Quick viewing(Text Mode)

Significant Figures

Significant Figures

For students and parents/guardians Table of Contents In the Elements Handbook, you’ll find use- ful information about the properties of the Elements Handbook ...... 901 main group elements from the periodic table. ...... 904 You’ll also learn about real-world applications Group 1: Alkali Metals...... 906 for many of the elements. Group 2: Alkaline Earth Metals ...... 910 The Math Handbook helps you review and Groups 3–12: Transition Elements . . . . 916 sharpen your math skills so you get the most Group 13: Boron Group ...... 922 out of understanding how to solve math prob- Group 14: Carbon Group ...... 926 lems involving . Reviewing the rules Group 15: Group ...... 932 Group 16: Group ...... 936 for mathematical operations such as scientific Group 17: Halogen Group ...... 940 notation, fractions, and logarithms can also Group 18: Noble Gases ...... 944 help you boost your test scores. The reference tables are another tool that Math Handbook ...... 946 will assist you. The practice problems and Scientific Notation ...... 946 solutions are resources that will help increase Operations with Scientific Notation . . . 948 your comprehension. Square and Cube Roots ...... 949 Significant Figures ...... 949 Solving Algebraic Equations...... 954 Dimensional Analysis ...... 956 Unit Conversion ...... 957 Drawing Line Graphs...... 959 Using Line Graphs ...... 961 Ratios, Fractions, and Percents...... 964 Operations Involving Fractions ...... 965 Logarithms and Antilogarithms...... 966 Reference Tables...... 968 R-1 Color Key...... 968 R-2 Symbols and Abbreviations...... 968 R-3 Solubility Product Constants . . . . 969 R-4 Physical Constants ...... 969 R-5 Names and Charges of Polyatomic ...... 970 R-6 Ionization Constants ...... 970 R-7 Properties of Elements...... 971 R-8 Solubility Guidelines ...... 974 R-9 Specific Heat Values...... 975 R-10 Molal Freezing Point Depression and Boiling Point Elevation Constants...... 975 R-11 Heat of Formation Values ...... 975 Supplemental Practice Problems ...... 976 Solutions to Selected Practice Problems...... 992 Glossary/Glosario ...... 1005 Index ...... 1031 Credits ...... 1051

900 Student Resources Elements Handbook

Elements in Earth’s Atmosphere

Argon Other 0.93% 0.04%

Oxygen 20.95%

Nitrogen 78.08%

Elements in Earth’s Crust

Iron Calcium 5.63% 4.15% Other 7.69% Aluminum 8.23%

Oxygen 46.10% Silicon 28.20%

Elements Dissolved in Earth’s Oceans

Other 1.50% 2.70% Calcium Magnesium 1.20% 3.90%

Sodium 32.40% 58.30%

Elements Handbook 901 CORBIS Elements Handbook

Table of Contents How This Handbook Is Organized The Elements Handbook is divided into 10 sections: hydrogen and groups 1, 2, 3–12, 13, 14, 15, 16, 17, and 18. You will discover physical and atomic properties, common reactions, analytical tests, and real-world applications of the elements in each section. Questions at the end of each section will assess your understanding of the elements.

Hydrogen ...... 904 Group 14: Carbon Group ...... 926 Group 1: Alkali Metals ...... 906 Group 15: Nitrogen Group ...... 932 Group 2: Alkaline Earth Metals ...... 910 Group 16: Oxygen Group ...... 936 Groups 3–12: Transition Elements ...... 916 Group 17: Halogen Group ...... 940 Group 13: Boron Group ...... 922 Group 18: Noble Gases ...... 944

How to Use Element Boxes Each element box on the periodic table contains useful information. In the Elements Handbook, each element box has an element name, symbol, atomic number, and electron configuration. At the beginning of each section, each element box also identifies the state of matter at 25°C and 1 atm. A typical box from the handbook is shown below.

Strontium Element Atomic number 38 State of matter Symbol Sr 2 [Kr]5s Electron configuration

Color Key States of Matter Key

Gas Metal

Liquid Metalloid Solid

Nonmetal Synthetic

Interactive Figure To see animations of the elements, visit glencoe.com. To find links to information on the elements, visit glencoe.com.

902 Elements Handbook How to Use the Elements Handbook

When you read the Elements Handbook, you need to read for information. Here are some tools that the Elements Handbook has to help you find that information.

See how a group fits in Group 2: Alkaline Earth Metals Element Facts

the Periodic Table. Beryllium Physical Properties Atomic Properties Atomic Ionic 4 • Most of the alkaline earth metals have a silvery-white, metallic • Each element in group 2 has two valence electrons and an electron radius radius (pm) (pm) Be appearance. When exposed to oxygen, a thin coating forms configuration ending with n s 2 . 2 [He]2s + on the surface. • Alkaline earth metals often lose their two valence electrons to form Be Be2 112 31 Magnesium • The alkaline earth metals are harder, denser, and stronger than many ions with a 2+ charge. + 12 of the group 1 elements, but are still relatively soft compared to other • Atomic radii and ionic radii increase moving down the group but are Mg Mg2 160 72 Mg metals. smaller than the corresponding . 2 [Ne]3s + • Most alkaline earth metals have higher melting points and boiling • Ionization energies and electronegativities generally decrease moving Ca Ca2 points than alkali metals. 197 100 Calcium down the group but are larger than the corresponding alkali metal. Discover the Physical 20 • Moving down the group, densities generally increase. 2+ Ca Sr Sr Melting Points and Boiling Points Densities First Ionization Energies Electronegativities 215 118 [Ar]4s2 1287 900 Be Be Be Be 1.57 + Properties and Atomic 2469 1.848 Ba Ba2 Strontium 222 135 38 650 Mg Mg 1.738 Mg 738 Mg 1.31 Sr 1090 MP 2 842 BP [Kr]5s Ca Ca 1.550 Ca 590 Ca 1.00 Ra Properties of the 1484 220 777 Barium Sr Sr 2.630 Sr 550 Sr 0.95 1382 56 727 elements in a group. Ba Ba Ba 3.510 Ba 503 Ba 0.89 1870 [Xe]6s2 Ra 700 Ra 5.000 Ra 509 Ra 0.90 1737 Radium 0 0 200 400 600 800 0 0.5 1.0 1.5 2.0 88 1000 2000 3000 0 1 2 3 4 5 Ra Temperature (ºC) g/mL kJ/mol Pauling units [Rn]7s2

Common Reactions • Mg, Ca, Sr, and Ba react with oxygen to Analytical Tests form , such as magnesium oxide. • Mg, Ca, Sr, and Ba react with Three of the alkaline earth metals can be Summarize Common halogens to form salts, such as Example: 2Mg(s) + O 2 ( g ) → 2MgO(s) identified by flame tests. Calcium produces a magnesium , and • Sr and Ba react with oxygen to form scarlet color, while strontium produces a crimson hydrogen gas. peroxides, such as strontium peroxide. color. Barium, which if present in a sample can mask the colors of both calcium and strontium, Example: Mg(s) + 2 H C l ( g ) → Example: Sr(s) + O 2 ( g ) → S r O 2 ( s ) Reactions for the produces a yellow-green color. MgC l2 (s) + H2 (g) • Mg, Ca, Sr, and Ba react with water to form • Mg, Ca, Sr, and Ba react with bases, such as barium , and elements within a group. hydrogen to form hydrides, hydrogen gas. such as barium hydride. Example: Ba(s) + 2 H 2 O(l) → Example: Ba(s) + H 2 ( g ) → Ba(OH ) 2 (aq) + H 2 (g) Ba H2 (s) • Be, Mg, Sr, and Ca react with nitrogen to form nitrides, such as magnesium nitride.

Example: 3Mg(s) + N 2 ( g ) → M g 3 N 2 (s) A ribbon of magnesium reacts with HCl in an Barium reacts with water to Calcium Strontium Barium Identify elements by aqueous solution to produce M g 2+ ions, C l - form B a 2+ ions, O H - ions, ions, and hydrogen gas. and hydrogen gas. Analytical Tests. 910 Elements Handbook Elements Handbook 911

Source: Elements Handbook, p. 910–911

Group 2: Alkaline Earth Metals Real-World Applications Learn how elements are

Gypsum Calcium Radium used every day in Real- 20 Drywall is made from gypsum, which is a soft 88 Ca mineral composed of calcium dihydrate Ra [Ar]4s2 (CaS O ·2 H O). Drywall boards are used in build- [Rn]7s2 A layer of plaster of paris protects 4 2 World Applications. fossils during shipment. ing construction because the gypsum provides fire protection. Gypsum contains large amounts of water in its crystal form, which vaporizes when The Discovery of Radioactivity heated. The boards remain at 100°C until all of the Marie Curie’s discovery of the atomic property she called water evaporates, protecting the wood frame of the radioactivity paved the way for present-day advancements building. Gypsum that has had most of its water in science and medicine. Curie and her husband, Pierre, removed is known as plaster of paris. Most unveiled the characteristics and capabilities of radiation, minerals form pastes when mixed with water. revolutionizing scientific thinking and laying the ground- When plaster of paris is mixed with water, it forms work for present-day cancer treatments, genetics, and a rigid crystal structure, so it is often used for casts nuclear energy. Today, many cancers are treated with to set broken bones and for molds. radiation therapy. Marie Curie died at the age of 67 from aplastic anemia, probably caused by her exposure to massive amounts of radiation. Today, the effects of radiation on health Crystals formed from strontium chloride Toothpaste containing are well known, and suitable safety precautions are Strontium and saliva fill in pores in the root of a strontium chloride Vent pipe taken when using radioactive materials. 38 tooth and block access to the nerve. Sr Crystals Fan Nerve [Kr]5s2 Pore to root canal and nerves Radon Gas Sensitive Teeth Dentine Decay of radium-226 in soil and rock produces radon gas. Almost 40 million people in the United States Root canal The radioactive radon gas can seep through cracks in a home’s have teeth that are hypersensitive to touch and Root foundation or can be dissolved in water pumped into the house temperature. Sensitivity occurs when the dentine from a well. High concentrations of radon can increase the risk and roots of teeth are exposed due to receding nerve through openings called pores. Toothpastes of cancer. In many homes, installing a radon-reduction system gums or thinning of the tooth enamel. This is the that contain strontium chloride (SrC l2 ) h e l p reduces the concentration of radon gas by using a fan to draw Test your knowledge result of poor oral hygiene or, in many instances, reduce the sensitivity. The compound reacts with the gas through pipes that vent to the outside of the home. from brushing too hard. Exposing the root enables a person’s saliva to create crystals that fill in the stimuli, such as cold temperatures, to reach the pores so stimuli cannot reach the nerves. A radon-reduction system lowers the concentration of radon in homes by venting the radon gas from the home to the outside environment. of the elements by

After being coated with Barium barium liquid, the large answering Assessment 56 intestine shows up Assessment Ba clearly on an X ray. 2 [Xe]6s 13. Describe the general trend in first ionization energies 18. Infer The alkaline earth metals are usually found questions. in group 2, and explain why this trend occurs. combined with oxygen and other in Earth’s Medical X Rays 14. Explain What is the charge on alkaline earth metal crust. Based on the atomic properties of this group, ions? Explain your answer. explain why alkaline earth metals are so reactive. Barium is used by medical professionals to exam- 19. Calculate Calcium makes up about 1.5% of a ine a person’s gastrointestinal tract. Patients drink 15. Compare and contrast the physical properties of the alkaline earth metals and the alkali metals. human’s body mass. Calculate the amount of calcium barium liquid, which coats the tract, and are then found in a person who weighs 68 kg. X-rayed. Barium is almost completely insoluble in 16. Evaluate why magnesium is used in emergency flares 20. Calculate Radium-226 has a half-life of 1600 years. water and acids and appears as a bright white instead of other alkaline earth metals. After 8000 years, how much of a 500.0-g sample of color in X rays. This allows doctors and radiolo- 17. Analyze Use the atomic properties of the alkali radium-226 would be left? gists to locate tumors, ulcers, areas of reflux, and metals and alkaline earth metals to explain why other abnormalities in the digestive tract. calcium is less reactive than potassium.

914 Elements Handbook Elements Handbook 915

Source: Elements Handbook, p. 914–915

Elements Handbook 903 Hydrogen: Element Facts

Physical and Atomic Properties

• At constant temperature and pressure, hydrogen gas ( H 2 ) has the lowest density of any gas. • At very high pressures, such as the interior of planet Jupiter, hydrogen Hydrogen 1 might exist as a solid metal. H • Hydrogen is placed in group 1 because it has one valence electron. 1 1s • Hydrogen shares some properties with the group 1 metals. It can lose an electron to form a hydrogen (H + ). • Hydrogen also shares some properties with the group 17 nonmetals. It can gain an electron to form a hydride ion ( H − ).

• There are three common Physical and Atomic Properties hydrogen isotopes. Protium, of Hydrogen the most common isotope, has one proton, one electron, Melting point -259°C and no neutrons. Deuterium, Boiling point -253°C also called heavy hydrogen, Density 8.98 × 1 0 -5 g/mL has one proton, one neutron, and one electron. Tritium, Atomic radius 78 pm which is radioactive, has one First ionization 1312 kJ/mol proton, two neutrons, and energy one electron. Electronegativity 2.2 Pauling units

Common Reactions Analytical Tests • When ignited, hydrogen reacts with oxygen pH is a measure of the hydrogen ion ( H + ) to form water. concentration of aqueous solutions. When the hydrogen ion concentration is expressed in Example: H 2 ( g ) + O 2 ( g ) → 2 H 2 O ( l ) moles per liter, pH is the negative logarithm of • Hydrogen reacts with sulfur to form hydro- the hydrogen ion concentration, −log[ H + ]. For gen . example, if the hydrogen ion concentration is -2 Example: 2 H 2 ( g ) + S(g) → H 2 S ( g ) 1 × 1 0 mol/L, the pH is 2. • Hydrogen reacts with nitrogen at high tem- peratures and pressures to form .

Example: 3 H 2 ( g ) + N 2 (g) → 2N H 3 ( g )

Hydrogen gas in the red tube and nitrogen gas in the blue tube are mixed, then compressed under high pressure and tem- perature to form liquid Common household items are bases or acids, depending on ammonia in the orange their H + concentrations: the greater the H + concentration, the tube at bottom right. lower the pH.

904 Elements Handbook (l)©SPL/Photo Researchers, Inc., (r)Matt Meadows Real-World Applications

Hydrogen 1 H 1s1

Identifying Hydrogen in Stars Spectroscopy is the study of the spectral lines present in an electromagnetic spectrum. The colored lines in an emission spectrum represent the emission of energy. How do scientists know that more than 90% of the atoms in the universe are hydrogen atoms? By recording the emission spectra of light from stars or galaxies, astrono- mers can identify hydrogen. The spectrum of hydrogen consists of four distinct color lines at different wave- lengths. They are produced when electrons in a gas move to different energy levels in an atom by absorbing and The colorful cloud that makes up this nebula is then emitting energy. Each element can be identified by composed of hydrogen gas. characteristic patterns of spectral lines.

Hydrogen Fuel Cells Hydrogen fuel cells produce electricity by combining hydrogen ( H 2 ) and oxygen ( O 2 ) without burning. Water and heat are the only by-products of this process. Current demonstration projects that use hydrogen fuel cells as their energy sources include laptop computers, cars, buses, classrooms, and musical instruments. In the future, it might be possible to use a pen-sized container filled with hydrogen gas to power a laptop computer. Or, you might drive a fuel cell car to a filling station and fill a high-pres- sure gas cylinder with hydrogen gas.

Hydrogen fuel cells provide the energy to power this electric guitar.

Assessment

1. Compare and contrast hydrogen isotopes. 5. Infer Hydrogen can gain one electron to reach a 2. Write the balanced equation for the reaction between stable electron configuration. Why isn’t hydrogen hydrogen gas and oxygen gas in a fuel cell. placed with the group 17 elements that share this behavior? 3. Explain what happens when hydrogen reacts with a element. 6. Apply A solution’s hydrogen ion concentration is 3.2 × 1 0 - 4 mol/L. Refer to Chapter 19 to determine if 4. Evaluate at least one advantage and one possible this solution is an acid or a base. What is the pH of this disadvantage of hydrogen fuel cells compared to con- solution? ventional petroleum engines.

Elements Handbook 905 (t)©European Southern Observatory/Photo Researchers, Inc., (b)©Melanie Stetson Freeman/The Christian Science Monitor via Getty Images Group 1: Alkali Metals

Lithium Physical Properties 3 • Pure alkali metals have a silvery, metallic appearance. Li [He]2s1 • Solid alkali metals are soft enough to cut with a knife. • Most of the alkali metals have low densities compared to the solid Sodium form of elements from other groups. Lithium, sodium, and potassium 11 metals are less dense than water. Na [Ne]3s1 • Compared to other metals, such as silver or gold, alkali metals have low melting points. Potassium 19 Melting Points and Boiling Points Densities K 181 Li Li 0.535 [Ar]4s1 1342 98 Na MP Na 0.968 Rubidium 883 BP 37 K 63 K 0.856 Rb 759 1 39 [Kr]5s Rb Rb 1.532 668

Cesium Cs 28 Cs 1.879 671 55 Cs 0500 1000 1500 0 0.5 1.0 1.5 2.0 [Xe]6s1 Temperature (°C) g/mL Francium 87 Fr Common Reactions [Rn]7s1 • Li, Na, K, Rb, and Cs react vigorously with halogens to form salts, such as lithium chloride.

Example: 2Li(s) + C l 2 (g) → 2LiCl(s) • Li, Na, K, Rb, and Cs react with oxygen to form oxides, such as sodium oxide.

Example: 4Na(s) + O 2 (g) → 2N a 2 O(s) • Li, Na, K, Rb, and Cs react vigorously with water to form metal , such as potassium hydroxide, and hydrogen gas.

Example: 2K(s) + 2 H 2 O(l) → 2KOH(aq) + H 2 (g)

Potassium reacts violently with water, producing enough heat to ignite the hydrogen gas produced.

906 Elements Handbook ©Richard Megna/Fundamental Photographs, NYC Element Facts

Atomic Properties Atomic Ionic • Each element in group 1 has one valence electron and an electron radius radius (pm) (pm) configuration ending with n s 1 . Li Li1+ • Group 1 elements lose their valence electrons to form ions with a 152 76 1+ charge. Na Na1+ • Going down the elements in group 1, the atomic radii and ionic radii 186 102 increase. • Electronegativity decreases going down the elements in group 1. K K1+ 227 138 • The alkali metals are so reactive that they are not found in nature as free metals. Rb Rb1+ • All the alkali metals have at least one radioactive isotope. 248 152 • Because francium is rare and decays rapidly, its properties are not Cs Cs1+ well known. 265 167

First Ionization Energies Electronegativities

Li Fr Li 520 0.98 270

Na 496 Na 0.93

K 419 K 0.82

Rb 403 Rb 0.82

Cs 376 Cs 0.79

Fr 380 Fr 0.70

0 100 200 300 400 500 0 0.5 1.0 1.5 2.0 kJ/mol Pauling units

Analytical Tests Alkali metals can be qualitatively identified by flame tests. Lithium produces a red flame. Sodium produces an orange flame. Potassium, rubidium, and cesium produce violet flames.

Sodium Rubidium

Lithium Potassium Cesium

Elements Handbook 907 (l)©DAVID TAYLOR/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (c cl)©JERRY MASON/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC.; (cr r)©Tom Pantages Group 1: Alkali Metals

Lithium Environmentally Friendly Batteries 3 Someday, electric cars might be powered by lightweight lithium-ion batteries. Lithium batteries have several [He]2s1 advantages compared to lead-acid batteries. Unlike lead- acid batteries, lithium batteries do not contain toxic metals or corrosive acids, making them safer for the environment. Lithium’s light weight is also an advantage for electric vehicles. However, lithium batteries do have some disadvantages. Researchers are trying to find ways to make lithium batteries that recharge more rapidly. Cost is also a drawback. Lithium batteries are currently used for small applications such as laptop computers, but they will need to be less expensive before they can be routinely used in larger, more energy-demanding applica- The Mars rovers, Spirit and Opportunity, use solar energy to recharge lithium-ion batteries. tions such as electric or hybrid vehicles.

Sodium Sodium Content of Some Common Foods 11 Sodium Content Food Na (mg) per Serving [Ne]3s1 fast-food submarine 1310 sandwich with cold cuts canned chicken noodle 1106 soup fast-food biscuit with egg 1080 and sausage High sodium cottage cheese 851 dill pickle 833 Dietary fast-food cheeseburger 740 In 2006, the American Medical Association recommended that the amount of sodium in canned corn 571 processed and restaurant foods be reduced by beef hotdog 513 one-half over the next decade. Sodium is essen- fried fish fillet 484 tial for humans, but too much might contribute to high blood pressure and heart failure. Current wheat bread 133 guidelines advise consuming less than 2400 mg low-fat fruit yogurt 132 of sodium per day, which is less than one tea- fast-food salad with 119 spoon. However, Americans typically consume cheese and egg, 4000 to 6000 mg of sodium per day. Foods that no dressing contain more than 480 mg of sodium per serving Low are considered high-sodium foods. To be labeled sodium pound cake 111 as low sodium, foods must contain 140 mg or oatmeal cookie 96 less per serving. The table lists some common raw carrots 76 foods that are either high or low in sodium. canned peaches 16 frozen corn 2

908 Elements Handbook (t)©NASA/epa/Corbis, (b)©1995 Michael Dalton, Fundamental Photographs, NYC Real-World Applications

Na+ K+ Sodium-potassium Sodium Outside cell pumps 11 Na+ Na K+ [Ne]3s1 Na+ Na+ K+

Na+ Potassium Na+ K+ 19 Inside cell K [Ar]4s1 The sodium-potassium pump brings two K + ions into a cell for every three N a + ions it moves out of a cell. The Sodium-Potassium Pump Humans and other vertebrates need to maintain inside cells and high outside cells. The potassium a negative potential charge inside their cells in ion concentration is high inside cells and low out- order to survive. This process requires sodium side cells. In fact, potassium ions are the most com- ions, potassium ions, and a membrane-bound mon ions inside living cells. For every three enzyme called sodium/potassium ATPase. Sodium/ sodium ions pumped out of a cell, sodium/potassi- potassium ATPase uses energy from the hydrolysis um ATPase pumps two potassium ions into the of ATP to pump sodium ions out of cells and pump cell. The net result is a negative charge inside the potassium ions into cells. Because of the action of cell and concentration gradients across the cell this pump, the sodium ion concentration is low membrane for both potassium and sodium ions.

The cesium fountain atomic clock at NIST is Cesium accurate to about 1 second over a period of 55 70 million years. Cs [Xe]6s1

Cesium Atomic Clocks One of the most accurate clocks in the world is located at the United States National Institute of Standards and Technology (NIST) in Boulder, Colorado. This cesium fountain atomic clock provides the official time for the United States. The clock is based on the natural frequency of the cesium atom (9,192,631,770 Hz.), which defines the second.

Assessment

7. Describe the trend in density of the alkali metals as 11. Analyze Lithium’s properties are more like atomic number increases. magnesium in group 2 than sodium. Use what you 8. Compare lithium-ion batteries and lead-acid batteries. learned about atomic sizes to explain this behavior. 12. Organize Make a table to summarize the data for 9. Write a balanced equation for the reaction between physical and atomic properties of the group 1 elements lithium and water. according to their trends with increasing atomic 10. Predict the reactivity of lithium metal with water. number.

Elements Handbook 909 ©Geoffrey Wheeler Group 2: Alkaline Earth Metals

Beryllium Physical Properties 4 • Most of the alkaline earth metals have a silvery-white, metallic Be appearance. When exposed to oxygen, a thin oxide coating forms [He]2s2 on the surface. Magnesium • The alkaline earth metals are harder, denser, and stronger than many 12 of the group 1 elements, but are still relatively soft compared to other Mg metals. [Ne]3s2 • Most alkaline earth metals have higher melting points and boiling Calcium points than alkali metals. 20 • Moving down the group, densities generally increase. Ca [Ar]4s2 Melting Points and Boiling Points Densities 1287 Be Strontium 2469 Be 1.848 38 650 Mg Mg 1.738 Sr 1090 MP [Kr]5s2 842 BP Ca Ca 1.550 1484 777 Barium Sr Sr 2.630 56 1382 727 Ba Ba Ba 3.510 1870 [Xe]6s2 700 Ra Ra 5.000 1737 Radium 88 0 1000 2000 3000 0 1 2 3 4 5 Ra Temperature (ºC) g/mL [Rn]7s2

Common Reactions • Mg, Ca, Sr, and Ba react with halogens to form salts, such as magnesium chloride, and hydrogen gas. Example: Mg(s) + 2HC l ( g ) → MgC l 2 (s) + H 2 (g) • Mg, Ca, Sr, and Ba react with hydrogen to form hydrides, such as barium hydride.

Example: Ba(s) + H 2 (g) → Ba H 2 (s) • Be, Mg, Sr, and Ca react with nitrogen to form nitrides, such as magnesium nitride.

Example: 3Mg(s) + N 2 (g) → M g 3 N2 (s) A ribbon of magnesium reacts with HCl in an aqueous solution to produce M g 2+ ions, C l - ions, and hydrogen gas.

