomic Ions You Should Know
    Monoatomic ions you should know Monoatomic Cations Elements that form a single cation Elements that form two or more cations Ion Name Ion Name Common Name + 2+ H hydrogen ion /proton Cr chromium(II) ion Li+ lithium ion Cr3+ chromium(III) ion + 2+ Na sodium ion Fe iron(II) ion ferrous ion + 3+ K potassium ion Fe iron(III) ion ferric ion + 2+ Rb rubidium ion Ni nickel(II) + 3+ Cs cesium ion Ni nickel(III) 2+ + Be beryllium ion Cu copper(I) ion cuprous ion 2+ 2+ Mg magnesium ion Cu copper(II) ion cupric ion 2+ 2+ Ca calcium ion Hg2 mercury(I) ion* mercurous ion Sr2+ strontium ion Hg2+ mercury(II) ion mercuric ion Ba2+ barium ion Sn2+ tin(II) ion stannous ion Al3+ aluminum ion Sn4+ tin(IV) ion stannic ion Zn2+ zinc ion Pb2+ lead(II) ion plumbous ion Ag+ silver ion Pb4+ lead(IV) ion plumbic ion Cd2+ cadmium ion *this is actually a polyatomic ion Monoatomic Anions (all form only single ion) Ion Name Ion Name N3- nitride ion H- hydride ion P3- phosphide ion F- fluoride ion O2- oxide ion Cl- chloride ion S2- sulfide ion Br- bromide ion I- iodide ion Polyatomic ions you should know Formula Name Formula Name - 2- C2H3O2 acetate ion CO3 carbonate ion + - NH4 ammonium ion HCO3 bicarbonate ion 2- 2- CrO4 chromate ion SO4 sulfate ion Cr O 2- dichromate ion HSO - bisulfate ion 2 7 4 - 2- CN cyanide ion SO3 sulfite ion - - HO hydroxide ion HSO3 bisulfite ion 2- - C2O4 oxalate ion ClO4 perchlorate ion - - MnO4 permanganate ion ClO3 chlorate ion - - NO3 nitrate ion ClO2 chlorite ion - - NO2 nitrite ion ClO hypochlorite ion PO 3- phosphate ion 4 2- HPO4 hydrogen phosphate ion - H2PO4 dihydrogen phosphate ion Acids you should know Hydrohalic acids Oxygen containing acids Formula Name Formula Name HF hydrofluoric acid H3PO4 phosphoric acid HCl hydrochloric acid H3PO3 phosphorous acid HBr hydrobromic acid H2SO4 sulfuric acid HI hydroiodic acid H2SO3 sulfurous acid H2CO3 carbonic acid HMnO4 permanganic acid HNO3 nitric acid HNO2 nitrous acid HC2H3O2 acetic acid H2C2O4 oxalic acid HClO4 perchloric acid HClO3 chloric acid HClO2 chlorous acid HClO hypochlorous acid .
    [Show full text]