910 Elements Handbook Charles D. Winters/Photo Researchers, Inc. Element Facts

Atomic Properties Atomic Ionic • Each element in group 2 has two valence electrons and an electron radius radius configuration ending with n s 2 . (pm) (pm) • Alkaline earth metals often lose their two valence electrons to form Be Be2+ ions with a 2+ charge. 112 31 + • Atomic radii and ionic radii increase moving down the group but are Mg Mg2 160 72 smaller than the corresponding alkali metal. • Ionization energies and electronegativities generally decrease moving Ca Ca2+ down the group but are larger than the corresponding alkali metal. 197 100

Sr Sr2+ First Ionization Energies Electronegativities 215 118

Be 900 Be 1.57 Ba Ba2+ 222 135 Mg 738 Mg 1.31

Ca 590 Ca 1.00 Ra 220 Sr 550 Sr 0.95

Ba 503 Ba 0.89

Ra 509 Ra 0.90

0 200 400 600 800 0 0.5 1.0 1.5 2.0 kJ/mol Pauling units

• Mg, Ca, Sr, and Ba react with oxygen to Analytical Tests form oxides, such as magnesium oxide. Three of the alkaline earth metals can be Example: 2Mg(s) + O 2 (g) → 2MgO(s) identified by flame tests. Calcium produces a • Sr and Ba react with oxygen to form scarlet color, while strontium produces a crimson peroxides, such as strontium peroxide. color. Barium, which if present in a sample can mask the colors of both calcium and strontium, Example: Sr(s) + O 2 ( g ) → S r O 2 ( s ) produces a yellow-green color. • Mg, Ca, Sr, and Ba react with water to form bases, such as barium hydroxide, and hydrogen gas.

Example: Ba(s) + 2 H 2 O(l) → Ba(OH )2 (aq) + H 2 (g)

Barium reacts with water to Calcium Strontium Barium form B a 2+ ions, O H - ions, and hydrogen gas.

Elements Handbook 911 (l)Andrew Lambert/Photo Researchers, Inc., (others)Fundamental Photographs Group 2: Alkaline Earth Metals

Beryllium Beryllium plates 4 Be [He]2s2

Space Telescopes Beryllium and beryllium alloys have properties that make them useful for applications in space: they are hard, they are lighter than aluminum, and they are stable over a wide temperature range. The Hubble Space Telescope’s reaction plate is made of lightweight beryllium. The reaction plate carries The JWST’s large mirror is composed of 18 hexagonal heaters that keep the main mirror at a constant beryllium plates. temperature. Beryllium is also being used in the Hubble’s replacement—the James Webb Space Telescope (JWST).

▲ Emerald beryl Precious Gems Emerald (B e 3 A l 2 S i 6 O 18 ), one of the world’s most valuable gemstones, belongs to a family of gem- stones known as beryls. Pure beryls are clear, colorless crystals. Beryls tinted with other elements form gems such as aquamarine, morganite, and emerald. Trace amounts of or vanadium give emeralds their unique green color.

Magnesium Chlorophyll and Crop Yields 12 In the early 1900s, German chemist Richard Willstätter discovered Mg that a of chlorophyll has a magnesium ion at its center. [Ne]3s2 Chlorophyll, the green pigment in plants, is responsible for photo- synthetic processes, which convert sunlight to chemical energy. It is Amount of Magnesium Removed this chemical energy that supports life on Earth. Notice in the table by Crops from One Hectare of Soil that an average yield of common crops removes large amounts of Magnesium Removed magnesium from just one hectare of soil. Once the importance of Crop from Soil (kg) magnesium was revealed, soils deficient in magnesium were fertil- ized, greatly increasing crop yields. Willstätter’s work won him the Alfalfa 44 Nobel Prize in Chemistry in 1915. Corn 58

Cotton 25 CH2 CH3 CH3

▲ Chlorophyll molecule Oranges 25 O Peanuts 27 H3C N N CO2 CH3 Rice 15 Mg N N H H Soybeans 27 H2CCH— CH CH CO CH CH — C (CH CH CH CH) CH Tomatoes 40 2 2 2 2 2 2 2 3 3

H CH3 CH CH Wheat 20 CH3 3 3

912 Elements Handbook (l)Mark A. Schneider/Photo Researchers, (r)Courtesy of Northrop Grumman Space Technology Real-World Applications

Magnesium Calcium Strontium Barium 12 20 38 56 Mg Ca Sr Ba [Ne]3s2 [Ar]4s2 [Kr]5s2 [Xe]6s2

Fireworks Metals Used in Fireworks The four main components of fireworks are a Color Metal container, a fuse, a bursting charge, and stars. Red strontium, lithium Stars contain the chemical compounds needed to produce light of brilliant colors. Many of these Orange calcium compounds contain alkaline earth metals, such Gold iron (with carbon) as barium chloride (BaC l ), strontium 2 Yellow sodium (SrC O3 ), and calcium chloride (CaC l 2 ). The table identifies which metals are needed to make the White white-hot magnesium or colors seen during a fireworks display. aluminum, barium Green barium Blue copper Purple mixture of strontium (red) and copper (blue) Silver aluminum, titanium, or magnesium powder or flakes

New Engineering Alloys Magnesium alloys are used when strong, but lightweight, materials are needed, such as in backpack frames and aircraft. These alloys also enable automotive engineers to design lighter, more fuel-efficient cars. A new magnesium alloy, introduced in the engine cradle of some 2006 auto- motive models, replaces traditional aluminum. This alloy reduces the The magnesium-alloy engine cradle is lighter than the engine cradle’s mass by approxi- aluminum model, yet it can still withstand the high mately one-third, creating a vehicle temperatures produced by the car’s engine. that is both agile and controllable. Considered a breakthrough in Engine cradle engineering technology, the new alloy is currently being evaluated for use in other applications.

Elements Handbook 913 (t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/CORBIS Group 2: Alkaline Earth Metals

Calcium Gypsum 20 Drywall is made from gypsum, which is a soft Ca mineral composed of calcium sulfate dihydrate 2 [Ar]4s A layer of plaster of paris protects (CaS O 4 ·2 H 2 O). Drywall boards are used in build- fossils during shipment. ing construction because the gypsum provides fire protection. Gypsum contains large amounts of water in its crystal form, which vaporizes when heated. The boards remain at 100°C until all of the water evaporates, protecting the wood frame of the building. Gypsum that has had most of its water removed is known as plaster of paris. Most minerals form pastes when mixed with water. When plaster of paris is mixed with water, it forms a rigid crystal structure, so it is often used for casts to set broken bones and for molds.

Crystals formed from strontium chloride Toothpaste containing Strontium and saliva fill in pores in the root of a strontium chloride 38 tooth and block access to the nerve. Sr Crystals Nerve [Kr]5s2 Pore to root canal and nerves

Sensitive Teeth Dentine

Almost 40 million people in the United States Root canal have teeth that are hypersensitive to touch and Root temperature. Sensitivity occurs when the dentine and roots of teeth are exposed due to receding nerve through openings called pores. Toothpastes gums or thinning of the tooth enamel. This is the that contain strontium chloride (SrC l 2 ) h e l p result of poor oral hygiene or, in many instances, reduce the sensitivity. The compound reacts with from brushing too hard. Exposing the root enables a person’s saliva to create crystals that fill in the stimuli, such as cold temperatures, to reach the pores so stimuli cannot reach the nerves.

After being coated with Barium barium liquid, the large 56 intestine shows up Ba clearly on an X ray. [Xe]6s2

Medical X Rays Barium is used by medical professionals to exam- ine a person’s gastrointestinal tract. Patients drink barium liquid, which coats the tract, and are then X-rayed. Barium is almost completely insoluble in water and acids and appears as a bright white color in X rays. This allows doctors and radiolo- gists to locate tumors, ulcers, areas of reflux, and other abnormalities in the digestive tract.

914 Elements Handbook (t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers Real-World Applications

Radium 88 Ra [Rn]7s2

The Discovery of Radioactivity Marie Curie’s discovery of the atomic property she called radioactivity paved the way for present-day advancements in science and medicine. Curie and her husband, Pierre, unveiled the characteristics and capabilities of radiation, revolutionizing scientific thinking and laying the ground- work for present-day cancer treatments, genetics, and nuclear energy. Today, many cancers are treated with radiation therapy. Marie Curie died at the age of 67 from aplastic anemia, probably caused by her exposure to massive amounts of radiation. Today, the effects of radiation on health are well known, and suitable safety precautions are Vent pipe taken when using radioactive materials.

Fan

Radon Gas Decay of radium-226 in soil and rock produces radon gas. The radioactive radon gas can seep through cracks in a home’s foundation or can be dissolved in water pumped into the house from a well. High concentrations of radon can increase the risk of cancer. In many homes, installing a radon-reduction system reduces the concentration of radon gas by using a fan to draw the gas through pipes that vent to the outside of the home.

A radon-reduction system lowers the concentration of radon in homes by venting the radon gas from the home to the outside environment.

Assessment

13. Describe the general trend in first ionization energies 18. Infer The alkaline earth metals are usually found in group 2, and explain why this trend occurs. combined with oxygen and other nonmetals in Earth’s 14. Explain What is the charge on alkaline earth metal crust. Based on the atomic properties of this group, ions? Explain your answer. explain why alkaline earth metals are so reactive. 15. Compare and contrast the physical properties 19. Calculate Calcium makes up about 1.5% of a of the alkaline earth metals and the alkali metals. human’s body mass. Calculate the amount of calcium found in a person who weighs 68 kg. 16. Evaluate why magnesium is used in emergency flares instead of other alkaline earth metals. 20. Calculate Radium-226 has a half-life of 1600 years. After 8000 years, how much of a 500.0-g sample of 17. Analyze Use the atomic properties of the alkali radium-226 would be left? metals and alkaline earth metals to explain why calcium is less reactive than potassium.

Elements Handbook 915 (l)Fred Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS Groups 3–12: Transition Elements

Physical Properties • The main transition elements include four series of d-block elements with atomic numbers between 21–30, 39–48, 72–80, and 104–109. The inner transition elements include the f-block (rare earth) elements in the lanthanide series (atomic numbers 57–71) and actinide series (atomic numbers 89–103.) All are metals. • As metals, transition elements are generally good conductors of electricity and heat. They are ductile, which means they can be pulled into wires. Transition metals are also malleable, which means they can be hammered into thin sheets. For example, 1 g of gold can be hammered into a 1 m 2 -sheet that is 0.1 µ thick . • In general, the transition elements have high densities, high melting points, and low vapor pressure. Except for , which is a liquid, all are solids at room temperature. • High density and resistance to corrosion make transition elements, such as iron, good structural materials. • Most transition elements can form colored compounds. • Transition elements are often paramagnetic, which means they are attracted to an applied magnetic field. Three transition elements—iron, cobalt, and nickel—are ferromagnetic. That means these elements can form their own magnetic fields.

When exposed to a magnet, iron filings become magnetic and are attracted to the magnet and to each other.

Common Reactions • Most transition elements can form stable • Transition elements and their compounds are complex ions and coordinate covalent com- often useful as catalysts. pounds. A complex ion is an ion in which Example: Nickel is used as a catalyst in a central metal ion is surrounded by weakly converting unsaturated fats to saturated fats. bound or ions called ligands. • Transition elements can react with oxygen to Example: Prussian blue, an intense blue pigment form oxides. used in paints, is a coordinate compound made Example: In the presence of water, iron reacts of iron(III) and an iron(II) complex: with oxygen to form rust. The overall reaction is: F e4 [ F e ( C N ) 6 ] 3 . 4Fe + 3 O 2 → 2 F e 2 O 3 . • Transition elements can often combine to form • Some transition elements are important in alloys. biochemical reactions. Examples: Example: In the protein hemoglobin, iron binds • Brass is a mixture of copper and zinc. t o O2 to transport oxygen from the lungs to the • Bronze is a mixture of copper and tin. rest of the body.

916 Elements Handbook ©CORDELIA MOLLOY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc. Element Facts

Atomic Properties • The main transition elements have incomplete d sublevels. • Inner transition elements include the lanthanide series and actinide series. Elements in these series have incomplete f sublevels. • The electronic structures of the transition elements give rise to their physical properties. The more unpaired electrons in the d sublevel, the greater the hardness and the higher the melting and boiling points. • Unpaired d and f electrons produce paramagnetism in the transition elements. • The tendency of transition elements to form colored compounds also derives from their electron configurations. Compounds with unpaired d electrons can absorb visible light. • For transition elements, there is little variation in atomic size, electronegativity, and ioniza- tion energy across a period. • Transition metals can typically form ions in more than one .

Oxidation Numbers of the First Row of Transition Elements Sc +3 Ti +1 +2 +3 +4 V +1 +2 +3 +4 +5 Cr 0 +1 +2 +3 +4 +5 +6 Mn 0 +1 +2 +3 +4 +5 +6 +7 Fe 0 +1 +2 +3 +4 +5 +6 Co 0 +1 +2 +3 +4 +5 Ni +1 +2 +3 +4 Cu +1 +2 +3 Zn +2

Analytical Tests Notice in the photo the colorful compounds of transition metals. When placed in solutions, these compounds absorb different wavelengths of light. Visible spectroscopy uses light absorp- tion at specific wavelengths to measure the con- centration of colored compounds in solution. This method of analysis uses the interaction of valence electrons of transition elements and visible light. Because many transition element compounds are colored, this technique can be used in transition element analysis.

The compounds of transition metals have color because of the par- tially filled d sublevels. The electrons in these sublevels can absorb visible light of specific wavelengths. Compounds with empty or filled d sublevels do not produce brilliant colors.

Elements Handbook 917 ©Martyn F. Chillmaid/Photo Researchers, Inc. Groups 3–12: Transition Elements

Titanium 22

[Ar]3d24s2

Lighter but Stronger than Steel The curved surfaces of the Guggenheim Museum in Bilbao, Spain, are covered with 32,000 m 2 of 0.4 mm-thick titani- um panels. Titanium’s reflective properties give the building a warm look that is ever changing. Titanium is also three The titanium panels that cover the outside of the times stronger than steel, more resistant to weathering, and Guggenheim Museum in Bilbao, Spain, were chosen weighs less than steel. for the metal’s physical properties.

Chromium Manganese Cobalt Tungsten Platinum 24 25 27 74 78 Cr Mn Co W Pt [Ar]3d54s1 [Ar]3d54s2 [Ar]3d74s2 [Xe]4f145d46s2 [Xe]4f145d96s1

Strategic and Critical Materials Transition metals, such as chromium, manganese, cobalt, tungsten, and platinum, play a vital role in the economy of many countries because they have a wide variety of uses. As the uses of transition metals increase, so does the demand for these valuable materials. Ores that contain transition metals are located throughout the world.

Locations of Some Strategic Metals Russia Antimony Chromium Copper Norway Turkey Cobalt Platinum Gallium Nickel Chromium Nickel Cobalt

France Japan Canada Manganese Cadmium Nickel Gallium Copper China Gallium Jamaica Antimony Tantalum Aluminum Cadmium Zinc Copper India Cesium Tin Cadmium Cobalt Manganese Gabon Chromium Platinum Tantalum Manganese Manganese Vanadium Vanadium Indonesia Bolivia Tin Antimony Brazil Tin Manganese Gold Mexico Aluminum Tin South Africa Zinc Copper Chromium Platinum Australia Cadmium Manganese Manganese Antimony Copper Aluminum Platinum Tin Strontium Vanadium Gold Nickel Manganese Tantalum Zinc

The United States now imports more than 60 materials that are classified as “strategic and critical” because industry and the military are dependent on these materials.

918 Elements Handbook ©Colin Walton/Alamy Real-World Applications

Crust Iron Nickel Outer mantle 26 28 Fe Inner mantle [Ar]3d64s2 [Ar]3d84s2 Outer core (iron and nickel) Earth’s Iron Core Inner core (iron) Earth’s core is a solid iron sphere about the size of the Moon. Surrounding the inner core, there is an outer liquid core that contains a nickel-iron alloy. Scientists think the iron core formed when multiple collisions during Earth’s early history resulted in enough heat to melt metals. In the molten state, the densest materials, including iron and nickel, settled to the center and became Earth’s core. The less-dense materials remained at the surface. As Earth cooled, the outer layers solidified, creating Earth’s mantle and crust. Earth’s crust and mantle insulate the hot iron core.

Copper Copper Microchips 29 For many years, aluminum was used to make computer Cu microchips. Although copper is a better electrical conductor [Ar]3d104s1 than aluminum, it was not until the late 1990s that the tech- nology existed to use copper in microchips. Combined with the extremely small size of copper wires, this allows copper microchips to be smaller and to operate 25 to 30 times faster than other kinds of microchips. To make wires this small, the copper must be between 99.999 and 99.9999% pure.

To create a copper microchip, first a layer of tantalum coats a silicon substrate. Then, copper is deposited using a vacuum process. Copper chips like this one are used in handheld games, computers, and other electronic devices.

Titanium Chromium Iron Cobalt Copper 22 24 26 27 29 Cr Fe Co Cu [Ar]3d24s2 [Ar]3d54s1 [Ar]3d64s2 [Ar]3d74s2 [Ar]3d104s1

Paint Pigments Paints are a mixture of particles of pigment in a liquid base. Once the liquid evaporates, the pigment particles coat a painted surface. Transition elements and their compounds are often used as paint pigments. Iron oxides are used as red, yellow, and brown pigments. Chromium, copper, and cobalt compounds produce green and blue Artists can create their own paints by mixing dry pigments pigments. Titanium dioxide is often used for white paint. in a liquid base such as oil, latex, or even egg yolk.

Elements Handbook 919 (t)©Roger Harris/Photo Researchers, Inc., (c)©Tom Pantages, (b)©Kalicoba/Alamy Groups 3–12: Transition Elements

Gold Gilding 79 Covering an ordinary object with gold foil or gold leaf can Au make the object look like it is made of solid gold. The process, [Xe]4f145d106s1 which is called gilding, has been used for more than 5000 years. To create gold foil, gold is hammered until it is very thin. The thinnest sheets are called gold leaf. They can be as thin as 0.1 mm thick. It takes skill and a special gilder’s brush to handle sheets this thin, but the results can be spectacular.

Egyptian King Tutankhamun’s coffin was made of wood covered with gold foil. It has lasted more than 3000 years.

Cadmium Gold 48 79 Plastic sheet Cd Au [Kr]4d105s2 [Xe]4f145d106s1 Au Au (10 nm) Touch Sensors for Robot Fingers Imagine a surgeon using a robot for microsurgery. In the CdS future, it might be possible for the surgeon to feel what is (3 nm) happening as the robot makes a microsuture. Future robots might use thin, film sensors to mimic the human sense of Glass touch. These sensors are built on a glass base from alternating layers of nanoparticles of gold and cadmium sulfide separated by layers of plastic. The entire sensor is only 100 nm thick and This touch sensor is made from nanoparticles works by transmitting an electro-luminescent signal and of gold and cadmium sulfide. electric current when regions of the sensor are touched.

Manganese Iron Copper Zinc Silver Cadmium 25 26 29 30 47 48 Mn Fe Cu Zn Ag Cd [Ar]3d54s2 [Ar]3d64s2 [Ar]3d104s1 [Ar]3d104s2 [Kr]4d105s1 [Kr]4d105s2

Biotreatment of Acid Mine Wastes Mining operations can generate acidic wastewater that contain harmful levels of dissolved transition metals, including manganese, iron, copper, zinc, silver, and cadmium. One treatment method uses naturally occurring anaerobic bacteria to remove all of the oxygen. Then sulfate-reducing bacteria convert in the mine waste to sulfide. Sulfide reacts with metals in the wastewater to Untreated acid mine drainage can contaminate streams with form metal sulfide precipitates, which can be harmful concentrations of transition metals. The red-orange recovered and processed for commercial use. color of the water comes from iron compounds.

920 Elements Handbook (t)©The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)©Theodore Clutter/Photo Researchers, Inc. Real-World Applications

Gadolinium 64 Gd [Xe]4f75d16s2

Magnetic Resonance Imaging Gadolinium contrast agents are compounds that enhance differences between normal tissue and abnormal tissue, such as tumors, in magnetic resonance imaging (MRI) scans. The gadolinium compounds are injected directly into the blood- stream prior to an MRI scan. Tumors accumulate more of the gadolinium compounds than normal tissue. Gadolinium enhances MRI images because it is paramagnetic. Magnetic resonance imaging uses a strong magnetic field and radio waves to stimulate water molecules to an excited state. The MRI image is formed as water molecules relax back to their This gadolinium-enhanced MRI scan from normal state. Gadolinium speeds up the relaxation rate, which a patient with multiple sclerosis shows improves the contrast between normal and abnormal tissue. several areas of scar tissue (white patches).

Thorium Lawrencium Reorganizing the Periodic Table 90 103 The actinides are a row of radioactive elements from thorium to Th Lr lawrencium. They were not always separated into their own row in [Rn]6d27s2 [Rn]5f146d17s2 the periodic table. Originally, the actinides were located within the d-block following actinium. In 1944, Glenn Seaborg proposed a reorganization of the periodic chart to reflect what he knew about the chemistry of the actinide elements. He placed the actinide series elements in their own row directly below the lanthanide series. Seaborg had played a major role in the discovery of plutonium in 1941. His reorganization of the periodic table made it possible for him and his coworkers to predict the properties of possible new elements and facilitated the synthesis of nine addi- tional transuranium elements.

Seaborg won the Nobel Prize in Chemistry in 1951 for his work. Element 106, seaborgium, was named in his honor. Assessment

21. Compare the electron configurations of the main 25. Calculate A particular copper-chip manufacturing transition elements and the inner transition elements. process specifies that the copper must be 99.999 to 22. Explain how some transition metals can form ions 99.9999% pure. Calculate the maximum limit for with more than one charge. impurities in the copper in parts per million (ppm). 23. Identify countries that export only one “strategic and 26. Hypothesize Silver is the best conductor of critical” transition metal to the United States. electricity. Hypothesize why silver is not used for electric wires if it is such a good conductor of 24. Predict Which elements would you expect to have electricity. properties most closely related to gold?

Elements Handbook 921 (t)©ISM/Phototake, (b)©Fritz Goro/Time & Life Pictures/Getty Images Group 13: Boron Group

Boron Physical Properties 5 • Most of the elements in group 13 are metals that have a silvery-white B appearance. The exception is boron, which is pure black. Thallium is [He]2s22p1 initially silvery, but oxidizes quickly. Aluminum • Boron is a metalloid. The remaining group 13 elements are metals. 13 • Elements in this group are relatively lightweight and soft, except for Al boron. Boron is extremely hard—almost as hard as diamond. [Ne]3s23p1 • The group 13 elements are solids at room temperature. Gallium melts Gallium slightly above room temperature. 31 • They have higher boiling points than the alkaline earth metals and Ga [Ar]4s23d104p1 lower boiling and melting points than the carbon group elements.

Melting Points and Boiling Points Densities Indium 2076 49 B B 3927 2.460 In 660 [Kr]5s24d105p1 Al Al 2.700 2519 MP 30 BP Thallium Ga Ga 5.904 2204 81 157 Tl In In 7.310 2072 [Xe]6s24f145d106p1 304 Tl Tl 11.850 1473

0 1000 2000 3000 4000 0 3 6 9 12 Temperature (°C) g/mL

Common Reactions • B, Al, Ga, In, and Tl react with oxygen to form metal(III) oxides, such as aluminum(III) oxide.

Example: 4Al(s) + 3 O 2 ( g ) → 2 A l 2 O 3 ( s ) • B and Al react with nitrogen to form nitrides, such as boron nitride.

Example: 2B(s) + N 2 ( g ) → 2BN(s) • Al, Ga, In, and Tl react with halogens to form metal(III) halides, such as gallium(III) fluoride.

Example: 2Ga(s) + 3 F 2 ( g ) → 2Ga F 3 ( g ) • Tl reacts with halogens to form metal(I) halides, such as thallium(I) fluoride.

Example: 2Tl(s) + F 2 ( g ) → 2TlF(s) • B reacts with halogens to form covalent compounds, such as boron trichloride.

Example: 2B(s) + 3 C l 2 ( g ) → 2BC l 3 ( g ) • Tl reacts with water to form thallium hydroxide and hydrogen gas.

Example: 2Tl(s) + 2 H 2 O ( l ) → 2TlOH(aq) + H 2 ( g )

922 Elements Handbook Element Facts

Atomic Properties Atomic Ionic • Each element in group 13 has three valence electrons and an electron radius radius configuration ending with n s 2 n p 1 . (pm) (pm) + • Except for boron, the group 13 elements lose their three valence electrons B B3 85 20 to form ions with a 3+ charge. Some of the elements (Ga, In, and Tl) also have the ability to lose just one of their valence electrons to form ions with Al Al3+ a 1+ charge. 143 50

• Boron participates only in covalent bonding. Ga Ga3+ • Atomic radii and ionic radii generally increase going down the group and 135 62 are similar in size to the group 14 elements. In In3+ • First ionization energies for the group 13 elements generally decrease 167 81 going down the group. 3+ First Ionization Energies Electronegativities Tl Tl 170 95 B 801 B 2.04

Al 578 Al 1.61

Ga 579 Ga 1.81

In 558 In 1.78

Tl 589 Tl 1.62

0 200 400 600 800 0 0.5 1.0 1.5 2.0 kJ/mol Pauling units

Analytical Tests Flame Test Results With the exception of aluminum, which is one of the most abundant elements in Earth’s crust, most Element Color of Flame of the boron group elements are rare. None of the Boron initial bright green flash elements are found free in nature. Three can be Indium indigo blue identified by flame tests, as shown in the table. Boron produces a bright green color, while indium Thallium green produces an indigo blue color. Thallium produces a green color. More precise identification methods involve advanced spectral and imaging techniques.

indium Indium was named after its distinct indigo blue spectral line.

Elements Handbook 923 Group 13: Boron Group

Boron Detergent 5 Sodium perborate (NaB O3 · H2 O o r N a B O 3 ·4 H2 O ) i s o n e o f t h e B key ingredients in powdered laundry detergent. The hydrate, [He]2s22p1 formed by combining borax pentahydrate (Na 2 B 4 O 7 ·5 H2 O ) with hydrogen peroxide and sodium hydroxide, releases oxygen during the laundering process to help make clothes whiter and brighter. Sodium perborate is the chemical of choice because it remains stable over long periods of time, helps maintain wash water pH, and increases the solubility of detergent ingredients.

Many powder laundry detergents contain boron compounds that help make clothes cleaner.

Aluminum A thin aluminum film coats the depressions embed- 13 ding information in a compact disc and makes the Al surface of a CD shiny. [Ne]3s23p1

CDs and DVDs Have you ever wondered what your CDs and DVDs are made of? The inside is made of plastic, about 1 mm thick. A machine embeds digital information, such as sound record- ings, into the plastic as a series of bumps and then coats the plastic with aluminum. That is what makes CDs and DVDs so shiny. A thin layer of acrylic protects the aluminum. The shiny surface allows the laser from the CD or DVD player to read the information reflected off the disc’s surface.

Gallium HD DVDs 31 Videos in high-definition (HD) have higher quality sound Ga and pictures than regular DVDs. However, HD technology [Ar]4s23d104p1 requires more information than can be stored on regular DVDs. A red laser is used to read and write data on a regular DVD. Blue lasers made from gallium nitride (GaN) are used to read and write data on HD DVDs. Blue light has a shorter wavelength than red light, so a blue laser can read more densely packed information, allowing more information to be stored in the same amount of space.

HD DVDs store up to 50 gigabytes (GB) of information, com- pared to 4.7 GB on a regular DVD.

924 Elements Handbook (t)©Tom Pantages, (tc)©Greg Stott/Masterfile, (b)©Toshiba Corporation images, (bc)©Eye of Science/Photo Researchers, Inc. Real-World Applications

Indium Flat-Screen Televisions 49 Known as ITO in the electronics industry, In indium-tin oxide has proven to be the cornerstone [Kr]5s24d105p1 of liquid crystal display (LCD) technology. During production, a thin layer of indium-tin oxide (a mixture of I n2 O 3 a n d S n O 2 ) is used to coat the glass contained within an LCD flat-screen panel. This allows the glass to be both conductive and transparent. About half of the world’s indium is used to make LCDs.

Indium-tin oxide is one of the main components in LCD flat-panel televisions.

Thallium 81 Tl [Xe]6s24f145d106p1

Cardiac Scans Thallium-201 is a radioisotope used by medical pro- fessionals to determine the health of a person’s heart. During a thallium-201 scan, also called a heart stress test, a patient performs physical activity and is injected with thallium-201 one to two minutes before stopping the activity. The isotope emits gamma rays that are recorded by a detector to display a two-dimensional image of the heart and its blood supply. If gamma rays The dark blue areas in this thallium-201 scan are areas with low blood supply. are not detected in certain areas in and around the heart, the areas are considered “cold.” This means that the blood supply has been impeded or blocked, a con- dition that often leads to heart attack or stroke.

Assessment

27. Describe how the properties of boron are different 30. Explain why HD DVDs can store more information from the other group 13 elements. than regular DVDs. 28. Identify what an unknown element would be if it 31. Summarize how “cold” areas in thallium-201 scans produced a green flash of color at the beginning of could correspond to artery blockages. a flame test. 32. Calculate It is estimated that 123,000 aluminum 29. Describe any trends in the first ionization energies of cans are recycled each minute. Assume that each can the group 13 elements. has a mass of 14 g. Determine how much aluminum (kg) is recycled during the month of September.

Elements Handbook 925 (t)©Judith Collins/Alamy, (b)©Collection CNRI/Phototake Group 14: Carbon Group

Carbon Physical Properties 6 • Elements in the carbon group increase in metallic character going C down the group. Carbon is a nonmetal. Silicon and germanium are [He]2s22p2 metalloids. Tin and lead are metals. Silicon • Carbon can be a black powder; a soft, slippery gray solid; a hard, 14 transparent solid; or an orange-red solid. Si • Silicon can be a brown powder or a shiny-gray solid. [Ne]3s23p2 • Germanium is a shiny, gray-white solid that breaks easily. Germanium • Tin also occurs in two forms. One form is a silvery-white solid, while 32 the other is a shiny-gray solid. Both forms are ductile and malleable. Ge [Ar]4s23d104p2 • Lead is a shiny-gray solid. It is soft, malleable, and ductile. • Moving down the group, melting and boiling points decrease and Tin densities increase. 50 Sn Melting Points and Boiling Points Densities [Kr]5s24d105p2 C 3527 C 4027 2.267 Lead 1414 82 Si Si 2.330 2900 MP Pb 938 BP [Xe]6s24f145d106p2 Ge Ge 5.323 2820 232 Sn Sn 7.310 2602 327 Pb Pb 11.340 1749

0 1000 2000 3000 4000 0 36912 Temperature (°C) g/mL

Common Reactions At room temperature, carbon group ele- ments are generally unreactive. Reactions do occur under elevated temperature conditions. • C, Si, Ge, and Sn react with oxygen to form oxides, such as carbon dioxide.

Example: C(s) + O 2 ( g ) → C O 2 ( g ) • C, Si, Ge, and Sn react with halogens to form halides, such as silicon chloride.

Example: Si(s) + 2 C l 2 ( l ) → S i C l 4 ( g ) • Sn and Pb react with bases to form hydroxo ions and hydrogen gas.

Example: Silicon chloride (SiCl4) reacts with Sn(s) + KOH(aq) + 2 H 2 O(l) → water to form silicon dioxide and K+ (aq) + Sn(OH ) - (aq) + H (g) hydrochloric acid, which turns lit- 3 2 mus paper pink.

926 Elements Handbook ©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/PHOTO RESEARCHERS INC. Element Facts

Atomic Properties Atomic Ionic • Each element in group 14 has four valence electrons and an electron radius radius configuration ending with n s 2 n p 2 . (pm) (pm) C C4+ • Carbon group elements participate in covalent bonding with an oxidation 77 15 number of 4+. Tin and lead can also have an oxidation number of 2+. Carbon and silicon have an oxidation number of 4- in some compounds. Si Si4+ 118 41 • Carbon, silicon, and tin occur as allotropes. • Atomic and ionic radii increase moving down the group and are similar to Ge Ge4+ 122 53 their corresponding group 13 elements.

• Except for carbon, the group 14 elements have similar ionization energies Sn Sn4+ and no distinct pattern of electronegativities. 140 71

Pb Pb4+ 146 84

First Ionization Energies Electronegativities

C 1087 C 2.55

Si 787 Si 1.90

Ge 762 Ge 2.01

Sn 709 Sn 1.96

Pb 716 Pb 2.33

0 200 400 600 800 1000 0 0.5 1.0 1.5 2.0 2.5 kJ/mol Pauling units

• C reacts with water to form carbon Analytical Tests monoxide and hydrogen gas. Because the group 14 ele- Example: C(s) + H 2 O ( g ) → ments bond covalently, they CO(g) + H 2 (g) do not lend themselves to • Si reacts with water to form silicon identification through flame dioxide and hydrogen gas. tests. The exception is lead, which produces a light-blue Example: Si(s) + 2 H 2 O ( l ) → color. The carbon group Si O2 (s) + 2 H 2 (g) elements can be identified • Sn and Pb react with acids to form through analysis of their hydrogen gas. physical properties (melting Example: point, boiling point, densi- Pb(s) + 2HBr(aq) → ty), emission spectra, or P b B r 2 (aq) + H2 (g) reactions with other chemi- • C reacts with hydrogen to form cals. For example, tin and hydrocarbons, such as propane. lead form precipitates when added to specific solutions. If lead is added to Example: 3C(s) + 4 H 2 ( g ) → C 3 H 8 ( g ) potassium , a yellow precipitate of lead iodide forms.

Elements Handbook 927 ©David Taylor/Photo Researchers, Inc. Group 14: Carbon Group

Carbon 6 C [He]2s22p2

Graphite Golf Shafts Some golf shafts are created by fusing sheets of graphite together with a binding material. The use of graphite instead of traditional steel allows greater versatility in club design and construction. Graphite sheets can be layered to vary the weight and stiffness of the club, which for many golfers translates into greater shot dis- tance and overall performance. Graphite also offers greater durability than steel for golfers with powerful swings.

Graphite can be easily formed into sheets due to its atomic structure.

Diamond Cutting The way a diamond is cut is one of the “4 Cs” that gemologists use to determine a diamond’s value. If diamond is the hardest mineral on Earth, then how is it possible to cut a diamond? Diamond cutters use other diamonds and lasers to create facets that reflect Too deepIdeal Too shallow and refract light. The more precisely the cuts are made, the greater the gem’s brilliance. If a diamond The way a diamond is cut determines how well light is cut is too shallow or too deep, light escapes from the reflected and refracted within the gemstone. diamond without traveling back to the eye, resulting in a lackluster appearance.

Nanotubes Fullernes form a group of carbon allotropes. There are spherical fullerenes nicknamed buckyballs and cylindrical fullerenes known as buckytubes or nanotubes. Fullerenes have yet to display all of their capabilities to scientists. One of the most promising areas of fullerene research involves the creation of nanotubes. Nanotubes are sheets of carbon that are rolled up into cylinders. These cylinders are strong—due to the hexagonal structure of the carbon atoms—and have unique conducting properties. Fullerene nano-technology on the horizon includes the development of faster computer chips, smaller electronic components, and more advanced space-exploration vehicles. The hexagonal structure of carbon atoms gives extraordinary strength to carbon nanotubes.

928 Elements Handbook (tr)©CHEMICAL DESIGN/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (tr)©Johner Images/Getty Images, (b)©DR TIM EVANS/SCIENCE PHOTO LIBRARY/Photo Researchers Inc. Real-World Applications

Step 1 Thin wafers Silicon are cut from a bar 14 of silicon. Si [Ne]3s23p2

Computer Chips Computer chips are everywhere. From pet-identification Step 2 A layer of silicon dioxide is systems to laptop computers—any device that can be added to each programmed contains a computer chip. Silicon’s abundance wafer. and ability as a semiconductor make it an ideal material for the production of computer chips. The first step in making a computer chip involves cutting pure silicon into wafer-like pieces. Silicon dioxide (Si O ) is then cultivated on each wafer. More than 250 steps are needed to create 2 one computer chip. Layers upon layers of silicon dioxide and other chemicals are used to create chips for specific functions. Glass Almost 40% of the sand produced in the United States is used for glass production. Glass is creat- ed by first melting silicon dioxide (Si O 2 ) obtained from sand with sodium carbonate and then supercooling the mixture. This results in a solid whose structure resembles a liquid and whose physical properties make it ideal for glassmaking. For manufacturing purposes, sand that yields at least 95% Si O2 with no impurities is required for making glass products, such as exterior panels on buildings, automotive windshields, and commercial beverage containers. Manufacturers of high precision optical instruments, such as telescopes and microscopes, require sand that con- tains more than 99.5% SiO 2 .

Sand dunes in Michigan provide millions of metric Sand Production in Michigan tons of sand each year.

2,500,000

2,000,000

1,500,000

1,000,000

Sand produced (metric tons) Sand produced 500,000

0 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 Year

Elements Handbook 929 ©Phil Schermeister/CORBIS Group 14: Carbon Group

Germanium 32 Ge [Ar]4s23d104p2

Night Vision Lenses that contain germanium are found in an array of night vision equipment including goggles, binoculars, and cameras. Unlike ordi- nary glass lenses, germanium-containing lenses are transparent to infrared radiation. Infrared radiation is emitted by objects that radiate heat. Infrared radiation is part of the electromagnetic spectrum, a region distinct from the visible spectrum, so special equipment is needed to detect it. Night vision is used for military and security appli- cations, to monitor wildlife, to navigate roads, and to locate objects The germanium lens in night vision that have been hidden by criminals. goggles focuses infrared radiation emit- ted from living things. Fiber Optic Cables Fiber optic cables are responsible for the transmission of information both across the street and across the globe. These cables are made of extremely pure glass that allows light signals to travel the span of the cable without losing a significant amount of energy. Each fiber optic cable consists of three main parts: a core, cladding, and a buffer coating. The core is made by exposing gaseous germanium tetra- chloride (GeCl 4) to oxygen, resulting in germanium dioxide (Ge O2 ). The germanium dioxide helps the light signal move effectively along the cable.

Germanium is added to the core of a fiber optic cable to improve the efficiency of the light signal.

Tin 50 Sn [Kr]5s24d105p2

Food Packaging A quick trip to the grocery store reveals that many dif- ferent foods are stored in cans. Soft drinks, fruits, veg- etables, and even meats can be stored in cans. Cans are made from sheets of steel that are coated on both sides with pure tin. Known as tinplate, the metal is both durable and resistant to rusting and corrosion. These properties allow foods to stay fresh on the shelf for long periods of time, and to be transported long dis- tances. More than 200 million cans are used per day in the United States alone. More than 2500 different products are packaged in cans.

930 Elements Handbook (t)©Martin Dohrn/naturepl.com, (c)©GOODSHOOT - JUPITERIMAGES FRANCE/Alamy, (b)©Allan H Shoemake/Taxi/Getty Images Real-World Applications

Lead 82 Pb [Xe]6s24f145d106p2

Leaded or Unleaded? In the early 1900s, the automotive industry needed to solve a problem that people complained about when they drove their cars—knocking in the engine. At the time, little was known about the chemistry of fuels and fuel additives. Researchers spent seven years searching for a gasoline additive that effectively reduced knocking before discovering tetraethyl lead (Pb(C 2 H 5 ) 4 ). Further research revealed the health and environmental risks posed by lead, leading to the development of unleaded fuels that reduce knocking.

Unleaded fuels reduce knocking in car engines and do not have the health and envi- ronmental concerns posed by leaded fuels.

Batteries Anode (+) A car battery is composed of three main parts: one elec- Cathode (-) trode made of lead, one electrode made of lead dioxide (Pb O2 ), and an electrolytic solution made with sulfuric acid ( H2 S O 4 ). That is why car batteries are also called lead-acid Lead batteries. The battery’s energy comes from the chemical Lead dioxide reactions occurring between the electrodes and the electrolyte. During the chemical reaction, electrons are pro- duced that accumulate on the lead electrode. When a wire connects the electrodes, electrons flow freely from the lead Electrolytic electrode to the lead-dioxide electrode, and the battery solution discharges. Applying a current reverses the reaction, Eighty-five percent of the lead used in the United recharging the battery. States goes into making lead-acid batteries.

Assessment

33. Write the electron configuration of tin. 37. Consider why graphite is the most suitable carbon 34. Summarize the physical properties of the elements in allotrope for golf clubs. group 14. 38. Calculate Pure diamond has a density of 3.52 g/c m 3 , 3 35. Compare and contrast the atomic properties of the while graphite has a density of 2.20 g/c m . Recall that group 13 and group 14 elements. density = mass/volume. Samples of diamond and graphite each displace 4.60 mL of water. What is the 36. Predict what product or products will be formed if mass of each sample? bromine gas reacts with solid carbon under elevated temperature conditions.

Elements Handbook 931 ©Chinch Gryniewicz; Ecoscene/CORBIS Group 15: Nitrogen Group

Nitrogen Physical Properties 7 • Like the elements in group 14, the group 15 elements increase in N metallic character going down the group. Nitrogen and phosphorus are [He]2s22p3 nonmetals. Arsenic and antimony are metalloids. Bismuth is a metal. Phosphorus • Also like group 14, the nitrogen group elements vary in appearance. 15 P • Nitrogen is a colorless, odorless gas ( N 2 ). [Ne]3s23p3 • Phosphorus exists in three allotropic forms, which are all solids. The forms are white, red, and black in color. Arsenic • Arsenic is a shiny, gray solid that is brittle. Under certain conditions, it 33 As can become a dull, yellow solid. Arsenic sublimates when heated. [Ar]4s23d104p3 • Antimony is a shiny, silver-gray solid that is very brittle. • Bismuth is a shiny, gray solid that has a pink cast to it. It is one of the Antimony 51 least conductive metals on the periodic table and is also brittle. Sb • Boiling points and densities of the group 15 elements generally [Kr]5s24d105p3 increase going down the group.

Bismuth Melting Points and Boiling Points Densities 83 -210 N Bi -196 2 14 10 3 [Xe]6s 4f 5d 6p 44 P P 1.823 277 MP 817 BP As As 5.727 614 631 Sb Sb 6.697 1587 271 Bi Bi 9.780 1564

-500 0 500 1000 1500 0 2 4 6 8 10 Temperature (°C) g/mL

Common Reactions • At high temperatures are increased, nitrogen reacts with oxygen to form nitric oxide.

Example: N 2 ( g ) + O 2 ( g ) → 2NO(g) • At high temperature and pressure, nitrogen reacts with hydrogen to form ammonia.

Example: N 2 ( g ) + 3 H 2 ( g ) → 2N H 3 ( g ) • P reacts with an excess of oxygen to form phosphorus(V) oxide.

Example: P 4 (s) + 5 O 2 ( g ) → P 4 O 10 ( s ) • P, As, Sb, and Bi react with oxygen to form element(III) oxides.

Example: P 4 (s) + 3 O 2 ( g ) → P 4 O 6 ( s ) • P, As, Sb, and Bi react with halogens to form trihalides.

Example: 2Sb(s) + 3 C l 2 ( g ) → 2SbC l 3 ( s )

932 Elements Handbook Element Facts

Atomic Properties Atomic Ionic • Each element in group 15 has five valence electrons and an electron radius radius configuration ending with n s 2 p 3 . (pm) (pm) - • Nitrogen is diamagnetic, meaning it is repelled by magnetic fields. This N N3 indicates that all of nitrogen’s electrons are paired. 75 146 - • Nitrogen can have oxidation numbers ranging from −3 to +5. P P3 110 212 • Phosphorus, arsenic, and antimony can have oxidation numbers of −3, - +3, and +5. As As3 120 222 • Bismuth can have oxidation numbers of +3 and +5. + • Going down the group, first ionization energies and electronegativities Sb Sb5 decrease and atomic radii increase. 140 62

First Ionization Energies Electronegativities + Bi Bi5 N 1402 N 3.04 150 74

P 1012 P 2.19

As 947 As 2.18

Sb 834 Sb 2.05

Bi 703 Bi 2.02

0 500 1000 1500 0 1.0 2.0 3.0 kJ/mol Pauling units

Analytical Tests Because group 15 elements bond covalently and most are nonmetallic in nature, they do not lend themselves to identification through flame tests. The exceptions are antimony and bismuth. Antimony produces a faint green or blue color when placed in a flame, while bismuth produces a light purple-blue color. The nitrogen group elements can be identified through analysis of their physical properties (melting point, boiling point, density), emission spectra, or reactions with other chemicals. For example, bismuth ions precipitate when added to tin(II) hydroxide and sodium hydroxide. Another example is the test for compounds. These compounds, which contain nitrogen, can be identified by their distinct smell when added to sodium hydroxide and by the color change observed when red litmus paper is placed at the opening of the test tube. The ammonia vapor produced by mixing + ammonium compounds (N H4 ) with sodium hydroxide changes red litmus paper to blue.

Elements Handbook 933 ©Tom Pantages Group 15: Nitrogen Group

Nitrogen 7 N [He]2s22p3

Nitrogen-Fixing Bacteria Although nitrogen makes up about 78% of Earth’s atmosphere, it occurs in a form that plants cannot use. Some bacteria in the soil convert nitrogen gas ( N 2) from the air into a usable form by breaking the molecule’s triple bond. This creates a form of nitrogen that plants uptake into their root systems. Plants need nitrogen to build cellular components, to participate in photo- synthesis, and to transfer energy effectively. Commercial fertilizers mimic the action of nitrogen-fixing bacteria by providing nitrogen and other nutrients in forms that are easily Nitrogen-fixing bacteria are found in incorporated into the plant system. protective nodules along plant roots.

Liquid Nitrogen Cryotherapy Cryotherapy, also called cryosurgery, is a medical procedure used to remove a variety of skin lesions, including carcinomas, warts, and other tissue abnormalities. The pro- cedure involves dabbing liquid nitrogen onto the affected area to freeze and kill the cells. This is then repeated over time until all of the affected tissue is gone. Research has shown that patients who undergo cryotherapy treatment for certain types of lesions experience a lower recurrence rate than patients who receive radiation or surgical removal.

Doctors use liquid nitrogen as one of the treatment options to remove certain types of skin cancer. More than 1.3 million new cases of skin cancer are recorded each year in the United States.

Phosphorus 15 P [Ne]3s23p3

Safety Matches Safety matches consist of two main parts: the tip and the textured strip on the side of the box. The tip contains potassium , and the textured strip contains red phosphorus. When these two chemicals come in contact, a chemical reaction occurs, and fire is produced. In safety matches, the chemicals needed for reaction are separate from each other. In strike-anywhere matches, both chemicals are contained in the The strike of a match initiates a chemical matchstick so that ignition can occur using almost any surface. reaction that produces a flame.

934 Elements Handbook (t)©Wally Eberhart/Visuals Unlimited, (c)©Dr P. Marazzi/Photo Researchers, Inc., (b)©Al Francekevich/CORBIS Real-World Applications

Antimony Flame Retardants 51 Antimony trioxide (S b2 O 3 ) is used along with Sb brominated or chlorinated compounds in the making 2 10 3 [Kr]5s 4d 5p of flame retardants that protect plastics, paints, and some textile products. Antimony trioxide increases the effectiveness of the halogen compounds in preventing the spread of a fire. Research shows that approximately 5000 deaths in the United States are caused by fire each year. The use of flame retardants improves escape time, releases less toxic gases and heat, and decreases fire damage.

Antimony trioxide fire retardants coat electrical wires and components found in a variety of everyday appliances.

Bismuth 83 Bi [Xe]6s24f145d106p3

Soothing Upset Stomachs Originally named Mixture Cholera Infantum, the popular pink medicine now used for upset stomachs was created to combat cholera. This mixture, whose active ingredient was bismuth subsalicylate ( C7 H 5 B i O 4 ), proved effective in treating the nausea and vomiting associated with infant cholera. However, it could not cure the disease itself. Nonetheless, the product became a wide success. As science advanced and doc- tors realized that cholera was contracted from bacteria (which Bismuth subsalicylate could be treated with antibiotics), bismuth subsalicylate found ( C7 H 5 B i O 4 ) is the active ingre- its way into medical treatments for a variety of other stomach dient in some medicines used problems, including heartburn, indigestion, and ulcers. to treat stomach problems.

Assessment

39. Identify which elements in the nitrogen group are 43. Write a balanced chemical equation for the reaction metals, nonmetals, or metalloids. between potassium chlorate (KCl O 3 ) and red phospho- 40. Explain why nitrogen does not react with other rus ( P 4 ). The reaction produces potassium chloride elements under normal temperature conditions. (KCl) and phosphorus pentoxide ( P 4 O 10 ) . 41. Explain why a compound of antimony is used in 44. Predict what product will be formed when bismuth is flame retardants that protect plastic products. combined with chlorine. 42. Describe how fertilizers mimic the action of nitrogen- 45. Calculate A 35-kg bag of fertilizer contains 5.25 kg of fixing bacteria. nitrogen. What percentage of the fertilizer is nitrogen?

Elements Handbook 935 (t)©Michael Newman/Photo Edit, (bl)©Michael Newman/photoedit, (br)©Janet Horton Group 16: Oxygen Group

Oxygen Physical Properties 8 • At room temperature, oxygen is a clear, odorless gas, while the other O group 16 elements are solids. [He]2s22p4 • Some of the group 16 elements have several common allotropic Sulfur forms. Oxygen can exist as either O2 o r O 3 (ozone). Sulfur has many 16 allotropes. Selenium has three common allotropes: amorphous gray, S red crystalline, and red/black powder. [Ne]3s23p4 • Oxygen, sulfur, and selenium are nonmetals. Tellurium and pollonium Selenium are metalloids. 34 • O 2 is paramagnetic, which means that a strong magnet will attract Se oxygen molecules. [Ar]4s23d104p4 • Except for polonium, boiling points and melting points of the group 16 Tellurium elements increase with increasing atomic number. Density increases 52 with increasing atomic number for all group 16 elements. Te Densities [Kr]5s24d105p4 Melting Points and Boiling Points

O -218 Polonium -183 84 S 115 MP S 1.960 Po 445 BP 2 14 10 4 [Xe]6s 4f 5d 6p Se 221 Se 4.819 685

Te 450 Te 6.240 988

Po 254 Po 9.196 962

-400-200 0 200 400 600 800 1000 0 2 4 6 8 10 g/mL Temperature (°C)

Common Reactions • S, Se, Te, and Po react with oxygen Oxides of Main Group Elements

to form oxides, such as selenium H H 2 O, H 2 O 2 oxide. L i2 O, N a 2 O, K 2 O, R b 2 O, 1 Example: Se(s) + O 2 ( g ) → S e O 2 ( s ) C s2 O, F r 2 O • Oxygen also reacts with hydrogen 2 BeO, MgO, CaO, SrO, BaO, RaO and most of the elements in B O , A l O , G a O , I n O , groups 1, 2, 13, 14, 15, and 17 to 13 2 3 2 3 2 3 2 3

form oxides, such as silicon oxide I n 2O, Ti 2 O and magnesium oxide. C O , Si O , Ge O , Sn O , SnO, 14 2 2 2 2 Pb O , PbO Examples: Si + O 2 → S i O 2 2 2Mg + O 2 → 2MgO N 2 O 5 , N 2 O 3 , N 2 O, NO, N O 2 , • O, S, Se, Te, and Po react with 15 P 4 O 10 , P 4 O 6 , A s 2 O 5 , A s 4 O 6 , halogens to form halides, such S b2 O 5 , S b 4 O 6 , B i 2 O 3

as sulfur(VI) fluoride. 17 C l2 O 7 , C l 2 O, B r 2 O, I 2 O 5 Example: S(s) + 3 F 2 ( g ) → S F 6 ( l )

936 Elements Handbook Element Facts

Atomic Properties Atomic Ionic • Each element in group 16 has six valence electrons and an electron radius radius (pm) (pm) configuration ending with n s 2 n p 4 . O O2- • Group 16 elements can have many different oxidation numbers. 73 140 For example, oxygen can have oxidation numbers of 2- and 1-, and sulfur can have oxidation numbers of 6+, 4+, and 2-. S S2- 103 184 • Going down the elements in group 16, the atomic radii and ionic radii increase. Se Se2- 119 198 • Electronegativity and first ionization energy decrease going down the elements in group 16. Te Te2- • Polonium has 27 known isotopes. All are radioactive. 142 221

Po 168

First Ionization Energies Electronegativities

O 1314 O 3.44

S 1000 S 2.58

Se 941 Se 2.55

Te 869 Te 2.10

Po 812 Po 2.00

0 500 1000 1500 0 1.0 2.0 3.0 4.0 kJ/mol Pauling units

• Group 16 elements are involved Analytical Tests in many important industrial reactions, such as the formation Oxygen can be measured in many different ways and in many of sulfuric acid. different environments. For example, dissolved-oxygen meters measure oxygen in water samples. Dissolved-oxygen meters Example: Sulfuric-acid production use an electrochemical reaction that reduces oxygen mole- is a three-step process. cules to hydroxide ions. The meter measures the electric current produced during this reaction. The higher the oxygen 1) S(s) + O 2 (g) → S O 2 (g) concentration, the larger the current. 2) 2S O 2 (g) + O 2 (g) → 2 S O 3 (g)

3) S O 3 (g) + H 2 O(l) → H 2 S O 4 ( l )

Dissolved-oxygen tests are part of routine water quality monitoring.

Elements Handbook 937 ©Chuck Place Photography Group 16: Oxygen Group

Oxygen 8 O [He]2s22p4

Photosynthesis Produces O 2 from H 2 O Earth’s atmosphere is 21% oxygen by volume. Most of the oxygen in the atmosphere comes from photosynthesis. Photosynthetic organisms, including plants and cyanobacteria, use energy from sunlight to oxi- + dize water. The result is hydrogen ions (H ) and oxygen ( O 2 ). The reactions involved in this part of photosynthesis are called light reactions because they depend on light energy to proceed. During the dark reactions of photosynthesis, the hydrogen ions derived during the light reactions are combined with carbon dioxide (CO 2 ) t o f o r m Photosynthesis captures energy from glucose ( C 6 H 12 O 6 ). The overall reaction for photosynthesis follows: sunlight and provides hydrogen ions to synthesize glucose from carbon dioxide. 6 H 2 O + 6 C O 2 → C 6 H 12 O 6 + 6 O 2

Air Quality Index for Ozone The Dual Nature of Ozone Levels of Ozone (O 3 ), an allotrope of oxygen, has three Index Health Cautionary Statements oxygen atoms per molecule instead of two. Like Values Concern diatomic oxygen (O 2 ), ozone is a gas at room temperature. However, unlike O , ozone gas has 0–50 good none 2 a slight blue color and a distinctive odor that 51–100 moderate Unusually sensitive people should can be detected during a thunderstorm or near consider reducing prolonged or a high-voltage electric motor. Ozone is also heavy exertion outdoors. more reactive than diatomic oxygen. At ground 101–150 unhealthy Active children and adults, and level, ozone can be a serious potential health for sensitive people with lung disease, such as hazard, irritating eyes and lungs. High ground- groups asthma, should reduce prolonged level ozone concentrations are a particular or heavy exertion outdoors. threat on hot sunny days. The table illustrates how ozone affects air quality and health. On the 151–200 unhealthy Active children and adults, and other hand, stratospheric ozone protects Earth people with lung disease should from harmful UV radiation by absorbing UV avoid prolonged or heavy rays from sunlight. exertion outdoors. Everyone else should reduce prolonged or heavy exertion outdoors. 201–300 very Active children and adults, and unhealthy people with lung disease, such as asthma, should avoid all outdoor exertion. Everyone else should avoid prolonged or heavy exertion outdoors. 301–500 hazardous Everyone should avoid all physical activity outdoors. Many cities issue air-quality alerts when ground- Data obtained from: Patient Exposure and the Air Quality Index. U.S. E.P.A. March 2006 level ozone levels are high.

938 Elements Handbook (t)©Scientifica/Visuals Unlimited, (b)©Glow Images/Alamy Real-World Applications

Sulfur U.S. Chemical Production 16 Sulfuric acid S 40 500 [Ne]3s23p4 400 30 Chemical sales 300 An Economic Indicator 20 Ammonia Sulfuric acid is one of the world’s most impor- 200 $ Billions 10 tant industrial raw materials. In the United Chlorine 100 States, more sulfuric acid is produced than any Millions of metric tons 0 0 other industrial chemical. Most sulfuric acid is 1994 1996 1998 2000 2002 2004 used in the production of fertilizers. Year Sulfuric acid is also important in extracting Data obtained from: Chemical & Engineering News 83 (2005) and 84 (2006). metals from ore, oil refining, waste treatment, Sulfuric acid production in the United States is chemical synthesis, and as a component in used to track chemical economic trends. lead-acid batteries. Sulfuric acid is so impor- tant that economists use its production as a measure of a nation’s industrial development.

Selenium Photocopies 34 Gray selenium is a photoconductor, which means it conducts Se electricity more efficiently in the presence of light than in the 2 10 4 [Ar]4s 3d 4p dark. Some photocopiers use this property to copy images. In a photocopier, a bright light shines on the original. Mirrors reflect the dark and light areas onto a drum coated with a thin layer of selenium. Because selenium is a photoconductor, the light areas conduct electricity, while the dark areas do not. As current flows through the drum, the light areas develop a negative charge and the dark areas develop a positive charge. Negatively charged toner particles are attracted to the positively charged dark areas to create a copy of the original image. Some of this same technology has been applied in developing new high-resolution digital detectors that use selenium as a photoconductor. Gray selenium is a key component in many photocopiers.

Assessment

46. Identify the molecule that is the source of oxygen 49. Apply Coal and petroleum products are sometimes atoms for O2 production during photosynthesis. contaminated with sulfur. When coal or petroleum con-

47. Explain why high ozone concentrations are harmful at taining sulfur is burned, sulfur dioxide (S O 2 ) can be ground level but beneficial in the upper atmosphere. released into the atmosphere. Use the information about the reactions involved in industrial sulfuric-acid 48. Calculate Approximately 90% of the sulfur used in production to infer how atmospheric sulfur dioxide the United States is used to make sulfuric acid. In 2004, contributes to acid precipitation. 38.0 million metric tons of sulfuric acid were produced. How much sulfur did the United States use in 2004?

Elements Handbook 939 ©Leslie Garland Picture Library/Alamy Group 17: Halogen Group

Fluorine Physical Properties 9 • Fluorine and chlorine are gases at room temperature. Along with F mercury, bromine is one of only two elements that are liquid at room [He]2s22p5 temperature. Iodine is a solid that easily sublimes at room temperature.

Chlorine • Fluorine gas is pale yellow. Chlorine gas is yellow-green. Bromine is a 17 red-brown liquid. Iodine is a blue-black solid. Cl • Both boiling points and melting points of the group 17 elements 2 5 [Ne]3s 3p increase with increasing atomic number.

Bromine Melting Points and Boiling Points 35 - Br F 220 - [Ar]4s23d104p5 188 - Cl 102 - Iodine 34 MP - BP 53 Br 7 I 59 114 [Kr]5s24d105p5 I 184 At 302 Astatine 85 At -400 -200 0 200 400 2 14 10 5 [Xe]6s 4f 5d 6p ° Temperature ( C) Iodine crystals are a blue-black color. They produce a violet vapor when they sublime at room temperature.

Common Reactions • The halogens react with alkali metals and alkaline earth metals to form salts, such as potassium and calcium chloride.

Examples: 2K(s) + B r 2 ( g ) → 2KBr(s) and Ca(s) + C l 2 ( g ) → C a C l 2 ( s ) • The halogens can form acids, such as hydrochloric acid, by hydroly- sis in water.

Example: C l 2 ( g ) + H 2 O ( l ) → HClO(aq) + HCl(aq) • Several important plastic polymers, including nonstick coatings and polyvinyl chloride, contain group 17 elements. Example: Polyvinyl chloride (vinyl) is made by a three-step process. 1) Ethene reacts with chlorine to form dichloroethane. C 2 H 4 (g) + C l 2 (g) → C 2 H 4 C l 2 (l) 2) At high temperature and pressure, dichloroethane is converted to vinyl chloride and HCl gas. C 2 H 4 C l 2 (l) → C 2 H 3 C l ( l ) + HCl(g) 3) Vinyl chloride polymerizes to form polyvinyl chloride. 2n( C 2 H 3 Cl)(l) → (—C H 2 – C H C l – C H 2 – C H C l — ) n ( l ) • Fluorine is the most active of all the elements and reacts with every element except helium, neon, and argon.

Example: 2Al(s) + 3 F 2 ( g ) → 2AlF 3 ( s )

940 Elements Handbook ©Larry Stepanowicz/Visuals Unlimited Element Facts

Atomic Properties Atomic Ionic • Each element in group 17 has seven valence electrons and an electron radius radius configuration ending with n s 2 n p 5 . (pm) (pm) • Electronegativities and first ionization energies decrease going down F F1- the elements in group 17. 72 133 - • Fluorine is the most electronegative element on the periodic table. Cl Cl1 100 181 Therefore, it has the greatest tendency to attract electrons. • Astatine is a radioactive element with no known uses. Br Br1- 114 195 • The atomic radii and ionic radii of the group 17 elements increase going down the group. I I1- 133 220

First Ionization Energies Electronegativities

F 1681 F 3.98

Cl 1251 Cl 3.16

Br 1140 Br 2.96

I 1008 I 2.66

At 920 At 2.20

0 500 1000 1500 2000 0 1.0 2.0 3.0 4.0 kJ/mol Pauling units

Analytical Tests Three of the halogens can be identified through precipitation reactions. Chlorine, bromine, and iodine react with silver nitrate, forming distinc- tive precipitates. Silver chloride is a white precipitate, silver bromide is a cream-colored precipitate, and silver iodide is a yellow precipitate. Chlorine, bromine, and iodine can also be identified when they dissolve in cyclohexane. As shown in the photo, when these halogens are dissolved in cyclohexane, the solution turns yellow for chlorine, orange for bromine, and violet for iodine.

The halogens are only slightly soluble in water (bottom layer). However, in cyclohexane (top layer), chlorine (yellow), bromine (orange), and iodine (violet) readily dissolve.

Elements Handbook 941 ©ANDREW LAMBERT PHOTOGRAPHY/SCIENCE PHOTO LIBRARY/Photo Researchers Inc. Group 17: Halogen Group

Fluorine 9 F [He]2s22p5

Fluoridation Fluorine compounds added to toothpaste and public drinking-water supplies have greatly reduced the incidence of cavities. Fluoride protects teeth in two ways. As teeth form, fluoride from food and drink is incorporated into Many brands of toothpaste contain either the enamel layer. The fluoride makes the enamel stronger stannous fluoride or sodium fluoride, which, like fluoridated water, strengthen teeth and and more resistant to decay. Once teeth are present in the provide protection from cavities. mouth, fluoride in saliva bonds to teeth and strengthens the surface enamel. This surface fluoride attracts calcium, which helps to fill in areas where decay has begun.

How Chlorine Bleach Is Made Chlorine 17 Chlorine compounds are widely used as bleaching agents by the textile Cl and paper industries. Some chlorine compounds can bleach materials by [Ne]3s23p5 oxidizing colored molecules. Chlorine compounds are also used as disinfec- tants. Household bleach is a 5.25% solution of sodium (NaOCl) in water. Chlorine bleach is prepared commercially by passing an electric current through a solution of sodium chloride in water. As the sodium chlo- ride breaks down, sodium hydroxide collects at the cathode and chlorine gas is generated at the anode. Sodium hydroxide and chlorine can then be combined to form sodium hypochlorite.

Household chlorine bleach is made by reacting chlorine gas or liquid chlorine with sodium hydroxide to form sodium hypochlorite.

Bromine Iodine Halogen lamps use bromine or other halo- gen molecules to capture tungsten vapor 35 53 and return tungsten atoms to the filament. Tungsten- Br I bromide Tungsten [Ar]4s23d104p5 [Kr]5s24d105p5 particle

Tungsten Halogen Lightbulbs Bromine filament Halogen lightbulbs include a halogen gas, such as iodine or bromine. Compared to standard lightbulbs, halogen bulbs are brighter and last longer and can be more energy efficient. During the operation of a normal lightbulb, some of the tungsten in the filament evaporates and is deposited on the inside surface of the bulb. In a halogen lamp, the evaporated tungsten reacts with the halogen gas and is redeposited back on the filament. This extends the life of the filament.

942 Elements Handbook ©Michael Newman / PhotoEdit Real-World Applications

Iodine Combating Iodine Deficiency with Salt 53 The thyroid gland is the only part of the body that absorbs iodine. Thyroid cells use I iodine to produce thyroid hormones, which regulate metabolism. Low levels of iodine [Kr]5s24d105p5 in the diet can lead to thyroid-hormone deficiencies and goiters, which are enlarged thyroid glands. In serious cases, low levels of thyroid hormones can cause birth defects and brain damage. In the United States, potassium iodide is added to most table salt to protect against dietary iodine deficiency. Even small amounts of added iodine can prevent iodine-deficiency disorders. However, there are parts of the world in which iodine deficiency is still prevalent.

Iodine Deficiency Around the World

Severe deficiency (<20 µg/L) Mild deficiency (50–99 µg/L) Risk of iodine-induced hyperthyroidism (200–299 µg/L) Moderate deficiency (20–49 µg/L) Optimal (100–199 µg/L) Risk of adverse health consequences (>300 µg/L) No data

A significant percentage of the world’s population was at risk for iodine deficiency in 2004. In 2005, the World Health Organization launched a program to eliminate iodine deficiency worldwide.

Assessment

50. Compare the risks for iodine deficiency in Europe, 53. Calculate Household bleach is typically a 5.25% Africa, and the United States. solution of sodium hypochlorite in water. How many 51. Explain why fluorine is the most reactive of all the grams of sodium hypochlorite would there be in elements. 300 mL of bleach? 52. Evaluate Why does a tungsten filament last longer in 54. Hypothesize In 1962, Neil Bartlett synthesized the

a halogen lightbulb than in a normal lightbulb? first noble gas compound using Pt F 6 . Hypothesize why Bartlett used a fluorine compound for this synthesis.

Elements Handbook 943 Group 18: Noble Gases

Helium 2 Physical Melting Points and Boiling Points He -270 He 1s2 Properties -269 • The group 18 elements are -249 Ne Neon colorless, odorless gases. -246 MP -189 BP 10 • They are all nonmetals. Ar Ne -186 2 6 -157 [He]2s 2p • Their melting points and Kr boiling points increase going -153 -112 Argon down the group, but are much Xe -108 18 lower than those of the other Ar -71 groups in the periodic table. Rn -62 [Ne]3s23p6 -300 -200 -100 0 Temperature (ºC) 36 Kr Atomic Properties First Ionization Energies [Ar]4s23d104p6 • Each element in group 18 He 2372

Xenon has eight valence electrons, Ne 2081 54 producing an octet with an Xe electron configuration ending 2 6 Ar 1521 [Kr]5s24d105p6 with n s n p , except for helium, which has two electrons. Kr 1351 Radon • Noble gases are monatomic— 86 Xe 1170 Rn they exist as single atoms. 2 14 10 6 [Xe]6s 4f 5d 6p • Compared to the other groups Rn 1037 in the periodic table, the noble gases have the highest first 0 500 1000 1500 2000 ionization energies. kJ/mol

Analytical Tests Because the noble gases are odorless, colorless and generally unreactive, many of the common analytical tests used for identifying elements are not useful. However, the noble gases do emit light of certain colors Common when exposed to an electric current and have characteristic emission line spectra. Reactions Although the noble gases are also known as inert gases, a few compounds can be formed if conditions are favorable. Generally, however, noble gases are nonreactive. When an electric current passes through xenon, it exhibits a characteristic color (blue) and line spectrum.

944 Elements Handbook (l)©Charles D. Winters/Photo Researchers, Inc., (r)©TED KINSMAN/SCIENCE PHOTO LIBRAR/Photo Researchers Inc.Y Real-World Applications

Helium 2 He 1s2

The Sun Only 150 million km away (considered close in astronomi- cal terms), the Sun provides the energy needed to support life on Earth. The Sun makes its energy through the fusion of hydrogen to make helium. Scientists have determined that the core of the Sun is composed of approximately 50% helium, leaving enough hydrogen for the Sun to burn The Sun’s energy comes from a nuclear reaction that for another 5 billion years. produces helium.

Neon Argon Krypton Xenon 10 18 36 54 Ne Ar Kr Xe [He]2s22p6 [Ne]3s23p6 [Ar]4s23d104p6 [Kr]5s24d105p6

Lighting Neon, argon, krypton, and xenon are all used in different lighting applications. Neon signs are found in many businesses to advertise products or display the name of the business. Although true neon signs glow with a red-orange color, the term neon sign has also come to represent the collection of gas tubes that contain gases that display other colors. Argon is found in everyday lightbulbs such as those in lamps. Because The noble gases are found in many different light sources. argon is inert, it provides an ideal atmo- sphere for the filament. Krypton and xenon bulbs produce whiter, sharper light and last longer than traditional argon bulbs. These bulbs are commonly found in chandeliers, flashlights, and luxury car headlights.

Assessment

55. Describe three physical properties of the noble gases. 58. Hypothesize why argon is used in everyday lighting 56. Write the reaction for the production of xenon even though krypton and xenon produce whiter light tetroxide. and last longer. 57. Analyze why the noble gases have the highest 59. Calculate If the Sun is 150 million km away and light 5 first ionization energies compared to the rest of travels at 3.00 x 10 m/s, how long does it take for the elements on the periodic table. sunlight to reach Earth?

Elements Handbook 945 (t)©epa/Corbis, (bl)©PHOTOTAKE Inc./Alamy, (br)©Wolfgang Kaehler/CORBIS Mathematics is a language used in science to express and solve problems. Calculations you perform during your study of chemistry require arithme- tic operations, such as addition, subtraction, multiplication, and division. Use this handbook to review basic math skills and to reinforce some math skills presented in more depth in the chapters. Scientific Notation Scientists must use extremely small and extremely large numbers to describe the objects in Figure 1. The mass of the proton at the center of a hydrogen atom is 0.000000000000000000000000001673 kg. HIV, the virus that causes AIDS, is about 0.00000011 m. The temperature at the center of the Sun reaches 15,000,000 K. Such small and large numbers are difficult to read and hard to work with in calculations. Scientists have adopted a method of writing exponential numbers called scientific notation. It is easier than writing numerous zeros when numbers are very large or very small. It is also easier to compare the relative size of numbers when they are written in scientific notation. A number written in scientific notation has two parts. N × 1 0 n The first part (N) is a number in which only one digit is placed to the left of the decimal point and all remaining digits are placed to the right of the decimal point. The second part is an exponent of ten (1 0 n ) by which the decimal portion is multiplied. For example, the number 2.53 × 1 0 6 is written in scientific notation. 2.53 × 10 6

Number between Exponent one and ten of ten The decimal portion is 2.53 and the exponent is 10 6 . Positive exponents are used to express large numbers, and negative exponents are used to express small numbers.

■ Figure 1 Scientific notation provides a convenient way to express data with extremely large or small numbers. Scientists can express the mass of a proton, the length of HIV, and the temperature of the Sun in scientific notation.

Proton

Hydrogen atom HIV attacking a white blood cell The Sun Proton mass = 1.673 × 1 0 -27 kg HIV length = 1.1 × 1 0 -7 m Sun temperature = 1.5 × 10 7 K

946 Math Handbook (l)©Chris Bjornberg/Photo Researchers, Inc, (r)©Daniele Pellegrini/Photo Researchers, Inc. Math Handbook

Positive exponents When scientists discuss the physical properties of the Moon, shown in Figure 2, the numbers are enormously large. A positive exponent of 10 (n) tells how many times a number must be multiplied by 10 to give the long form of the number. 2.53 × 1 0 6 = 2.53 × 10 ×10 × 10 × 10 × 10 × 10 = 2,530,000 You can also think of the positive exponent of 10 as the number of places you move the decimal to the left until only one nonzero digit is to the left of the decimal point. ■ Figure 2 The mass of the Moon is 7.349 × 1 0 22 k g . 2,530,000. The decimal point moves six places to the left.

To convert the number 567.98 to scientific notation, first write the number as an exponential number by multiplying by 10 0 . 567.98 × 1 0 0 (Remember that multiplying any number by 1 0 0 is the same as multi- plying the number by 1.) Move the decimal point to the left until there is only one digit to the left of the decimal. At the same time, increase the exponent by the same number as the number of places the decimal is moved.

567.98 × 1 0 0 + 2 The decimal point moves two places to the left.

■ Figure 3 Thus, 567.98 written in scientific notation is 5.6798 × 1 0 2 . Because of their short wavelengths (1 0 -8 m t o 1 0 - 13 m ) , Negative exponents X rays can pass through some objects. Measurements can also have negative exponents, such as shown by the X rays in Figure 3. Negative exponents are used for numbers that are very small. A negative exponent of 10 tells how many times a number must be divided by 10 to give the long form of the number. 6.43 6.43 × 1 0 −4 = __ = 0.000643 10 × 10 × 10 × 10 A negative exponent of 10 is the number of places you move the deci- mal to the right until it is just past the first nonzero digit. When converting a number that requires the decimal to be moved to the right, the exponent is decreased by the appropriate number. For example, the expression of 0.0098 in scientific notation is as follows: 0.0098 × 1 0 0 0 0098 × 10 0 − 3 The decimal point moves three places to the right. 9.8 × 1 0 -3

Thus, 0.0098 written in scientific notation is 9.8 × 1 0 - 3 .

Math Handbook 947 (t)©JULIAN BAUM/SCIENCE PHOTO LIBRARY/Photo Researchers Inc., (b)©Royalty-Free/CORBIS Math Handbook

Operations with Scientific Notation The arithmetic operations performed with ordinary numbers can be done with numbers written in scientific notation. However, the expo- nential portion of the numbers must also be considered. 1. Addition and subtraction Before numbers in scientific notation can be added or subtracted, the exponents must be equal. Remember that the decimal is moved to the left to increase the exponent and to the right to decrease the exponent. (3.4 × 1 0 2 ) + (4.57 × 1 0 3 ) = (0.34 × 1 0 3 ) + (4.57 × 10 3 ) = (0.34 + 4.57) × 10 3 = 4.91 × 10 3

(7.52 × 1 0 -4 ) − (9.7 × 1 0 - 5 ) = (7.52 × 1 0 - 4 ) − (0.97 × 1 0 - 4 ) = (7.52 − 0.97) × 1 0 -4 = 6.55 × 10 -4

2. Multiplication When numbers in scientific notation are multiplied, only the decimal portion is multiplied. The exponents are added. (2.00 × 1 0 3 )(4.00 × 1 0 4 ) = (2.00)(4.00) × 1 0 3 + 4 = 8.00 × 10 7

3. Division When numbers in scientific notation are divided, only the decimal portion is divided, while the exponents are subtracted as follows: 9.60 × 1 0 7 9.60 _ = _ × 1 0 7 − 4 1.60 × 1 0 4 1.60 = 6.00 × 1 0 3

PRACTICE Problems

1. Express the following numbers in scientific notation. a. 5800 c. 0.0005877 b. 453,000 d. 0.0036 2. Perform the following operations. a. (5.0 × 10 6 ) + (3.0 × 10 7 ) c. (3.89 × 10 12 ) − (1.9 × 10 11 ) b. (1.8 × 10 9 ) + (2.0 × 10 8 ) d. (6.0 × 10 -8 ) − (4.0 × 1 0 −9 ) 3. Perform the following operations. 9.6 × 1 0 8 a. (6.0 × 1 0 -4 ) × (4.0 × 1 0 -6 ) d. _ 1.6 × 1 0 -6 (2.5 ×1 0 6 )(7.2 × 1 0 4 ) b. (4.5 × 10 9 ) × (6.0 × 1 0 -10 ) e. __ 1.8 × 1 0 -5 4.5 × 1 0 -8 (6.2 × 10 12 )(6.0 × 1 0 -7 ) c. _ f. __ 1.5 × 1 0 -4 1.2 × 10 6

948 Math Handbook Math Handbook

2 × 2 = 4 3 × 3 = 9 4 × 4 = 16 2 = 4 3 = 9 4 = 16 a b c

■ Figure 4 a. The number 4 can be Square and Cube Roots expressed as two groups of 2. The identi- A square root is one of two identical factors of a number. As shown in cal factors are 2. b. The number 9 can be Figure 4a, the number 4 is the product of two identical factors—2. expressed as three groups of 3. Thus, 3 is the square root of 9. c. 4 is the square Thus, the square root of 4 is 2. The symbol √  , called a radical sign, is root of 16. used to indicate a square root. Most scientific calculators have a square Determine the cube root of 16 root key labeled √  . using your calculator.

√ 4 = √ 2 × 2 = 2 This equation is read “the square root of 4 equals 2.” What is the square root of 9, shown in Figure 4b? There can be more than two identical factors of a number. You know that 2 × 4 = 8. Are there any other factors of the number 8? It is the product of 2 × 2 × 2. A cube root is one of three identical factors of a number. Thus, what is the cube root of 8? It is 2. A cube root is also indicated by a radical.

3 3 √ 8 = √ 2 × 2 × 2 = 2 Check your calculator handbook for more information on finding roots. Significant Figures Accuracy reflects how close the measurements you make in the labora- tory come to the real value. Precision describes the degree of exactness of your measurements. Which ruler in Figure 5 would give you the most precise length? The top ruler, with the millimeter markings, would allow your measurements to come closer to the actual length of the pencil. The measurement would be more precise.

■ Figure 5 The estimated digit must be read between the millimeter markings on the top ruler. 19 20 21 22 23 24 25 26 2728 29 cm Evaluate Why is the bottom ruler less precise?

19 20 21 22 23 24 25 26 2728 29 cm

Math Handbook 949 Math Handbook

Measuring tools are never perfect, nor are the people doing the measuring. Therefore, whenever you measure a physical quantity, there will always be some amount of uncertainty in the measurement. The 24 25 26 27 28 number of significant figures in the measurement indicates the uncer- tainty of the measuring tool. The number of significant figures in a measured quantity is all of the certain digits plus the first uncertain digit. For example, the pencil in ■ Figure 6 If you determine Figure 6 has a length that is between 27.6 and 27.7 cm. You can read that the length of this pencil is the ruler to the nearest millimeter (27.6 cm), but after that you must 27.65 cm, that measurement has four significant figures. estimate the next digit in the measurement. If you estimate that the next digit is 5, you would report the measured length of the pencil as 27.65 cm. Your measurement has four significant figures. The first three are certain, and the last is uncertain. The ruler used to measure the pencil has precision to the nearest tenth of a millimeter. How many significant figures? When a measurement is provided, the following series of rules will help you to determine how many significant figures there are in that measurement. 1. All nonzero figures are significant. 2. When a zero falls between nonzero digits, the zero is also significant. 3. When a zero falls after the decimal point and after a significant figure, that zero is significant. 4. When a zero is used merely to indicate the position of the decimal, it is not significant. 5. All counting numbers and exact numbers are treated as if they have an infinite number of significant figures. Examine each of the following measurements. Use the rules above to check that all of them have three significant figures.

245 K Rule 1 18.0 L Rule 3 308 km Rule 2 0.00623 g Rule 4 186,000 m Rule 4 Suppose you must do a calculation using the measurement 200 L. You cannot be certain which zero was estimated. To indicate the signifi- cance of digits, especially zeros, write measurements in scientific nota- tion. In scientific notation, all digits in the decimal portion are significant. Which measurement is most precise? 200 L has unknown significant figures. 2 × 1 0 2 L has one significant figure. 2.0 × 1 0 2 L has two significant figures. 2.00 × 1 0 2 L has three significant figures. The greater the number of digits in a measurement expressed in scien- tific notation, the more precise the measurement is. In this example, 2.00 × 1 0 2 L is the most precise data.

950 Math Handbook Math Handbook

EXAMPLE Problem 1 Significant Figures How many significant figures are in the measurement 0.00302 g? 60 min? 5.620 m? 9.80 × 1 0 2 m/ s 2 ?

1 Analyze the Problem To determine the number of significant digits in a series of numbers, review the rules for significant figures.

2 Solve for the Unknown 0.00302 g

Not significant Significant (Rule 4) (Rules 1 and 2) The measurement 0.00302 g has three significant figures. 60 min Unlimited significant figures (Rule 5) 5.620 m Significant (Rules 1 and 3) The measurement 5.620 m has four significant figures. 9.80 × 1 0 2 m/ s 2 Significant (Rules 1 and 3)

3 Evaluate the Answer The measurements 0.00302 g and 9.80 × 10 2 m/s 2 have three significant figures. The measurement 60 min has unlimited significant figures. The measurement 5.620 m has four significant figures.

PRACTICE Problems

4. Determine the number of significant figures in each measurement: a. 35 g m. 0.157 kg b. 3.57 m n. 28.0 mL c. 3.507 km o. 2500 m d. 0.035 kg p. 0.070 mol e. 0.246 L q. 30.07 nm f. 0.004 m 3 r. 0.106 cm g. 24.068 kPa s. 0.0076 g h. 268 K t. 0.0230 c m 3 i. 20.04080 g u. 26.509 cm j. 20 dozen v. 54.52 cm 3 k. 730,000 kg w. 2.40 × 1 0 6 kg l. 6.751 g x. 4.07 × 1 0 16 m

Math Handbook 951 Math Handbook

Rounding Arithmetic operations that involve measurements are done the same way as operations involving any other numbers. However, the results must correctly indicate the uncertainty in the calculated quantities. Perform all of the calculations, and then round the result to the least number of significant figures in any of the measurements used in the calculations. To round a number, use the following rules. 1. When the leftmost digit to be dropped is less than 5, that digit and any digits that follow are dropped. Then, the last digit in the rounded num- ber remains unchanged. For example, when rounding the number 8.7645 to three significant figures, the leftmost digit to be dropped is 4. Therefore, the rounded number is 8.76. 2. When the leftmost digit to be dropped is greater than 5, that digit and any digits that follow are dropped, and the last digit in the rounded number is increased by one. For example, when rounding the num- ber 8.7676 to three significant figures, the leftmost digit to be dropped is 7. Therefore, the rounded number is 8.77. 3. When the leftmost digit to be dropped is 5 followed by a nonzero number, that digit and any digits that follow are dropped. The last digit in the rounded number increases by one. For example, 8.7519 rounded to two significant figures equals 8.8. 4. If the digit to the right of the last significant figure is equal to 5 and is not followed by a nonzero digit, look at the last significant figure. If it is odd, increase it by one; if even, do not round up. For example, 92.350 rounded to three significant figures equals 92.4, and 92.25 equals 92.2.

Calculations with significant figures Look at the glassware in Figure 7. Would you expect to measure a more precise volume with the beaker or the graduated cylinder? When you perform any calculation using measured quantities such as volume or mass, it is important to remember that the result can never be more ■ Figure 7 Compare the precise than the least-precise measurement. That is, your answer cannot markings on the graduated cylinder have more significant figures than the least precise measurement. Note at the top with the markings on the that it is important to perform all calculations before dropping any beaker at the bottom. insignificant digits. Analyze Which piece of The following rules determine how to use significant figures in glassware will yield more precise measurements? calculations that involve measurements. 1. To add or subtract measurements, first perform the mathematical operation, then round off the result to the least-precise value. There should be the same number of digits to the right of the decimal as the measurement with the least number of decimal digits. 2. To multiply or divide measurements, first perform the calculation, then round the answer to the same number of significant figures as the measurement with the least number of significant figures. The answer should contain no more significant figures than the fewest number of significant figures in any of the measurements in the calculation.

952 Math Handbook Matt Meadows Math Handbook

EXAMPLE Problem 2

Calculating with Significant Figures Air contains oxygen ( O 2 ), nitrogen ( N 2 ), carbon dioxide (C O 2 ), and trace amounts of other gases. Use the known pressures in Table 1 to calculate the partial pressure of oxygen.

1 Analyze the Problem Table Pressures of The data in Table 1 contains the gas pressure for nitrogen 1 Gases in Air gas, carbon dioxide gas, and trace gases. To add or subtract measurements, first perform the operation, then round off Pressure (kPa) the result to correspond to the least-precise value involved. Nitrogen 79.10 2 Solve for the Unknown gas

P O 2 = Ptotal - (P N 2 + P CO 2 + Ptrace) Carbon 0.040 P O 2 = 101.3 kPa - (79.10 kPa + 0.040 kPa + 0.94 kPa ) dioxide gas

P O 2 = 101.3 kPa - 80.080 kPa Trace gases 0.94 P O 2 = 21.220 kPa

The total pressure (Ptotal) was measured to the tenths place. It is Total gases 101.3 the least precise measurement. Therefore, the result should be rounded to the nearest tenth of a kilopascal. The pressure of

oxygen is P O 2 = 21.2 kPa.

3 Evaluate the Answer By adding the gas pressure of all the gases, including oxygen, the total gas pressure is 101.3 kPa.

PRACTICE Problems

5. Round off the following measurements to the number of significant figures indicated in parentheses. a. 2.7518 g (3) b. 8.6439 m (2) c. 13.841 g (2) d. 186.499 m (5) e. 634,892.34 ( 4) f. 355,500 g ( 2) 6. Perform the following operations. a. (2.475 m ) + (3.5 m ) + (4.65 m ) b. (3.45 m ) + (3.658 m ) + ( 47 m ) c. (5.36 × 1 0 −4 g ) − (6.381 × 1 0 −5 g ) d. (6.46 × 1 0 12 m ) − (6.32 × 1 0 11 m ) e. (6.6 × 1 0 12 m ) × (5.34 × 1 0 18 m ) 5.634 × 1 0 11 m f. __ 3.0 × 1 0 12 m (4.765 × 1 0 11 m ) (5.3 × 1 0 -4 m ) g. ___ 7.0 × 1 0 -5 m

Math Handbook 953 Math Handbook

Solving Algebraic Equations When you are given a problem to solve, it often can be written as an algebraic equation. You can use letters to represent measurements or unspecified numbers in the problem. The laws of chemistry are often written in the form of algebraic equations. For example, the ideal gas law relates pressure, volume, moles, and temperature of the gases. The ideal gas law is written as follows. PV = nRT The variables are pressure (P), volume (V), number of moles (n), and temperature (T). R is a constant. This is a typical algebraic equation that can be manipulated to solve for any of the individual variables. When you solve algebraic equations, any operation that you perform on one side of the equal sign must be performed on the other side of the equation. Suppose you are asked to use the ideal gas law to find the pressure of a gas (P). To solve for, or isolate, P requires you to divide the left-hand side of the equation by V. This operation must be performed on the right-hand side of the equation as well, as shown in the second equation below. PV = nRT PV nRT _ = _ V V ■ Figure 8 When faced with an The Vs on the left-hand side of the equation cancel each other out. equation that contains more than PV nRT _ = _ one operation, use this flowchart V V to determine the order in which V nRT to perform your calculations. P × _ = _ V V nRT Order of Operations P = _ V The ideal gas law equation is now written in terms of pressure. That is, Examine all arithmetic operations. P has been isolated. Order of operations When isolating a variable in an equation, it is important to remember that arithmetic operations have an order of operations, as shown in Do all operations inside Figure 8, that must be followed. Operations in parentheses (or brackets) parentheses or brackets. take precedence over multiplication and division, which in turn take precedence over addition and subtraction. For example, in the following equation

Do all multiplication and a + b × c division from left to right. variable b must be multiplied first by variable c. Then, the resulting product is added to variable a. If the equation is written (a + b) × c Perform addition and the operation in parentheses or brackets must be done first. In the equa- subtraction from left to right. tion above, variable a is added to variable b before the sum is multiplied by variable c.

954 Math Handbook Math Handbook

To see the difference order of operations makes, try replacing a with 2, b with 3, and c with 4. a + (b × c) = 2 + (3 × 4) = 14 (a + b) × c = (2 + 3) × 4 = 20 To solve algebraic equations, you also must remember the distributive property. To remove parentheses to solve a problem, any number out- side the parentheses is distributed across the parentheses as follows. 6(x + 2y) = 6(x) + 6(2y) = 6x + 12y

EXAMPLE Problem 3 Order of Operations The temperature on a cold day was 25°F. What was the temperature on the Celsius scale?

1 Analyze the Problem The temperature in Celsius can be calculated by using the equation for converting from the Celsius temperature to Fahrenheit temperature. The Celsius temperature is the unknown variable. The known variable is 25°C.

2 Solve for the Unknown Determine the equation for calculating the temperature in Celsius. 9 °F = _ °C + 32 5 9 °F − 32 = _ °C + 32 − 32 Rearrange the equation to isolate °C. 5 Begin by subtracting 32 from both sides. 9 °F − 32 = _ °C 5 9 5 × ( °F − 32) = 5 × _ °C Then, multiply both sides by 5. 5 5 × ( °F − 32) = 9°C

5 × ( °F − 32) 9°C __ = _ Finally, divide both sides by 9. 9 9 5 °C = _ ( °F − 32) 9 5 = _ (25 − 32) Substitute the known Fahrenheit 9 temperature. = −3.9°C The Celsius temperature is −3.9°C.

3 Evaluate the Answer To determine if the answer is correct, place the answer, −3.9°C, into the original equation. If the Fahrenheit temperature is 25°, the calculation was done correctly.

Math Handbook 955 Math Handbook

PRACTICE Problems

Isolate the indicated variable in each equation. 7. PV = nRT for R 8. 3 = 4(x + y) for y 9. z = x(4 + 2y) for y _2 10. x = 3 + y for x 2x + 1 11. _ = 6 for x 3

Dimensional Analysis The dimensions of a measurement refer to the type of units attached to a quantity. For example, length is a dimensional quantity that can be measured in meters, centimeters, and kilometers. Dimensional analysis is the process of solving algebraic equations for units as well as num- bers. It is a way of checking to ensure that you have used the correct equation, and that you have correctly applied the rules of algebra when solving the equation. It can also help you to choose and set up the cor- rect equation, as shown on the next page, when you learn how to do unit conversions. It is good practice to make dimensional analysis a habit by always stating the units as well as the numerical values whenever substituting values into an equation.

EXAMPLE Problem 4 Dimensional Analysis The sculpture in Figure 9 is made from aluminum. The density (D) of aluminum is 2700 kg/ m 3 . Determine the mass (m) of a piece of aluminum of volume (V ) 0.20 m 3 . ■ Figure 9 Aluminum is a metal that is useful from the kitchen to 1 Analyze the Problem the sculpture garden. The facts of the problem are density (2700 kg/ m 3 ), volume (0.20 m 3 ), and the density equation, D = m/V.

2 Solve for the Unknown Determine the equation for mass by rearranging the density equation. The equation for density is m D = _ V mV DV = _ Multiply both sides of the V equation by V, and isolate m. V DV = _ × m V m = DV

m = (2700 kg/ m 3 )(0.20 m 3 ) = 540 kg Substitute the known values for D and V. 3 Evaluate the Answer Notice that the unit m 3 cancels out, leaving mass in kg, a unit of mass.

956 Math Handbook ©ABN Stock Images/Alamy Math Handbook

PRACTICE Problems

Determine whether the following equations are dimensionally correct. Explain. 12. v = s × t where v = 24 m/s, s = 12 m, and t = 2 s. nT 13. R = _ where R is in L·atm/mol·K, n is in mol, T is in K, P is in atm, PV and V is in L. _v 14. t = s where t is in seconds, v is in m/s, and s is in m. a t 2 15. s = _ where s is in m, a is in m/ s 2 , and t is in s. 2

Unit Conversion Recall from Chapter 2 that the universal unit system used by scientists is called Le Système Internationale d’Unités, or SI. It is a metric system based on seven base units—meter, second, kilogram, kelvin, mole, ampere, and candela—from which all other units are derived. The size of a unit in the metric system is indicated by a prefix related to the dif- ference between that unit and the base unit. For example, the base unit for length in the metric system is the meter. One-tenth of a meter is a decimeter, where the prefix deci- means one-tenth. One thousand meters is a kilometer, where the prefix kilo- means one thousand. You can use the information in Table 2 to express a measured quantity in different units. For example, how is 65 m expressed in centimeters? Table 2 indicates one centimeter and one-hundredth meter are equivalent, that is, 1 cm = 1 0 −2 m. This information can be used to form a conversion factor. A conversion factor is a ratio equal to one that relates two units. You can make the following conversion factors from the relationship between meters and centimeters. Be sure when you set up a conversion factor that the measurement in the numerator (the top of the ratio) is equivalent to the measurement in the denominator (the bottom of the ratio). 1 cm 1 0 −2 m 1 = _ and 1 = _ 1 0 −2 m 1 cm

Table 2 Common SI Prefixes

Exponential Exponential Prefix Symbol Prefix Symbol Notation Notation Peta P 1 0 15 Deci d 1 0 − 1 Tera T 1 0 12 Centi c 1 0 − 2 Giga G 1 0 9 Milli m 1 0 − 3 Mega M 1 0 6 Micro μ 1 0 − 6 Kilo k 1 0 3 Nano n 1 0 − 9 Hecto h 1 0 2 Pico p 1 0 − 12 Deka da 1 0 1 Femto f 1 0 − 15

Math Handbook 957 Math Handbook

Recall that the value of a quantity does not change when it is multiplied by 1. To convert 65 m to centimeters, multiply 65 m by the conversion factor for centimeters. 1 cm 65 m × _ 1 0 −2 m = 65 × 1 0 2 c m = 6.5 × 1 0 3 c m Note the conversion factor is set up so that the unit meters cancels and the answer is in centimeters as required. When setting up a unit conversion, use dimensional analysis to check that the units cancel to give an answer in the desired units. Always check your answer to be certain the units make sense. You make unit conversions every day when you determine how many quarters are needed to make a dollar or how many feet are in a yard. One unit that is often used in calculations in chemistry is the mole. Chapter 10 shows you equivalent relationships among moles, grams, and the number of representative particles (atoms, molecules, formula units, or ions). For example, 1 mol of a substance contains 6.02 × 1 0 23 representative particles. Try the next Example Problem to see how this information can be used in a conversion factor to deter- mine the number of atoms in a sample of manganese.

EXAMPLE Problem 5 Unit Conversions One mole of manganese (Mn), shown in Figure 10, has a mass of 54.94 g. How many atoms are in 2.0 mol of manganese?

1 Analyze the Problem You are given the mass of 1 mol of manganese. In order to convert to the number of atoms, you must set up a conversion factor relating the number of moles and the number of atoms.

2 Solve for the Unknown The conversion factors for moles and atoms are shown below.

23 ■ Figure 10 The mass of one __1 mol __6.02 × 10 atoms 23 and mole of manganese equals 54.94 g. 6.02 × 1 0 atoms 1 mol Determine How many Choose the conversion factor that cancels units of moles and gives an significant figures are in this answer in number of atoms. measurement? 6.02 × 10 23 atoms 2.0 mol × __ = 12.04 × 10 23 atoms 1 mol = 1.2 × 10 24 atoms

3 Evaluate the Answer The answer is expressed in the desired units (number of atoms). It is expressed in two significant figures because the number of moles (2.0) has two significant figures.

958 Math Handbook Matt Meadows Math Handbook

PRACTICE Problems

16. Convert the following measurements as indicated. a. 4 m = ____cm i. 2.7 × 10 2 L = ____mL b. 50.0 cm = ____m j. 7.3 × 10 5 mL = ____L c. 15 cm = ____mm k. 8.4 × 10 10 m = ____km d. 567 mg = ____g l. 3.8 × 10 4 m 2 = ____m m 2 e. 324 mL = ____L m. 6.9 × 1 0 12 c m 2 = ____ m 2 f. 28 L = ____mL n. 6.3 × 1 0 21 m m 3 = ____c m 3 g. 4.6 × 1 0 3 m = ____mm o. 9.4 × 10 12 c m 3 = ____ m 3 h. 8.3 × 1 0 4 g = ____kg p. 5.7 × 1 0 20 c m 3 = ____k m 3

Drawing Line Graphs Scientists, such as the one shown in Figure 11, as well as you and your classmates, use graphing to analyze data gathered in experiments. Graphs provide a way to visualize data in order to determine the mathe- matical relationship between the variables in your experiment. Line graphs are used most often. Figure 11 also shows a line graph. Line graphs are drawn by plotting variables along two axes. Plot the independent variable on the x-axis (horizontal axis), also called the abscissa. The independent variable is the quantity controlled by the person doing the experiment. Plot the dependent variable on the y-axis (vertical axis), also called the ordinate. The dependent variable is the variable that depends on the independent variable. Label the axes with the variables being plotted and the units attached to those variables.

■ Figure 11 Once experimental data have been collected, they must be analyzed to determine the relationships between the measured variables.

Graph of Line with Point A y-axis

(x, y)

x-axis Dependent variable

0 Origin 0 Independent variable

This research scientist might use graphs to analyze the Any graph of your data should include labeled data she collects on ultrapure water. x- and y-axes, a suitable scale, and a title.

Math Handbook 959 ©Bill Aron/Photo Edit Math Handbook

■ Figure 12 To plot a point on a graph, place a dot at the location for each Density of Water Experimental Data ordered pair (x,y) determined by your data. In the Density of Water graph, the 70 70 dot marks the ordered pair (40 mL, 40 g). 60 60 Generally, the line or curve that you draw

will not include all of your experimental ) 50 50 g ( data points, as shown in the Experimental 40 A (x, y) 40 Data graph. Mass (g) Mass 30 30 20 20 10 10 0 0 0 10203040506070 0 10203040506070 Volume (mL) Volume (mL)

Determining a scale An important part of graphing is the selection of a scale. Scales should be easy to plot and easy to read. First, examine the data to determine the highest and lowest values. Assign each division on the axis (the square on the graph paper) with an equal value so that all data can be plotted along the axis. Scales divided into multiples of 1, 2, 5, or 10, or decimal values, are often the most convenient. It is not necessary to start at zero, nor is it necessary to plot both variables to the same scale. Scales must, however, be labeled clearly with the appropriate numbers and units. Plotting data The values of the independent and dependent variables form ordered pairs of numbers, called the x-coordinate and the y-coordinate (x,y), that correspond to points on the graph. The first number in an ordered pair always corresponds to the x-axis; the second number always corresponds to the y-axis. The ordered pair (0,0) is always the origin. Sometimes, the points are named by using a letter. In Figure 12, Point A on the Density of Water graph corresponds to Point (x,y). After the scales are chosen, plot the data. To graph or plot an ordered pair means to place a dot at the point that corresponds to the values in the ordered pair. The x-coordinate indicates how many units to move right (if the number is positive) or left (if the number is negative). The y-coordinate indicates how many units to move up or down. Which direction is positive on the y-axis? Negative? Locate each pair of x- and y-coordinates by placing a dot, as shown in Figure 12 in the Density of Water graph. Sometimes, a pair of rulers, one extending from the x-axis and the other from the y-axis, can ensure that data are plotted correctly. Drawing a curve Once the data is plotted, a straight line or a curve is drawn. It is not necessary to make it go through every point plotted, or even any of the points, as shown in the Experimental Data graph in Figure 12. Graphing data is an averaging process. If the points do not fall along a line, the best-fit line or most-probable smooth curve through the points is drawn. Note that curves do not always go through the origin (0,0).

960 Math Handbook Math Handbook

Naming a graph Last but not least, give each graph a title that describes what is being graphed. The title should be placed at the top of the page, or in a box on a clear area of the graph. It should not cross the data curve. Using Line Graphs Once the data from an experiment has been collected and plotted, the graph must be interpreted. Much can be learned about the relationship between the independent and dependent variables by examining the shape and slope of the curve. Four common types of curves are shown in Figure 13. Each type of curve corresponds to a mathematical rela- tionship between the independent and dependent variables. Direct and inverse relationships In your study of chemistry, the most common curves are the linear, representing the direct relationship (y ∞ x), and the inverse, representing the inverse relationship (y ∞ 1/x), where x represents the independent variable and y represents the dependent variable. In a direct relationship, y increases in value as x increases in value, or y decreases when x decreases. In an inverse relationship, y decreases in value as x increases. An example of a typical direct relationship is the increase in volume of a gas with increasing temperature. When the gases inside a hot-air balloon are heated, the balloon gets larger. As the balloon cools, its size decreases. However, a plot of the decrease in pressure as the volume of a gas increases yields a typical inverse curve. You might also encounter exponential and root curves in your study of chemistry. See Figure 13. An exponential curve describes a relation- ship in which one variable is expressed by an exponent. A root curve describes a relationship in which one variable is expressed by a root.

■ Figure 13 The shape of the curve formed by a plot of experimental data indicates how the variables are related.

Linear curve a Inverse curve y x b 1 ∝ y ∝ -x

Exponential curve Root curve n y ∝ x n y ∝ x c d (n > 1) (n > 1)

Math Handbook 961 Math Handbook

■ Figure 14 A steep slope indicates Density of Water that the dependent variable changes rapidly with a change in the indepen- 70 dent variable. 60 Infer What would an almost flat

line indicate? 50 (x2, y2) 40 Rise

Mass (g) 30

20 (x1, y1) 10 Run 0 0 10203040506070 Volume (mL)

The linear graph The linear graph is useful in analyzing data because a linear relationship can be translated easily into equation form using the equation for a straight line. y = mx + b In the equation, y stands for the dependent variable, m is the slope of the line, x stands for the independent variable, and b is the y-intercept, the point where the curve crosses the y-axis. The slope of a linear graph is the steepness of the line. Slope is defined as the ratio of the vertical change (the rise) to the horizontal change (the run) as you move from one point to the next along the line. Use the graph in Figure 14 to calculate slope. Choose any two points on the line, (x 1 ,y 1 ) a n d (x 2 ,y 2 ). The two points need not be actual data points, but both must fall somewhere on the straight line. After selecting two points, calculate slope, m, using the following equation.

_rise _∆y _ y 2 − y 1 m = = = , w h e r e x 1 ≠ x 2 run ∆x x2 − x1

The symbol ∆ stands for change, x 1 a n d y 1 are the coordinates or values of the first point, and x 2 a n d y 2 are the coordinates of the second point. Choose any two points along the graph of mass v. volume in Figure 15, and calculate its slope. 135 g − 54 g m = __ = 2.7 g/c m 3 50.0 c m 3 − 20.0 c m 3 Note that the units for the slope are the units for density. Plotting a graph of mass versus volume is one way of determining the density of a substance. Apply the general equation for a straight line to the graph in Figure 15.

y = mx + b mass = (2.7 g/cm 3 )(volume) + 0 mass = (2.7 g/c m 3 )(volume)

962 Math Handbook Math Handbook

■ Figure 15 Interpolation and extrap- Density of Aluminum olation will help you determine the values 160.0 Data of points you did not plot. 140.0 Volume (mL) Mass (g) 120.0 100.0 20.0 54.0

80.0 30.0 81.0

Mass (g) 60.0 50.0 135.0 40.0 20.0 0 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 Volume (mL)

Once the data from the graph in Figure 15 has been placed in the general equation for a straight line, this equation verifies the direct rela- tionship between mass and volume. For any increase in volume, the mass also increases. Interpolation and extrapolation Graphs also serve functions other than determining the relationship between variables. They permit interpolation, the prediction of values of the independent and dependent variables. For example, you can see in the table in Figure 15 that the mass of 40.0 c m 3 of aluminum was not measured. However, you can interpolate from the graph that the mass would be 108 g. Graphs also permit extrapolation, which is the determination of points beyond the measured points. To extrapolate, draw a broken line to extend the curve to the desired point. In Figure 15, you can determine that the mass at 10.0 cm 3 equals 27 g. One caution regarding extrapolation—some straight-line curves do not remain straight indefi- nitely. So, extrapolation should only be done where there is a reasonable likelihood that the curve does not change.

PRACTICE Problems

17. Plot the data in each table. Explain whether the graphs represent direct or inverse relationships.

Table 3 Effect of Pressure on Gas Table 4 Effect of Pressure on Gas Pressure Volume Pressure Temperature (mm Hg) (mL) (mm Hg) (K) 3040 5.0 3040 1092 1520 10.0 1520 546 1013 15.0 1013 410 760 20.0 760 273

Math Handbook 963 Math Handbook

Ratios, Fractions, and Percents When you analyze data, you may be asked to compare measured quanti- ties. Or, you may be asked to determine the relative amounts of ele- ments in a compound. Suppose, for example, you are asked to compare the molar masses of the diatomic gases, hydrogen (H 2 ) and oxygen ( O 2 ) . The molar mass of hydrogen gas equals 2.00 g/mol; the molar mass of oxygen equals 32.00 g/mol. The relationship between molar masses can be expressed in three ways: a ratio, a fraction, or a percent. Ratios You make comparisons by using ratios in your daily life. For example, if the mass of a dozen limes is shown in Figure 16, how does it compare ■ Figure 16 The mass of one to the mass of one lime? The mass of one dozen limes is 12 times larger lime would be one-twelfth the mass than the mass of one lime. In chemistry, the for a of one dozen limes. compound compares the elements that make up that compound, as shown in Figure 17. A ratio is a comparison of two numbers by division. One way it can be expressed is with a colon (:). The comparison between the molar masses of oxygen and hydrogen can be expressed as follows.

molar mass ( H 2 ):molar mass ( O 2 ) 2.00 g/mol:32.00 g/mol 2.00:32.00 1:16

■ Figure 17 In a crystal of table Notice that the ratio 1:16 is the smallest integer (whole number) ratio. salt (sodium chloride), each sodium It is obtained by dividing both numbers in the ratio by the smaller num- ion is surrounded by chloride ions, ber, and then rounding the larger number to remove the digits after the yet the ratio of sodium ions to decimal. The ratio of the molar masses is 1 to 16. In other words, the chloride ions is 1:1. The formula ratio indicates that the molar mass of diatomic hydrogen gas is 16 times for sodium chloride is NaCl. smaller than the molar mass of diatomic oxygen gas. Fractions Ratios are often expressed as fractions in simplest form. A fraction is a quotient of two numbers. To express the comparison of the molar masses as a fraction, place the molar mass of hydrogen over the molar mass of oxygen as follows. m o l a r m a s s H __ 2 m o l a r m a s s O 2 2.0 g/mol = _ 32.00 g/mol 2.00 = _ 32.00 1 = _ 16 In this case, the simplified fraction is calculated by dividing both the numerator (top of the fraction) and the denominator (bottom of the fraction) by 2.00. This fraction yields the same information as the ratio. That is, diatomic hydrogen gas has one-sixteenth the mass of diatomic oxygen gas.

964 Math Handbook Matt Meadows Math Handbook

Percents A percent is a ratio that compares a number to 100. The symbol for percent is %. You also are used to working with percents in your daily life. The number of correct answers on an exam can be expressed as a percent. If you answered 90 out of 100 questions correctly, you would receive a grade of 90%. Signs like the one in Figure 18 indicate a reduc- tion in price. If the item’s regular price is $100, how many dollars would you save? Sixty percent means 60 of every 100, so you would save $60. How much would you save if the sign said 75% off? The comparison between molar mass of hydrogen gas and the molar mass of oxygen gas described on the previous page can also be expressed as a percent by taking the fraction, converting it to decimal form, and multiplying by 100 as follows. m o l a r m a s s H 2.00 g/mol __ 2 × 100 = _ × 100 = 0.0625 × 100 = 6.25% ■ Figure 18 m o l a r m a s s O 2 32.00 g/mol Stores often use percentages when advertising sales. Diatomic hydrogen gas has 6.25% of the mass of diatomic oxygen gas. Analyze Would the savings be large at this sale? How would Operations Involving Fractions you determine the sale price? Fractions are subject to the same type of operations as other numbers. Remember that the number on the top of a fraction is the numerator and the number on the bottom is the denominator. Figure 19 shows an example of a fraction. 1. Addition and subtraction Before two fractions can be added or subtracted, they must have a common denominator. Common denominators are found by finding ■ Figure 19 the least common multiple of the two denominators. Finding the least When two numbers are divided, the one on top is the common multiple is often as easy as multiplying the two denominators numerator and the one on the together. For example, the least common multiple of the denominators bottom is the denominator. The 1 1 of the fractions _ a n d _ is 2 × 3 or 6. result is called the quotient. When 2 3 you perform calculations with 1 1 3 1 2 1 3 2 5 _ + _ = _ × _ + _ × _ = _ + _ = _ fractions, the quotient can be 2 3 (3 2 ) (2 3) 6 6 6 expressed as a fraction or a decimal. Sometimes, one of the denominators will divide into the other, which makes the larger of the two denominators the least common multiple. Dividend 1 1 (numerator) For example, the fractions _ a n d _ have 6 as the least common multiple 2 6 denominator. 8 = 9 × 10 1 1 3 1 1 3 1 4 Quotient 3 × 10-4 _ + _ = _ × _ + _ = _ + _ = _ 2 6 (3 2) 6 6 6 6 In other situations, both denominators will divide into a number that is Divisor 1 1 not the product of the two. For example, the fractions _ a n d _ have the (denominator) 4 6 number 12 as their least common multiple denominator, rather than 24, the product of the two denominators. The least common denominator can be deduced as follows: 1 1 4 1 6 1 4 6 2 3 5 _ + _ = _ × _ + _ × _ = _ + _ = _ + _ = _ 6 4 (4 6) (6 4) 24 24 12 12 12 Because both fractions can be simplified by dividing numerator and denominator by 2, the least common multiple must be 12.

Math Handbook 965 ©Elena Rooraid/Photo Edit Math Handbook

2. Multiplication and division When multiplying fractions, the numerators and denominators are multiplied together as follows: 1 2 1 × 2 2 1 _ × _ = _ = _ = _ 2 3 2 × 3 6 3 Note the final answer is simplified by dividing the numerator and denominator by 2. When dividing fractions, the divisor is inverted and multiplied by the dividend as follows: 2 1 2 2 2 × 2 4 _ ÷ _ = _ × _ = _ = _ 3 2 3 1 3 × 1 3

PRACTICE Problems

18. Perform the indicated operation: 2 3 1 3 a. _ + _ e. _ × _ 3 4 3 4 4 3 3 2 b. _ + _ f. _ × _ 5 10 5 7 1 1 5 1 c. _ − _ g. _ ÷ _ 4 6 8 4 7 5 4 3 d. _ − _ h. _ ÷ _ 8 6 9 8

Logarithms and Antilogarithms When you perform calculations, such as the pH of the products in Figure 20, you might need to use the log or antilog function on your calculator. A logarithm (log) is the power or exponent to which a num- ber, called a base, must be raised in order to obtain a given positive number. This textbook uses common logarithms based on a base of 10. Comparison Therefore, the common log of any number is the power to which 10 Between is raised to equal that number. Examine Table 5 to compare logs and Table 5 Exponents exponents. Note the log of each number is the power of 10 for the and Logs exponent of that number. For example, the common log of 100 is 2, and the common log of 0.01 is −2. Exponent Logarithm log 1 0 2 = 2 1 0 0 = 1 log 1 = 0 log 1 0 − 2 = −2 1 0 1 = 10 log 10 = 1 A common log can be written in the following general form. 1 0 2 = 100 log 100 = 2 If 1 0 n = y, then log y = n. -1 1 0 = 0.1 log 0.1 = -1 In each example in Table 5, the log can be determined by inspection. 1 0 -2 = 0.01 log 0.01 = -2 How do you express the common log of 5.34 × 1 0 5 ? Because logarithms are exponents, they have the same properties as exponents, as shown in Table 6 on the next page. log 5.34 × 1 0 5 = log 5.34 + log 1 0 5

966 Math Handbook Math Handbook

Table 6 Properties of Exponents

Exponential Notation Logarithm 1 0 A × 1 0 B = 1 0 A + B log (A × B) = log A + log B 1 0 A ÷ 1 0 B = 1 0 A − B log (A ÷ B) = log A − log B A B (log A) × B

Significant figures and logarithms Most scientific calculators have a button labeled log and, in most cases, you enter the number and push the log button to display the log of the number. Note that there is the same number of digits after the decimal in the log as there are significant figures in the original number entered. log 5.34 × 1 0 5 = log 5.34 + log 10 5 = 0.728 + 5 = 5.728 Antilogarithms Suppose the pH of the aqueous ammonia in Figure 20 is 9.54 and you are asked to find the concentration of the hydrogen ions in that solu- tion. By definition, pH =−log [H +]. Compare this to the general equa- tion for the common log. Equation for pH: pH =−log [H +] General equation: y = log 1 0 n To solve the equation for [ H +], you must follow the reverse process and + calculate the antilogarithm (antilog) of −9.54 to find [H ]. ■ Figure 20 Ammonia is a base. Antilogs are the reverse of logs. To find the antilog, use a scientific That means its hydrogen ion calculator to input the value of the log. Then, use the inverse function concentration is less than 1 0 −7 M. and press the log button. The number of digits after the decimal in the log equals the number of significant figures in the antilog. An antilog can be written in the following general form. If n = antilog y, then y = 10 n. Thus, [ H + ] = antilog(−9.54) = 1 0 − 9.54 = 10 (0.46 − 10) = 10 0.46 × 10 −10 = 2.9 × 10 −10M Check the instruction manual for your calculator. The exact procedure to calculate logs and antilogs might vary.

PRACTICE Problems

19. Find the log of each of the following numbers. a. 367 b. 4078 c. X n 20. Find the antilog of each of the following logs. a. 4.663 b. 2.367 c. 0.371 d. −1.588

Math Handbook 967 Geoff Butler Table R-1 Color Key

Sodium/ Carbon Bromine Other metals

Hydrogen Iodine Gold

Oxygen Sulfur Copper

Nitrogen Phosphorus Electron

Chlorine Silicon Proton

Fluorine Helium Neutron

Table R-2 Symbols and Abbreviations

α = rays from radioactive E = energy, electromotive force N = newton (force) materials, helium nuclei F = force N A = Avogadro’s number β= rays from radioactive G = free energy n = number of moles materials, electrons g = gram (mass) P = pressure, power γ = rays from radioactive Gy = gray (radiation) Pa = pascal (pressure) materials, high-energy H = enthalpy q = heat quanta Hz = hertz (frequency) Q sp = ion product ∆= change in h = Planck’s constant R = ideal gas constant λ = wavelength h = hour (time) S = entropy ν = frequency J = joule (energy) s = second (time) A = ampere (electric current) K = kelvin (temperature) Sv = sievert (absorbed radiation) amu = atomic mass unit K a = ionization constant (acid) T = temperature Bq = becquerel (nuclear K b = ionization constant (base) V = volume disintegration) K eq = equilibrium constant V = volt (electric potential) °C = Celsius degree (temperature) K sp = solubility product constant v = velocity C = coulomb (quantity of kg = kilogram (mass) W = watt (power) electricity) M = molarity w = work c = speed of light m = mass, molality X = mole fraction cd = candela (luminous intensity) m = meter (length) c = specific heat mol = mole (amount) D = density min = minute (time)

968 Reference Tables Reference Tables

Table R-3 Solubility Product Constants at 298 K

Compound K sp Compound K sp Compound K sp Halides Hydroxides -9 -11 -33 BaC O 3 2.6 × 1 0 Ca F 2 3.5 × 10 Al(OH ) 3 4.6 × 10 -9 -6 -6 CaC O 3 3.4 × 1 0 PbB r 2 6.6 × 10 Ca(OH ) 2 5.0 × 10 -10 -5 -20 CuC O 3 2.5 × 10 PbC l 2 1.7 × 10 Cu(OH ) 2 2.2 × 10 -14 -8 -17 PbC O 3 7.4 × 10 Pb F 2 3.3 × 10 Fe(OH ) 2 4.9 × 10 -6 -9 -39 MgC O 3 6.8 × 10 Pb I 2 9.8 × 1 0 Fe(OH ) 3 2.8 × 10 -12 -10 -12 A g 2 C O 3 8.5 × 10 AgCl 1.8 × 10 Mg(OH ) 2 5.6 × 10 -10 -13 -17 ZnC O 3 1.5 × 10 AgBr 5.4 × 10 Zn(OH ) 2 3 × 1 0 -17 -17 H g 2 C O 3 3.6 × 10 AgI 8.5 × 10 -10 Chromates BaS O 4 1.1 × 10 -10 -21 -5 BaCr O 4 1.2 × 10 AlP O 4 9.8 × 10 CaS O 4 4.9 × 10 -13 -33 -8 PbCr O 4 2.3 × 10 C a 3 (P O 4 ) 2 2.1 × 10 PbS O 4 2.5 × 10 -12 -24 -5 A g 2 Cr O 4 1.1 × 10 M g 3 (P O 4 ) 2 1.0 × 10 A g 2 S O 4 1.2 × 10 -22 Iodates Fe(P O 4 ) 2 1.0 × 10 -8 -32 -36 Cd(I O 3 ) 2 2.3 × 10 N i 3 (P O 4 ) 2 4.7 × 10 P b 3 (As O 4 ) 2 4.0 × 10

Table R-4 Physical Constants Quantity Symbol Value Atomic mass unit amu 1.6605 × 10 -27 Avogadro’s number N 6.022 × 10 23 particles/mole Ideal gas constant R 8.31 L·kPa/mol·K 0.0821 L·atm/mol·K 62.4 mm Hg·L/mol·K 62.4 torr·L/mol·K -31 Mass of an electron m e 9.109 × 1 0 kg 5.485799 × 1 0 -4 amu -27 Mass of a neutron m n 1.67492 × 1 0 kg 1.008665 amu -27 Mass of a proton m p 1.6726 × 1 0 kg 1.007276 amu Molar volume of ideal gas at STP V 22.414 L/mol

Normal boiling point of water T b 373.15 K 100.0°C

Normal freezing point of water T f 273.15 K 0.00°C Planck’s constant h 6.6260693 × 1 0 -34 J·s Speed of light in a vacuum c 2.997925 × 1 0 8 m/s

Reference Tables 969 Reference Tables

Table R-5 Names and Charges of Polyatomic Ions 1- 2- 3- 4- - 2- 3- , CH 3 CO O Carbonate, C O3 , As O4 Hexacyanoferrate (II), - 2- 3- 4- Amide, N H2 Chromate, Cr O4 Arsenite, As O3 Fe(CN ) 6 - 2- 3- 4- Astatate, At O3 Dichromate, C r2 O 7 Borate, B O3 Orthosilicate, Si O4 - 3- 4- Azide, N 3 Hexachloroplatinate, Citrate, C 6 H 5 O 7 Diphosphate, P 2 O7 - 2- Benzoate, C 6 H 5 CO O PtC l6 Hexacyanoferrate (III), - 2- 3- Bismuthate, Bi O 3 Hexafluorosilicate, Si f6 Fe(CN )6 - 2- 3- , Br O 3 Molybdate, Mo O4 Phosphate, PO 4 - 2- 3- Chlorate, Cl O 3 , C2 O 4 Phosphite, PO 3 - 2- , Cl O 2 Peroxide, O 2 1+ 2+ - 2- Cyanide, CN Peroxydisulfate, S2 O 8 + 2+ Ammonium, N H 4 Mercury(I), H g 2 - 2- Formate, HCO O Ruthenate, Ru O4 + 2+ Neptunyl(V), Np O2 Neptunyl(VI), Np O 2 - 2- Hydroxide, O H Selenate, Se O4 + 2+ Plutonyl(V), Pu O2 Plutonyl(VI), Pu O2 - 2- , Br O Selenite, Se O3 + 2+ Uranyl(V), U O2 Uranyl(VI), U O2 - 2- Hypochlorite, Cl O Silicate, Si O 3 + 2+ Vanadyl(V), VO 2 Vanadyl(IV), VO - 2- Hypophosphite, H2 P O 2 Sulfate, SO 4 - 2- Iodate, IO 3 , SO 3 - 2- Nitrate, N O3 Tartrate, C 4 H 4 O 6 - 2- , N O2 Tellurate, Te O4 - 2- , Br O4 Tellurite, Te O3 - 2- , Cl O4 Tetraborate, B4 O 7 - 2- , I O4 , S 2 O 3 - 2- , Mn O4 Tungstate, W O4 - Perrhenate, Re O4 , SC N - - Vanadate, V O3

Table R-6 Ionization Constants Ionization Ionization Ionization Substance Substance Substance Constant Constant Constant

-4 -2 -14 - -19 HCOOH 1.77 × 10 HB O3 1.58 × 10 H S 1.00 × 1 0 -5 -7 - -2 C H3 COOH 1.75 × 10 H 2 C O 3 4.5 × 1 0 HS O4 1.02 × 1 0 -3 - -11 -2 C H2 ClCOOH 1.36 × 10 HC O 3 4.68 × 1 0 H 2 S O 3 1.29 × 1 0 -2 -10 - -8 CHC l2 COOH 4.47 × 10 HCN 6.17 × 1 0 HS O3 6.17 × 1 0 -1 -4 - -2 CC l3 COOH 3.02 × 10 HF 6.3 × 1 0 HSe O4 2.19 × 1 0 -2 -4 -3 HOOCCOOH 5.36 × 10 HN O 2 5.62 × 1 0 H 2 Se O 3 2.29 × 1 0 - -4 -3 - -9 HOOCCO O 1.55 × 10 H 3 P O 4 7.08 × 1 0 HSe O3 4.79 × 1 0 -5 - -8 -9 C H3 C H 2 COOH 1.34 × 10 H 2 P O 4 6.31 × 1 0 HBrO 2.51 × 1 0 -5 2- -13 -8 C 6 H 5 COOH 6.25 × 10 HP O4 4.17 × 1 0 HClO 2.9 × 1 0 -3 -2 -11 H 3 As O 4 6.03 × 10 H 3 P O 3 5.01 × 1 0 HIO 3.16 × 1 0 - -7 - -7 -10 H 2 As O 4 1.05 × 10 H 2 P O 2 2.00 × 1 0 N H3 5.62 × 1 0 -10 -2 -9 H 3 B O 3 5.75 × 10 H 3 P O 2 5.89 × 1 0 H 2 NN H 2 7.94 × 1 0 - -13 -8 -6 H 2 B O 3 1.82 × 10 H 2 S 9.1 × 1 0 H 2 NOH 1.15 × 1 0

970 Reference Tables

Reference Tables States + + , 5 , 5

+ + + Major Oxidation Major + + , 4 , 4 , 6 , 3 , 3 + + + + + + + + + + + + + + + + + + + + + , 5 , 4 , 3 , 5 , 5 , 3 , 3 , 5 , 2 , 4 , 3 , 3 , 3 , 4 , 2 , 4 , 1 , 1 , 3 , 4 , 3 + + + + + + + + + + + + + + + + - - + + + + + + + - + + +

- -

+ + +

Crust --- 3 2 1 2 3 2

4 4 5 4 4 4 4 3 2 3 3 1 2 3 1 Earth’s Earth’s 5 4 7 4 4 4 4 7 ------

------Abundance in in Abundance 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1

× × × × × × ×

× × × × × × × ×

Vaporization

Enthalpy of of Enthalpy

Specific Heat Specific

of Fusion of

Enthalpy Enthalpy

state indicated) state

om om

or to oxidation oxidation to or

(for elements fr elements (for Potential (V) (V) Potential

0.530.124 5.576 36.94 0.373 0.320 254 334 0.0019 1.4 1 2.841.93 8.54 ---1.358 0.647 --- 155 6.40 0.479 --- 5.00 20.41 2 --- 0.017 3 1 0.317 11.1451.065 0.122 10.57 151 0.474 3 29.96 3 1.99 9.21 0.182 175 1.8 2.131.682.070.15 14 10.789 14.39 0.897 0.120 19.79 0.110 294 400 0.207 --- 68 8.2 --- 2 --- 3 3 2 0.24 24.44 0.329 32.4 2.1 1.52 12.72 0.129 324 3 0.2 6 --- 400.1322.34 117 --- 5.46 1 0.709 0.192 715 350 0.018 0.006 4 3 1.96 ------2 0.740.28 21.0 16.06 0.449 0.421 339 375 0.014 0.003 2 2 0.89 50.2 1.026 480 9 22.32 --- 19.9 0.168 --- 285 --- 3 --- 3 0.4025 6.21 0.232 99.87 1.5 2.922.01 7.12 --- 0.204 --- 140 --- 0.0342.923 2 --- 2.09 3 0.242 65 1.9 2.872.922.28 0.51 2 0.824 10.0 --- 0.236 6.62 305 0.054 65 5.2 1 --- 1 0.34 12.93 0.385 300 0.0068 1 1.97 7.895 1.825 297 2 2.06 ------3 2.29 11.06 0.173 280 6 Standard Reduction Reduction Standard - + - - + + + - - - - + + + + + ------+ - - + - - - ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

+ + + + - + - + + + + + + + - - + + + + + + + + + + + - + + + + + +

(kJ/mol)

Energy Energy

First Ionization First

(pm)

Atomic Radius Radius Atomic

at STP) at

)

cm cm 3 (gases measured measured (gases of Elements Properties (g/ Density

R-7

(°C) Boiling Point Point Boiling 34 0.003 100 1251.2 (1 185.8 0.001784 98 1521 --- 1.18 0.520 6.43 1.5 188.12 0.001696 71 1681 (1 -

- -

Table Table

(°C) Melting Point Point Melting 101.5 189.3 219.62

- - -

(amu)

Atomic Mass* Mass* Atomic

Atomic Number Atomic

Symbol Element CalciumCalifornium Cf CaChlorine 20 98 [251] Cl 40.078 842 900 17 35.453 1484 --- 1.55 15.1 197 --- 589.8 (2 608 (3 BismuthBromine Bi Br 83 208.98040 35 271.3 79.904 1564 –7.3 9.78 59 150Europium 3.119 703 Eu 114 (3 1139.9 63 (1 151.964 826 1527 5.244 --- 547.1 (3 ActiniumAluminumAmericiumAntimony Ac Al Am Sb 89 [227] 13 95 [243] 26.981539 51 121.760 660.32 1050 2519 1176 630.6 3300 2607 2.7 1587 10.07 13.67 6.697 143 ------140 577.5 499 (3 578 834 (3 (3 (3 Arsenic As 33 74.92160 817 614 5.727 120 947 (3 Astatine At 85 [210]CarbonCerium 302 C --- Ce --- 6 58 140.116 12.0107 140 3527 795Fermium 920 4027 3360 (1 2.267 Fm 6.689 77 --- 100 [257] 1086.5 534.4 (4 1527 (3 ------627 (3 ChromiumCobalt Cr Co 24 51.9961 27 58.9332 1907 1495 2671 2927 7.14 8.9 128 125 652.9 (3 760.4 (2 Argon ArBohriumBoron 18 39.948 Bh B 107 [264] 5 10.811 --- 2076 --- 3927EinsteiniumErbium --- 2.46 Es Er --- 85 99 [252] 800.6 --- 68 167.259 (3 --- 860 1497 --- 2868 ------9.066 ------589.3 619 (3 --- (3 --- Cadmium Cd 48 112.411 321.07 767 8.65 151 867.8 (2 BariumBerkelium Ba Bk 56 97 137.327 [247]Cesium 727 986 1870 Cs --- 3.51 14.78 55 222 132.905451 --- 502.9 28.4 (2 Fluorine 601 671FranciumGadolinium (3 1.879 F Fr Gd 265 9 87 375.7 64 [223] 157.25 18.9984032 (1 1312 --- 3250 --- 7.901 ------270 593.4 (3 380 (1 Copper Cu 29 63.546 1084.62 2927 8.92 128 745.5 (2 Beryllium Be 4 9.012182 1287 2469 1.848 112 899.5 (2 Curium Cm 96 [247] 1340 3110 13.51 --- 581 (3 DarmstadtiumDubniumDysprosium Ds Db Dy 110 [281] 105 66 [262] 162.5 --- 1407 ------2567 ------8.551 ------573 --- (3 ------GalliumGermanium Ge Ga 32 31 72.64 69.723 938.3 29.76 2204 2820 5.904 5.323 135 122 578.8 762 (3 (4 Gold Au 79 196.966569 1064 2856 19.3 144 890.1 (3 *[ ] indicates mass of longest-lived isotope

Reference Tables 971 Reference Tables , + + +

, 7 , 6 , 2 States + + + + + +

, 6 , 5 , 6 , 1 , 7 , 6 Major Oxidation Major - + + + + + + + + + + + , 4 , 6 , 4 , 4 , 8 , 5 , 5 , 4 , 5 , 5 , 1 , 5 + + + + + + + + + - + + + + + + + + + + + - + + , 3 , 4 , 3 , 3 , 5 ,3 , 3 , 3 , 5 , 6 , 1 , 4 , 3 , 4 , 4 , 3 , 1 , 2 , 3 , 2 , 1 , 4 , 2 , 4 + + + + + + + + + + + + + + - + - + - + + + + + - + + - - + +

3 3 1 3

Crust --- 1 1 --- 3 4 4 2 2

4 4 5 5 7 5 6 4 7 7 7 4 3 Earth’s Earth’s 4 7 ------

- - Abundance in in Abundance 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

× × × × × × × × × × ×

× ×

Vaporization

Enthalpy of of Enthalpy

Specific Heat Specific

of Fusion of

Enthalpy Enthalpy

state indicated) state

om om

or to oxidation oxidation to or

(for elements fr elements (for Potential (V) (V) Potential

2.33 17.00.535 0.165 15.52 2652.38 0.21420.1251 1.2 41.573.040 6.20 4.9 2.3 4.782 --- 0.1952.356 3.00 0.1301.18 400 22 --- 3.582 8.48 179.51.7 12.910.8535 147 1.023 0.154 0.0034 0.001 --- 0.4792.32 --- 3 2.29 128 415 2 220 0.00171.30 0.140 --- 1 0.257 7.14 5.6 --- 2.90.65 59.11 0.11 0.190 3.20 3 17.040.23 2 --- 6.7 2 30 285 0.120 0.444 0.71 3351.23 378 0.265 --- 0.00330.915 1.0400.063 2 690 2 1.15 0.44 16.74 0.009 ---1.25 5.57 0.66 0.918 2 0.246 0.0017 2 22.17 0.002 0.769 4 2.82 380 6.82 0.133 12.4 0.130 490 6.3 46.0 325 0.10 2 3.7 3 --- 3 0.04 13.81 0.449 347 6.3 2 1.70 27.2 0.1440.3382 630 3.281 3 0.233 230 1.6 0.114 37.48 0.251 600 1.1 2.50.687 --- 57.85 0.130 --- 630 --- 1.8 --- 2 0.926 41.12 0.131 560 4 0.73 13 --- 100 --- 2 Standard Reduction Reduction Standard - + ------+ - - - - - + + - + - - - - + - + + + ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )0.000) 0.12 14.304 0.90 0.15 1 ) ) ) ) )

+ - + + + + + + + + + + + + + - - + - + + + + + + + + + + +

Energy (kJ/mol) Energy

First Ionization First

(pm)

Atomic Radius Radius Atomic

at STP) at

)

cm cm 3 (gases measured measured (gases

Density (g/ (g/ Density

(°C) of Elements (continued) Properties Point Boiling 195.79 0.0012506 75182.9 0.001429 1402.3 73 (2 1313.9 (2 153.22 0.0037493 112 1350.8 --- 1.64 0.248 9.08 1.5 252.87 0.0000899 37 1312 (1 268.93 0.00017847 31 2372 --- 0.021 5.193 0.08 ---246.08 --- 0.0008999 71 2080.7 --- 0.328 1.030 1.71 ------

- -

R-7 (°C) Melting Point Point Melting 38.83 356.73 13.6 151 1007.1 (2 269.7 272.2 --- 0.0001785 --- 2372.3 ------0.083 5.5 248.59 210.1 218.3 157.36 259.14 -

- (2536 kPa) ------

Table Table

(amu)

Atomic Mass* Mass* Atomic

Atomic Number Atomic

Symbol Element HeliumHolmium HeIodine Ho 2Lanthanum 67 ILawrencium 164.93032 4.002602 LeadLithium 1461 La LrLutetium 53Magnesium 2720 126.90447Manganese 57 PbMeitnerium 103 Li 138.9055 113.7 Lu 8.795Mendelevium Mg [262]Mercury Mn 184.3 Mt 82 920 Md ---Neodymium 3 12 71 207.2 1627 4.94Neon 25 174.967 24.305 3470 6.941Neptunium Hg 109 101 581 54.938045 Nd [268]Nickel [258] --- 1652 133Niobium 327.46 6.146 1246 650 (3 180.54 Np 80Nitrogen 1749 Ne --- 1008.4 60 3402 1342 200.59 2061 187 1090 827 --- 144.24 Ni 11.34 (1 Nb 93 9.841Oxygen 0.535 10 7.47 N 538.1 [237] 1.738 ---Palladium 1024 ------20.1797 146Phosphorus (3 28 41 160 152Platinum 160 127 58.6934 ------3100 92.90638Plutonium 0 --- 715.6 7 637 Pd P 523.5 520.2 2477 737.7 717.3 1455 14.0067 (2 6.8 (3 (3 (1 Pt 4000 (2 (2 Pu ------46 4744 8 2913 15 20.45 106.42 --- 15.9994 30.973462 78 635 8.57 8.908 94 --- 195.078 [244] 1554.9 --- 44.2 533.1 (3 --- 124 146 2963 1768.3 (3 277 604.5 639.4 737.1 3825 12.023 652.1 (4 1.823 (2 3230 (5 21.09 --- 137 19.816 110 --- 138 804.4 1011.8 --- (2 870 (3 --- 584.7 (4 (4 ------Hassium Hs 108Iron [277] Krypton Kr Fe 26 36 55.845 83.798 1538 2861 7.874 126 762.5 (3 Hafnium HfHydrogenIndium 72 178.49 H In 2233 I 49 4603 1.00794 114.818 13.31 156.6 159 2072Molybdenum 658.5 7.31 (4 Mo 167 42 558.3 95.94 (3 2623 4639 10.28 139 684.3 (6 NobeliumOsmium No Os 102 [259] 76 190.23 827 3033 --- 5012 --- 22.61 135 --- 840 642 (4 (2 Iridium Ir 77 192.217 2466 4428 22.65 136 880 (4 Polonium Po 84 [209] 254 962 9.196 168 812.1 (4 *[ ] indicates mass of longest-lived isotope

972 Reference Tables Reference Tables + + + + + + + , 7 , 6 , 5 , 6 , 6 , 7 , 5 + + + + + + + + + + + + , 6 , 4 , 5 , 6 , 4 , 5 , 6 , 5 , 4 , 4 , 4 , 6 + + + + + + + + + + + + + + + + + + + + , 5 , 4 , 5 , 3 , 3 , 4 , 3 , 4 , 4 , 4 , 4 , 3 , 3 , 4 , 4 , 4 , 3 , 2 , 2 , 4 + + + + + + + + + + + + + + + - + + + + + + + + + + + + + + - - + 3 1 1 3 4 2 4 3 2 4 7 4 5 4 4 4 4 3 2 2 2 2 3 --- 4 8 7 4 6 6 7 4 4 5 ------1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 × × × × × × × × × × × × × × × × × 0.76 26.59 0.243 495 7 1.380.236 9.14 21.5 0.116 0.489 420 453 1.8 0.019 2 2.122.22 2.27 7.66 0.158 0.155 12.57 160 trace 2.8 --- 2.9240.68 2.19 38.59 0.363 0.238 72 580 0.006 1 1 2.32 16.84 0.160 250 5 2.3 8.620.143 0.197 50.21 175 0.712 6 3592.31 27.0 10.15 2 0.182 295 1 2.7132.890.14 2.600.81 7.43 1.228 1.72 36.57 0.306 97.7 0.708 0.140 137 45 735 2.3 0.036 1.7 1 0.042 2 2 2.9252.35 2.33 6.89 0.757 0.193 76.9 330 1.50 8.7 1 0.831.14 33.29 17.49 0.240 0.202 5500.86 114.10.09 1 14.15 --- 52.31 0.523 2 0.132 425 800 0.66 1.1 2 2.370.79261.55 11.4 7.068 21.00 0.388 0.298 0.278 119 380 580 0.0079 0.0029 2 3 0.013 4 2.030.11 14.1 0.568 6.69 318 0.321 95.48 0.0026 5 3 0.3363 4.140.15 0.129 7.173 165 0.227 5.3 290 2.2 0.7991 11.28 0.235 255 8 2.291.192.916 7.7 12.340.415 8 ------60.43 0.095 290 0.137 470 125 705 trace --- 2.6 trace 3 3 2 1.83 13.81 0.118 530 6 + - - + - - + ------+ ------+ + - - - + - ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) + + + + + + + + + - + + + - + + + + - + + + + + + - + + + + + + + + of Elements (continued) Properties 61.7 0.00973 140 1037 --- 3 0.094 17 --- 3 108 0.0058971 131 1170.4 (6 - - R-7 71 111.7 - - Table Table Rhodium Rh 45 102.9055 1964 3695 12.45 134 719.7 (3 UnunbiumUnunhexiumUnunoctiumUnunpentium Uub UuhUnunquadium UuoUnuntrium UupUranium 112 Uuq 116 [285]Vanadium [291] 118 Uut 115 [294] [288] 114 U [289] V ------113 [284] ------92 ------23 238.02891 --- 50.9415 ------1132.2 ------1910 --- 3927 ------3407 --- 19.05 ------6.11 ------134 ------597.6 ------(4 650.9 ------(5 ------Ytterbium Yb 70 173.04 824 1196 6.57 --- 603.4 (3 RoentgeniumRubidiumRuthenium Rg Rb Ru 111 [272] 37 44 85.4678 101.07 --- 39.31 2334 --- 688 4150 --- 1.532 12.37Thulium 248 --- 134 403 710.2 Tm --- (1 (4 --- 69 168.93421 1545 --- 1950 --- 9.321 ------596.7 --- (3 --- RutherfordiumSamarium Rf SmSilicon 104 [261] 62 150.36 Si --- 1072Terbium 14 --- 1803 28.0588 --- 1414 7.353 Tb 2900 ------65 158.92534 2.33 544.5 --- 1356 (3 118 --- 3230 786.5 8.219 (4 ------565.8 (3 ------SodiumStrontiumSulfurTantalum Na Sr S Ta 11 38 22.989769 87.62 73 16 97.72 180.9479 32.065 777 883 3017 115.2 1382 0.968 5458 444.7 2.63 16.65 186 1.96 215 495.8 146 103 (1 549.5 761 999.6 (2 (5 (2 PotassiumPraseodymium Pr K 59 19 140.90765 39.0983 935 63.38 3290 759 6.64 0.856 --- 227 527 418.8 (1 (3 TechnetiumTellurium Tc Te 43Titanium [98]Tungsten 52 127.60 Ti 2157 W 449.51 4265 988 22 74 47.867 11.5 183.84 6.24Xenon 1668 3422Yttrium 136 142Zinc 3287Zirconium Xe 5555 702 869.3 Y 4.507 19.25 (6 (2 Zr Zn 54 131.293 147 139 39 40 88.90585 658.8 30 770 91.224 65.409 1526 (4 (6 1855 3336 419.53 4409 907 4.472 6.511 7.14 180 160 134 600 640.1 (3 906.4 (4 (2 ScandiumSeaborgiumSelenium Sc Sg Se 21 106 [266] 44.95591 34 1541 78.96 ---Thallium 2830 221Tin 2.985 --- Tl 685 --- 162 4.819 81 Sn 633.1 204.3822 --- 119 (3 304 50 941 --- 118.710 1473 (1 --- 231.93 11.85 2602 170 7.31 --- 589.4 --- 140 (1 708.6 --- (4 ------Silver Ag 47 107.8682 961.78 2162 10.49 144 731 (1 PromethiumProtactiniumRadium PmRadon PaRhenium Ra 61 [145] 91 Rn Re 231.03588 88 1568 1100 [226] 86 75 [222] 186.207 3000 --- 700 3186 15.37 7.264 1737 5596 ------5 21.02 540 568 137 220 (3 (5 Thorium 760 509.3 (7 (2 Th 90 232.0381 1842 4820 11.72 --- 587 (4 *[ ] indicates mass of longest-lived isotope

Reference Tables 973 Reference Tables

Table R-8 Solubility Guidelines A substance is considered soluble if more than three grams of the substance dissolves in 100 mL of water. The more common rules are listed below. 1. All common salts of the group 1 elements and ammonium ions are soluble. 2. All common and are soluble. 3. All binary compounds of group 17 elements (other than F) with metals are soluble except those of silver, mercury(I), and lead. 4. All sulfates are soluble except those of barium, strontium, lead, calcium, silver, and mercury(I). 5. Except for those in Rule 1, carbonates, hydroxides, oxides, , and phoshates are insoluble.

Solubility of Compounds in Water

Acetate Bromide Carbonate Chlorate Chloride Chromate Hydroxide Iodide Nitrate Oxide Perchlorate Phosphate Sulfate Sufide

Aluminum S S — S S — I S SISISD Ammonium SSSSSSSSS—SSSS Barium S S P S S I SSSSSI ID Calcium S S P SSSSSSPSPPP Copper(II) S S — S S — I — SISISI Hydrogen S S — S S — — SSSSSSS Iron(II) — S P S S — I S SISISI Iron(III) —S—S S I I S S I S P P D Lead(II) S S — S S I P PSPSIPI Lithium SSSSS?SSSSSPSS Magnesium S S P S S S I S S I S P S D Manganese(II) S S P S S — I S S I S P S I Mercury(I) P I I S I P — ISISIPI Mercury(II) S S — S S P I PSPSIDI Potassium SSSSSSSSSSSSSS Silver P I I S I P — I S P S I P I Sodium SSSSSSSSSDSSSS Strontium S S P S S P SSSSSIPS Tin(II) D S — S S O S D ISISI Tin(IV) S S — — S S I D — I S — S I Zinc S S P S S P P S S P SISI S – soluble P – partially soluble I – insoluble D – decomposes

974 Reference Tables Reference Tables

Table R-9 Specific Heat Values (J/g·K) Substance c Substance c Substance c

AI F3 0.8948 F e 3 C 0.5898 NaV O3 1.540 BaTi O 3 0.79418 FeW O4 0.37735 Ni(CO )4 1.198 BeO 1.020 HI 0.22795 Pb l2 0.1678 Ca C2 0.9785 K 2 C O 3 0.82797 S F6 0.6660 CaS O4 0.7320 MgC O3 0.8957 SiC 0.6699 CC l4 0.85651 Mg(OH )2 1.321 Si O2 0.7395 C H 3 OH 2.55 MgS O4 0.8015 SrC l2 0.4769 C H2 OHC H 2 OH 2.413 MnS 0.5742 T b 2 O 3 0.3168 C H3 C H 2 OH 2.4194 N a2 C O 3 1.0595 TiC l4 0.76535 CdO 0.3382 NaF 1.116 Y 2 O 3 0.45397 CuS O4 ·5 H 2 O 1.12

Table R-10 Molal Freezing Point Depression and Boiling Point Elevation Constants

K fp Freezing Point K bp Boiling Point Substance (C°kg/mol) (°C) (C°kg/mol) (°C) A cetic acid 3.90 16.66 3.22 117.90 Benzene 5.12 5.533 2.53 80.100 Camphor 37.7 178.75 5.611 207.42 Cyclohexane 20.0 6.54 2.75 80.725 Cyclohexanol 39.3 25.15 ------Nitrobenzene 6.852 5.76 5.24 210.8 Phenol 7.40 40.90 3.60 181.839 Water 1.86 0.000 0.512 100.000

Table R-11 Heat of Formation Values ◦ ∆ Hf (kJ/mol) (concentration of aqueous solutions is 1M) H ◦ H ◦ H ◦ H◦ Substance ∆ f Substance ∆ f Substance ∆ f Substance ∆ f Ag(s) 0 CsCl(s) -443.0 H 3 P O 4 (aq) -1271.7 NaBr(s) -361.1 AgCl(s) -127.0 C s 2 S O 4 (s) -1443.0 H 2 S(g) -20.6 NaCl(s) -411.2 AgCN(s) 146.0 Cul(s) -67.8 H 2 S O 3 (aq) -608.8 NaHC O 3 (s) -950.8 A l 2 O 3 -1675.7 CuS(s) -53.1 H 2 S O 4 (aq) -814.0 NaN O 3 (s) -467.9 BaC l 2 (aq) -855.0 C u 2 S(s) -79.5 HgC l 2 (s) -224.3 NaOH(s) -425.8 BaS O 4 -1473.2 CuS O 4 (s) -771.4 H g 2 C l 2 (s) -265.4 N a 2 C O 3 (s) -1130.7 BeO(s) -609.4 F 2 (g) 0 H g 2 S O 4 (s) -743.1 N a 2 S(s) -364.8 BiC l 3 (s) -379.1 FeC l 3 (s) -399.49 l 2 (s) 0 N a 2 S O 4 (s) -1387.1 B i 2 S 3 (s) -143.1 FeO(s) -272.0 K(s) 0 N H 4 Cl(s) -314.4 B r 2 0FeS(s) -100.0 KBr(s) -393.8 O 2 (g) 0 CC l 4 (I) -128.2 F e 2 O 3 (s) -824.2 KMn O 4 (s) -837.2 P 4 O 6 (s) -1640.1 C H 4 (g) -74.6 F e 3 O 4 (s) -1118.4 KOH -424.6 P 4 O 10 (s) -2984.0 C 2 H 2 (g) 227.4 H(g) 218.0 LiBr(s) -351.2 PbB r 2 (s) -278.7 C 2 H 4 (g) 52.4 H 2 (g) 0 LiOH(s) -487.5 PbC l 2 (s) -359.4 C 2 H 6 (g) -84.0 HBr(g) -36.3 Mn(s) 0 S F 6 (g) -1220.5 CO(g) -110.5 HCl(g) -92.3 MnC l 2 (aq) -555.0 S O 2 (g) -296.8 C O 2 (g) -393.5 HCl(aq) -167.159 Mn(N O 3 ) 2 (aq) -635.5 S O 3 (g) -454.5 C S 2 (I) 89.0 HCN(aq) 108.9 Mn O 2 (s) -520.0 SrO(s) -592.0 Ca(s) 0 HCHO -108.6 MnS(s) -214.2 Ti O 2 (s) -944.0 CaC O 3 (s) -1206.9 HCOOH -425.0 N 2 (g) 0 Tll(s) -123.8 CaO(s) -634.9 HF(g) -273.3 N H 3 (g) -45.9 UC l 4 (s) -1019.2 Ca(OH ) 2 (s) -985.2 Hl(g) 26.5 N H 4 Br(s) -270.8 UC l 6 (s) -1092.0 C l 2 (g) 0 H 2 O(I) -285.8 NO(g) 91.3 Zn(s) 0 C o 3 O 4 (s) -891.0 H 2 O(g) -241.8 N O 2 (g) 33.2 ZnC l 2 (aq) -415.1 CoO(s) -237.9 H 2 O 2 (I) -187.8 N 2 O(g) 81.6 ZnO(s) -350.5 C r 2 O 3 (s) -1139.7 H 3 P O 2 (I) -595.4 Na(s) 0 ZnS O 4 (s) -982.8

Reference Tables 975 Chapter 2 Section 2.1 1. The density of a substance is 48 g/mL. What is the volume of a sample that is 19.2 g? 2. A 2.00-mL sample of Substance A has a density of 18.4 g/mL, and a 5.00-mL sample of Substance B has a density of 35.5 g/mL. Do you have an equal mass of Substances A and B?

Section 2.2 3. Express the following quantities in scientific notation. a. 5,453,000 m e. 34,800 s b. 300.8 kg f. 332,080,000 cm c. 0.00536 ng g. 0.0002383 ms d. 0.0120325 km h. 0.3048 mL 4. Solve the following problems. Express your answers in scientific notation. a. 3 × 1 0 2 m + 5 × 1 0 2 m b. 8 × 1 0 − 5 m + 4 × 1 0 − 5 m c. 6.0 × 1 0 5 m + 2.38 × 1 0 6 m d. 2.3 × 1 0 - 3 L + 5.78 × 1 0 - 2 L e. 2.56 × 1 0 2 g - 1.48 × 1 0 2 g f. 5.34 × 1 0 - 3 L - 3.98 × 1 0 - 3 L g. 7.623 × 1 0 5 nm - 8.32 × 1 0 4 n m h. 9.052 × 1 0 - 2 s - 3.61 × 1 0 - 3 s 5. Solve the following problems. Express your answers in scientific notation. a. (8 × 1 0 3 m ) × (1 × 1 0 5 m) b. (4 × 1 0 2 m) × (2 × 1 0 4 m ) c. (5 × 1 0 - 3 m ) × (3 × 1 0 4 m) d. (3 × 1 0 - 4 m ) × (3 × 1 0 - 2 m) e. (8 × 1 0 4 g ) ÷ (4 × 1 0 3 m L ) f. (6 × 1 0 - 3 g) ÷ (2 × 1 0 - 1 m L ) g. (1.8 × 1 0 - 2 g) ÷ (9 × 1 0 - 5 m L ) h. (4 × 1 0 - 4 g) ÷ (1 × 1 0 3 mL) 6. Perform the following conversions. a. 96 kg to g e. 188 dL to L b. 155 mg to g f. 3600 m to km c. 15 cg to kg g. 24 g to pg d. 584 µs to s h. 85 cm to nm 7. How many minutes are there in 5 days? 8. A car is traveling at 118 km/h. What is its speed in Mm/h?

Section 2.3 9. Three measurements of 34.5 m, 38.4 m, and 35.3 m are taken. If the accepted value of the measurement is 36.7 m, what is the percent error for each measurement? 10. Three measurements of 12.3 mL, 12.5 mL, and 13.1 mL are taken. The accepted value for each measurement is 12.8 mL. Calculate the percent error for each measurement.

976 Supplemental Practice Problems Supplemental Practice Problems

11. Determine the number of significant figures in each measurement. a. 340,438 g e. 1.040 s b. 87,000 ms f. 0.0483 m c. 4080 kg g. 0.2080 mL d. 961,083,110 m h. 0.0000481 g 12. Write the following in three significant figures. a. 0.0030850 km c. 5808 mL b. 3.0823 g d. 34.654 mg 13. Write the answers in scientific notation. a. 0.005832 g c. 0.0005800 km b. 386,808 ns d. 2086 L 14. Use rounding rules when you complete the following. a. 34.3 m + 35.8 m + 33.7 m b. 0.056 kg + 0.0783 kg + 0.0323 kg c. 309.1 mL + 158.02 mL + 238.1 mL d. 1.03 mg + 2.58 mg + 4.385 mg e. 8.376 km - 6.153 km f. 34.24 s - 12.4 s g. 804.9 dm - 342.0 dm h. 6.38 × 1 0 2 m - 1.57 × 1 0 2 m 15. Complete the following calculations. Round off the answers to the correct number of significant figures. a. 34.3 cm × 12 cm d. 45.5 g ÷ 15.5 mL b. 0.054 mm × 0.3804 mm e. 35.43 g ÷ 24.84 mL c. 45.1 km × 13.4 km f. 0.0482 g ÷ 0.003146 mL

Chapter 3 Section 3.2 1. A 3.5-kg iron shovel is left outside through the winter. The shovel, now orange with rust, is rediscovered in the spring. Its mass is 3.7 kg. How much oxygen combined with the iron? 2. When 5.0 g of tin reacts with hydrochloric acid, the mass of the products, tin chloride and hydrogen, totals 8.1 g. How many grams of hydrochloric acid were used? Section 3.4 3. A compound is analyzed and found to be 50.0% sulfur and 50.0% oxygen. If the total amount of the sulfur oxide compound is 12.5 g, how many grams of sulfur are there? 4. Two unknown compounds are analyzed. Compound I contains 5.63 g of tin and 3.37 g of chlorine, while Compound II contains 2.5 g of tin and 2.98 g of chlorine. Are the compounds the same?

Chapter 4 Section 4.3 1. How many protons and electrons are in each of the following atoms? a. gallium d. calcium b. silicon e. molybdenum c. cesium f. titanium

Supplemental Practice Problems 977 Supplemental Practice Problems

2. What is the atomic number of each of the following elements? a. an atom that contains 37 electrons b. an atom that contains 72 protons c. an atom that contains 1 electron d. an atom that contains 85 protons 3. Use the periodic table to write the name and the symbol for each element identified in Question 2. 4. An isotope of copper contains 29 electrons, 29 protons, and 36 neutrons. What is the mass number of this isotope? 5. An isotope of contains 92 electrons and 144 neutrons. What is the mass number of this isotope? 6. Use the periodic table to write the symbols for each of the following elements. Then, determine the number of electrons, protons, and neutrons each contains. a. yttrium-88 d. bromine-79 b. arsenic-75 e. gold-197 c. xenon-129 f. helium-4 7. An element has two naturally occurring isotopes: 14 X and 15 X. 14 X has a mass of 14.00307 amu and a relative abundance of 99.63%. 15 X has a mass of 15.00011 amu and a relative abundance of 0.37%. Identify the unknown element. 8. Silver has two naturally occurring isotopes. Ag-107 has an abundance of 51.82% and a mass of 106.9 amu. Ag-109 has a relative abundance of 48.18% and a mass of 108.9 amu. Calculate the atomic mass of silver.

Chapter 5 Section 5.1 1. What is the frequency of an electromagnetic wave that has a wavelength of 4.55 × 1 0 − 3 m? 1.00 × 1 0 − 12 m ? 2. Calculate the wavelength of an electromagnetic wave with a frequency of 8.68 × 1 0 16 Hz; 5.0 × 1 0 14 Hz; and 1.00 × 1 0 6 H z . 3. What is the energy of a quantum of visible light having a frequency of 5.45 × 1 0 14 s − 1 ? 4. An X ray has a frequency of 1.28 × 1 0 18 s − 1 . What is the energy of a quan- tum of the X ray?

Section 5.3 5. Write the ground-state electron configuration for the following. a. nickel c. boron b. cesium d. krypton 6. What element has the following ground-state electron configuration [He]2 s 2 ? [Xe]6 s 2 4 f 14 5 d 10 6 p 1 ? 7. Which element in period 4 has four electrons in its electron-dot structure? 8. Which element in period 2 has six electrons in its electron-dot structure? 9. Draw the electron-dot structure for each element in Question 5.

978 Supplemental Practice Problems Supplemental Practice Problems

Chapter 6 Section 6.2 1. Identify the group, period, and block of an atom with the following elec- tron configurations. a. [He]2 s 2 2 p 1 b. [Kr]5 s 2 4 d 5 c. [Xe]6 s 2 5 f 14 6 d 5 2. Write the electron configuration for the element fitting each of the following descriptions. a. a noble gas in the first period b. a group 4 element in the fifth period c. a group 14 element in the sixth period d. a group 1 element in the seventh period

Section 6.3 3. Using the periodic table, rank each group of elements in order of increasing size. a. calcium, magnesium, and strontium b. oxygen, lithium, and fluorine c. fluorine, cesium, and calcium d. selenium, chlorine, and tellurium e. iodine, krypton, and beryllium

Chapter 7 Section 7.2 1. Explain the formation of an from zinc and chlorine. 2. Explain the formation of an ionic compound from barium and nitrogen.

Section 7.3 3. Write the chemical formula of an ionic compound composed of the follow- ing pairs of ions. a. calcium and arsenide b. iron(III) and chloride c. magnesium and sulfide d. barium and iodide e. gallium and phosphide 4. Determine the formula for ionic compounds composed of the following ions. a. copper(II) and acetate c. calcium and hydroxide b. ammonium and phosphate d. gold(III) and cyanide 5. Name the following compounds. a. Co(OH )2 c. Na 3 P O 4 e. S r I2 b. Ca(Cl O3 ) 2 d. K 2 C r 2 O 7 f. H g F2

Chapter 8 Section 8.1 1. Draw the Lewis structure for each of the following molecules. a. C C l2 H 2 b. HF c. PCl 3 d. C H 4 Section 8.2 2. Name the following binary compounds. a. S 4 N 2 c. SF 6 e. S i O2 b. OC l 2 d. NO f. I F7

3. Name the following acids: H3 P O 4 , HBr, HN O 3 .

Supplemental Practice Problems 979 Supplemental Practice Problems

Section 8.3 4. Draw the Lewis structure for each of the following. a. CO c. N 2 O e. S i O2 b. C H2 O d. OC l2 f. AlB r3 2− 5. Draw the Lewis resonance structure for C O3 . − 6. Draw the Lewis resonance structure for C H3 C O 2 . − 7. Draw the Lewis structure for NO and I F 4 . Section 8.4 8. Determine the molecular geometry, bond angles, and hybrid of each molecule in Question 4. Section 8.5 9. Determine whether each of the following molecules is polar or nonpolar. a. C H2 O b. B F3 c. S i H4 d. H 2 S

Chapter 9 Section 9.1 Write skeleton equations for the following reactions. 1. Solid barium and oxygen gas react to produce solid barium oxide. 2. Solid iron and aqueous hydrogen sulfate react to produce aqueous iron(III) sulfate and gaseous hydrogen. Write balanced chemical equations for the following reactions.

3. Liquid bromine reacts with solid phosphorus ( P 4 ) to produce solid diphosphorus pentabromide. 4. Aqueous lead(II) nitrate reacts with aqueous potassium iodide to produce solid lead(II) iodide and aqueous potassium nitrate. 5. Solid carbon reacts with gaseous fluorine to produce gaseous carbon tetrafluoride. 6. Aqueous carbonic acid reacts to produce liquid water and gaseous carbon dioxide. 7. Gaseous hydrogen chloride reacts with gaseous ammonia to produce solid ammonium chloride. 8. Solid copper(II) sulfide reacts with aqueous nitric acid to produce aqueous copper(II) sulfate, liquid water, and nitrogen dioxide gas. Section 9.2 Classify each of the following reactions into as many types as possible.

9. 2Mo(s) + 3 O 2 (g) → 2Mo O 3 ( s ) 10. N 2 H 4 (l) + 3 O 2 (g) → 2N O 2 (g) + 2 H 2 O ( l ) Write balanced chemical equations for the following decomposition reactions. 11. Aqueous hydrogen chlorite decomposes to produce water and gaseous chlorine(III) oxide. 12. Calcium carbonate(s) decomposes to produce calcium oxide(s) and carbon dioxide(g). Use the activity series to predict whether each of the following single- replacement reactions will occur.

13. Al(s) + FeCl 3 (aq) → AlC l 3 (aq) + Fe(s)

980 Supplemental Practice Problems Supplemental Practice Problems

14. B r2 (l) + 2LiI(aq) → 2LiBr(aq) + I 2 (aq)

15. Cu(s) + MgS O 4 (aq) → Mg(s) + CuS O 4 (aq) Write chemical equations for the following chemical reactions. 16. Bismuth(III) nitrate(aq) reacts with sodium sulfide(aq), yielding bismuth(III) sulfide(s) plus sodium nitrate(aq). 17. Magnesium chloride(aq) reacts with potassium carbonate(aq), yielding magnesium carbonate(s) plus potassium chloride(aq). Section 9.3 Write net ionic equations for the following reactions. 18. Aqueous solutions of barium chloride and sodium fluoride are mixed to form a precipitate of barium fluoride. 19. Aqueous solutions of copper(I) nitrate and potassium sulfide are mixed to form insoluble copper(I) sulfide. 20. Hydrobromic acid reacts with aqueous lithium hydroxide. 21. Perchloric acid reacts with aqueous rubidium hydroxide. 22. Nitric acid reacts with aqueous sodium carbonate. 23. Hydrochloric acid reacts with aqueous lithium cyanide.

Chapter 10 Section 10.1 1. Determine the number of atoms in 3.75 mol of Fe.

2. Calculate the number of formula units in 12.5 mol of CaC O3 . 24 3. How many moles of CaC l 2 contain 1.26 × 1 0 formula units of CaCl 2 ? 4. How many moles of Ag contain 4.59 × 1 0 25 atoms of Ag?

Section 10.2 5. Determine the mass in grams of 0.0458 mol of sulfur. 6. Calculate the mass in grams of 2.56 × 1 0 − 3 mol of iron. 7. Determine the mass in grams of 125 mol of neon. 8. How many moles of titanium are contained in 71.4 g? 9. How many moles of lead are equivalent to 9.51 × 1 0 3 g of Pb? 10. Determine the number of moles of arsenic in 1.90 g of As. 11. Determine the number of atoms in 4.56 × 1 0 − 2 g of sodium. 12. How many atoms of gallium are in 2.85 × 1 0 3 g of gallium? 13. Determine the mass in grams of 5.65 × 1 0 24 atoms of Se. 14. What is the mass in grams of 3.75 × 1 0 21 atoms of Li?

Section 10.3 15. How many moles of each element are in 0.0250 mol of K 2 C r O 4 ?

16. How many moles of ammonium ions are in 4.50 mol of (N H 4 ) 2 C O 3 ? 17. Determine the molar mass of silver nitrate.

18. Calculate the molar mass of acetic acid (C H3 C O O H ) .

Supplemental Practice Problems 981 Supplemental Practice Problems

19. Determine the mass of 8.57 mol of sodium dichromate (N a 2 C r 2 O 7 ) . 20. Calculate the mass of 42.5 mol of potassium cyanide.

21. Determine the number of moles present in 456 g of Cu(N O3 ) 2 . 22. Calculate the number of moles in 5.67 g of potassium hydroxide.

23. Calculate the number of each atom in 40.0 g of methanol (C H3 O H ) . 24. What mass of sodium hydroxide contains 4.58 × 1 0 23 formula units?

Section 10.4 25. What is the percent by mass of each element in sucrose ( C 12 H 22 O 11 ) ?

26. Which compound has a greater percent by mass of chromium, K 2 C r O 4 o r K 2 C r 2 O 7 ? 27. Analysis of a compound indicates the percent composition 42.07% Na, 18.89% P, and 39.04% O. Determine its empirical formula. 28. A colorless liquid was found to contain 39.12% C, 8.76% H, and 52.12% O. Determine the empirical formula of the substance. 29. Analysis of a compound used in cosmetics reveals the compound contains 26.76% C, 2.21% H, 71.17% O and has a molar mass of 90.04 g/mol. Determine the molecular formula for this substance. 30. Eucalyptus leaves are the food source for panda bears. Eucalyptol is an oil found in these leaves. Analysis of eucalyptol indicates it has a molar mass of 154 g/mol and contains 77.87% C, 11.76% H, and 10.37% O. Determine the molecular formula of eucalyptol. 31. Beryl is a hard mineral that occurs in a variety of colors. A 50.0-g sample of beryl contains 2.52 g Be, 5.01 g Al, 15.68 g Si, and 26.79 g O. Determine its empirical formula. 32. Analysis of a 15.0-g sample of a compound used to leach gold from low- grade ores is 7.03 g Na, 3.68 g C, and 4.29 g N. Determine the empirical formula for this substance.

Section 10.5 33. Analysis of a hydrate of iron(III) chloride revealed that in a 10.00-g sample of the hydrate, 6.00 g is anhydrous iron(III) chloride and 4.00 g is water. Determine the formula and name of the hydrate. 34. When 25.00 g of a hydrate of nickel(II) chloride was heated, 11.37 g of water was released. Determine the name and formula of the hydrate.

Chapter 11 Section 11.1 Interpret the following balanced chemical equations in terms of particles, moles, and mass.

1. Mg + 2HCl → MgC l 2 + H 2

2. 2Al + 3CuS O 4 → A l 2 ( S O 4 ) 3 + 3Cu

3. Cu(N O3 ) 2 + 2KOH → Cu(OH ) 2 + 2KN O 3 4. Write and balance the equation for the decomposition of aluminum carbonate. Determine the possible mole ratios.

982 Supplemental Practice Problems Supplemental Practice Problems

5. Write and balance the equation for the formation of magnesium hydroxide and hydrogen from magnesium and water. Determine the possible mole ratios.

Section 11.2 6. Some antacid tablets contain aluminum hydroxide. The aluminum hydroxide reacts with stomach acid according to the equation: Al(OH )3 + 3HCl → AlC l 3 + 3 H 2 O. Determine the moles of acid neutralized if a tablet contains 0.200 mol of Al(OH ) 3 . 7. Chromium reacts with oxygen according to the equation: 4Cr + 3 O 2 → 2C r 2 O 3 . Determine the moles of chromium(III) oxide produced when 4.58 mol of chromium is allowed to react. 8. Space vehicles use solid lithium hydroxide to remove exhaled carbon dioxide according to the equation: 2LiOH + C O 2 → L i 2 C O 3 + H 2 O . Determine the mass of carbon dioxide removed if the space vehicle carries 42.0 mol of LiOH. 9. Some of the sulfur dioxide released into the atmosphere is converted to sulfuric acid according to the equation: 2S O 2 + 2 H 2 O + O 2 → 2 H 2 S O 4 . Determine the mass of sulfuric acid formed from 3.20 mol of sulfur dioxide. 10. How many grams of carbon dioxide are produced when 2.50 g of sodium hydrogen carbonate reacts with excess citric acid according to the equa- tion: 3NaHCO 3 + H 3 C 6 H 5 O 7 → N a 3 C 6 H 5 O 7 + 3C O 2 + 3 H 2 O ?

11. Aspirin ( C9 H 8 O 4 ) is produced when salicylic acid ( C 7 H 6 O 3 ) reacts with acetic anhydride (C 4 H 6 O 3 ) according to the equation: C 7 H 6 O 3 + C 4 H 6 O 3 → C 9 H 8 O 4 + H C 2 H 3 O 2 . Determine the mass of aspi- rin produced when 150.0 g of salicylic acid reacts with an excess of acetic anhydride.

Section 11.3 12. Chlorine reacts with benzene to produce chlorobenzene and hydrogen chloride, C l2 + C 6 H 6 → C 6 H 5 C l + HCl. Determine the limiting reactant if 45.0 g of benzene reacts with 45.0 g of chlorine, the mass of the excess reactant after the reaction is complete, and the mass of chlorobenzene produced. 13. Nickel reacts with hydrochloric acid to produce nickel(II) chloride and hydrogen according to the equation: Ni + 2HCl → NiCl 2 + H 2 . If 5.00 g of Ni and 2.50 g of HCl react, determine the limiting reactant, the mass of the excess reactant after the reaction is complete, and the mass of nickel(II) chloride produced.

Section 11.4 14. Tin(IV) iodide is prepared by reacting tin with iodine. Write the balanced chemical equation for the reaction. Determine the theoretical yield if a 5.00-g sample of tin reacts in an excess of iodine. Determine the percent yield if 25.0 g of Sn I4 was recovered. 15. Gold is extracted from gold-bearing rock by adding sodium cyanide in the presence of oxygen and water, according to the reaction: 4Au(s) + 8NaCN(aq) + O 2 (g) + 2 H 2 O(l) → 4NaAu(CN ) 2 (aq) + NaOH(aq). Determine the theoretical yield of NaAu(CN )2 if 1000.0 g of gold-bearing rock is used, which contains 3.00% gold by mass. Determine the percent yield of NaAu(CN )2 if 38.790 g of NaAu(CN ) 2 is recovered.

Supplemental Practice Problems 983 Supplemental Practice Problems

Chapter 12

Section 12.1 1. Calculate the ratio of effusion rates for methane (C H 4 ) and nitrogen. 2. Calculate the molar mass of butane. Butane’s rate of diffusion is 3.8 times slower than that of helium. 3. What is the total pressure in a canister that contains oxygen gas at a partial pressure of 804 mm Hg, nitrogen at a partial pressure of 220 mm Hg, and hydrogen at a partial pressure of 445 mm Hg? 4. Calculate the partial pressure of neon in a flask that has a total pressure of 1.87 atm. The flask contains krypton at a partial pressure of 0.77 atm and helium at a partial pressure of 0.62 atm.

Chapter 13 Section 13.1 1. The pressure of air in a 2.25-L container is 1.20 atm. What is the new pressure if the sample is transferred to a 6.50-L container? Temperature is constant. 2. The volume of a sample of hydrogen gas at 0.997 atm is 5.00 L. What will be the new volume if the pressure is decreased to 0.977 atm? Temperature is constant. 3. A gas at 55.0°C occupies a volume of 3.60 L. What volume will it occupy at 30.0°C? Pressure is constant. 4. The volume of a gas is 0.668 L at 66.8°C. At what Celsius temperature will the gas have a volume of 0.942 L, assuming pressure remains constant? 5. The pressure in a bicycle tire is 1.34 atm at 33.0°C. At what temperature will the pressure inside the tire be 1.60 atm? Volume is constant. 6. If a sample of oxygen gas has a pressure of 810 torr at 298 K, what will be its pressure if its temperature is raised to 330 K? 7. Air in a tightly sealed bottle has a pressure of 0.978 atm at 25.5°C. What will be its pressure if the temperature is raised to 46.0°C? 8. Hydrogen gas at a temperature of 22.0°C that is confined in a 5.00-L cylinder exerts a pressure of 4.20 atm. If the gas is released into a 10.0-L reaction vessel at a temperature of 33.6°C, what will be the pressure inside the reaction vessel? 9. A sample of neon gas at a pressure of 1.08 atm fills a flask with a volume of 250 mL at a temperature of 24.0°C. If the gas is transferred to another flask at 37.2°C and a pressure of 2.25 atm, what is the volume of the new flask?

Section 13.2 10. What volume of beaker contains exactly 2.23 × 1 0 - 2 mol of nitrogen gas at STP? 11. How many moles of air are in a 6.06-L tire at STP? 12. How many moles of oxygen are in a 5.5-L canister at STP? 13. What mass of helium is in a 2.00-L balloon at STP? 14. What volume will 2.3 kg of nitrogen gas occupy at STP?

984 Supplemental Practice Problems Supplemental Practice Problems

15. Calculate the number of moles of gas that occupy a 3.45-L container at a pressure of 150 kPa and a temperature of 45.6°C. 16. What is the pressure in torr that a 0.44-g sample of carbon dioxide gas will exert at a temperature of 46.2°C when it occupies a volume of 5.00 L? 17. What is the molar mass of a gas that has a density of 1.02 g/L at 0.990 atm pressure and 37°C? 18. Calculate the grams of oxygen gas present in a 2.50-L sample kept at 1.66 atm pressure and a temperature of 10.0°C.

Section 13.3 19. What volume of oxygen gas is needed to completely combust 0.202 L of butane gas ( C 4 H 10 ) ?

20. Determine the volume of methane gas (C H 4 ) needed to react completely with 0.660 L of O2 gas to form methanol (CH 3 O H ) . 21. Calculate the mass of hydrogen peroxide needed to obtain 0.460 L of oxygen gas at STP. 2 H 2 O 2 (aq) → 2 H 2 O(l) + O 2 ( g ) 22. When potassium chlorate is heated in the presence of a catalyst such as manganese dioxide, it decomposes to form solid potassium chloride and oxygen gas: 2KCl O 3 (s) → 2KCl(s) + 3 O 2 (g). How many liters of oxygen will be produced at STP if 1.25 kg of potassium chlorate decomposes completely?

Chapter 14 Section 14.2 1. What is the percent by mass of a sample of ocean water that is found to contain 1.36 g of magnesium ions per 1000 g? 2. What is the percent by mass of iced tea containing 0.75 g of aspartame in 250 g of water? 3. A bottle of hydrogen peroxide is labeled 3%. If you pour out 50 mL of hydrogen peroxide solution, what volume is hydrogen peroxide? 4. If 50 mL of pure acetone is mixed with 450 mL of water, what is the per- cent volume?

5. Calculate the molarity of 1270 g of K3 P O 4 in 4.0 L aqueous solution.

6. What is the molarity of 90.0 g of N H 4 Cl in 2.25 L aqueous solution? 7. Which is more concentrated, 25 g of NaCl dissolved in 500 mL of water or a 10% solution of NaCl (percent by mass)? 8. Calculate the mass of NaOH required to prepare a 0.343M solution dissolved in 2500 mL of water.

9. Calculate the volume required to dissolve 11.2 g of CuS O 4 to prepare a 0.140M solution. 10. How would you prepare 500 mL of a solution that has a new concentration of 4.5M if the stock solution is 11.6M? 11. Caustic soda is 19.1M NaOH and is diluted for household use. What is the household concentration if 10 mL of the concentrated solution is diluted to 400 mL?

Supplemental Practice Problems 985 Supplemental Practice Problems

12. What is the molality of a solution containing 63.0 g of HN O3 in 0.500 kg of water? 13. What is the molality of an acetic acid solution containing 0.500 mol of HC 2 H 3 O 2 in 0.800 kg of water?

14. What mass of ethanol ( C 2 H 5 OH) will be required to prepare a 2.00m solution in 8.00 kg of water? 15. Determine the mole fraction of nitrogen in a gas mixture containing 0.215 mol N 2, 0.345 mol O 2 , 0.023 mol C O 2 , and 0.014 mol SO 2 . What is the mole fraction of N 2 ? 16. A necklace contains 4.85 g of gold, 1.25 g of silver, and 2.40 g of copper. What is the mole fraction of each metal?

Section 14.3 17. Calculate the mass of gas dissolved at 150.0 kPa, if 0.35 g of the gas dis- solves in 2.0 L of water at 30.0 kPa. 18. At which depth, 10 m or 40 m, will a scuba diver have more nitrogen dissolved in the bloodstream?

Section 14.4 19. Calculate the freezing point and boiling point of a solution containing 6.42 g of sucrose ( C12 H 22 O 11 ) in 100.0 g of water. 20. Calculate the freezing point and boiling point of a solution containing 23.7 g of copper(II) sulfate in 250.0 g of water. 21. Calculate the freezing point and boiling point of a solution containing 0.15 mol of the molecular compound naphthalene in 175 g of benzene ( C6 H 6 ) .

Chapter 15 Section 15.1 1. What is the equivalent in joules of 126 Calories? 2. Convert 455 kilojoules to kilocalories. 3. How much heat is required to warm 122 g of water by 23.0°C? 4. The temperature of 55.6 grams of a material decreases by 14.8°C when it loses 3080 J of heat. What is its specific heat? 5. What is the specific heat of a metal if the temperature of a 12.5-g sample increases from 19.5°C to 33.6°C when it absorbs 37.7 J of heat?

Section 15.2 6. A 75.0-g sample of a metal is placed in boiling water until its temperature is 100.0°C. A calorimeter contains 100.00 g of water at a temperature of 24.4°C. The metal sample is removed from the boiling water and immediately placed in water in the calorimeter. The final temperature of the metal and water in the calorimeter is 34.9°C. Assuming that the calo- rimeter provides perfect insulation, what is the specific heat of the metal? Section 15.3 7. Use Table 15.4 to determine how much heat is released when 1.00 mol of gaseous methanol condenses to a liquid. 8. Use Table 15.4 to determine how much heat must be supplied to melt 4.60 g of ethanol.

986 Supplemental Practice Problems Supplemental Practice Problems

9. Section 15.4 Calculate ∆ Hrxn for the reaction 2C(s) + 2 H 2 (g) → C 2 H 4 (g), given the following thermochemical equations:

2C O2 (g) + 2 H 2 O(l) → C 2 H 4 (g) + 3 O 2 (g) ∆H = 1411 kJ C(s) + O 2 (g) → C O 2 (g) ∆H = −393.5 kJ 2 H2 (g) + O 2 (g) → 2 H 2 O(l) ∆H = −572 kJ 10. Calculate ∆ H rxn for the reaction HCl(g) + N H 3 (g) → N H 4 Cl(s), given the following thermochemical equations:

H 2 (g) + Cl 2 (g) → 2HCl(g) ∆H = −184 kJ N 2 (g) + 3 H 2 (g) → 2N H 3 (g) ∆H = −92 kJ N 2 (g) + 4 H 2 (g) + C l 2 (g) → 2N H 4 Cl(s) ∆H = −628 kJ Use standard enthalpies of formation from Table 15.5 and Table R-11 to

calculate ∆ H°rxn for each of the following reactions.

11. 2HF(g) → H 2 (g) + F 2 ( g )

12. 2 H2 S(g) + 3 O 2 (g) → 2 H 2 O ( l ) + 2S O 2 (g)

Section 15.5 Predict the sign of ∆ Ssystem for each reaction or process. 13. FeS(s) → F e 2 + (aq) + S 2 − (aq)

14. S O2 (g) + H 2 O(l) → H 2 S O 3 (aq) Determine if each of the following processes or reactions is spontaneous or nonspontaneous. 15. ∆ Hsystem = 15.6 kJ, T = 415 K, ∆ S system = 45 J/K 16. ∆ Hsystem = 35.6 kJ, T = 415 K, ∆ S system = 45 J/K

Chapter 16 Section 16.1 1. In the reaction A → 2B, suppose that [A] changes from 1.20 mol/L at time = 0 to 0.60 mol/L at time = 3.00 min and that [B] = 0.00 mol/L at time = 0. a. What is the average rate at which A is consumed in mol/(L∙min)? b. What is the average rate at which B is produced in mol/(L∙min)?

Section 16.3 2. What are the overall reaction orders in Practice Problems 19 to 22 on page 577? 3. If halving [A] in the reaction A → B causes the initial rate to decrease to one-fourth its original value, what is the probable rate law for the reaction? 4. Use the data below and the method of initial rates to determine the rate law for the reaction 2NO(g) + O 2 (g) → 2N O 2 (g).

Formation of NO 2 Data Initial [NO] Initial [ O ] Initial Rate Trial 2 (M) (M) (mol/(L·s)) 1 0.030 0.020 0.0041 2 0.060 0.020 0.0164

3 0.030 0.040 0.0082

Supplemental Practice Problems 987 Supplemental Practice Problems

Section 16.4 5. The rate law for the reaction in which 1 mol of cyclobutane ( C 4 H 8 ) −1 decomposes to 2 mol of ethylene ( C2 H 4 ) at 1273 K is Rate = (87 s ) [ C 4 H 8 ]. What is the instantaneous rate of this reaction when a. [ C4 H 8 ] = 0.0100 mol/L? b. [ C4 H 8 ] = 0.200 mol/L?

Chapter 17 Section 17.1 Write equilibrium constant expressions for the following equilibria.

1. N 2 (g) + O 2 (g) ⇌ 2NO

2. 3 O2 (g) ⇌ 2 O 3 ( g )

3. P 4 (g) + 6 H 2 (g) ⇌ 4P H 3 ( g )

4. C C l4 (g) + HF(g) ⇌ CFC l 2 (g) + HCl(g)

5. 4 N H 3 (g) + 5 O 2 (g) ⇌ 4NO(g) + 6 H 2 O ( g ) Write equilibrium constant expressions for the following equilibria.

6. N H4 Cl(s) ⇌ N H 3 (g) + HCl(g)

7. S O3 (g) + H 2 O(l) ⇌ H 2 S O 4 ( l )

8. 2N a2 O 2 (s) + 2C O 2 (g) ⇌ 2N a 2 C O 3 (s) + O 2 ( g )

Calculate K eq for the following equilibria.

9. H 2 (g) + I 2 (g) ⇌ 2HI(g) [ H2 ] = 0.0109, [ I 2 ] = 0.00290, [HI] = 0.0460

10. I 2 (s) ⇌ I 2 (g) [ I2 (g)] = 0.0665

Section 17.3 11. At a certain temperature, K eq = 0.0211 for the equilibrium PCl 5 (g) ⇌ PC l 3 (g) + Cl 2 (g). a. What is [Cl 2 ] in an equilibrium mixture containing 0.865 mol/L PCl 5 and 0.135 mol/L PCl 3 ?

b. What is [PCl 5 ] in an equilibrium mixture containing 0.100 mol/L PCl 3 and 0.200 mol/L C l 2 ? 12. Table 17.4 Use the K sp value for zinc carbonate given in to calculate its molar solubility at 298 K. 13. Table 17.4 Use the K sp value for iron(II) hydroxide given in to calculate its molar solubility at 298 K. 14. Table 17.4 Use the K sp value for silver carbonate given in to calculate [A g + ] in a saturated solution at 298 K. 15. Table 17.4 Use the K sp value for calcium phosphate given in to calculate [C a 2+ ] in a saturated solution at 298 K.

16. Does a precipitate form when equal volumes of 0.0040M MgC l 2 a n d 0.0020M K 2 C O 3 are mixed? If so, identify the precipitate. -4 17. Does a precipitate form when equal volumes of 1.2 × 1 0 M AlC l 3 a n d 2.0 × 1 0 - 3 M NaOH are mixed? If so, identify the precipitate.

988 Supplemental Practice Problems Supplemental Practice Problems

Chapter 18 Section 18.1 1. Write the balanced formula equation for the reaction between zinc and nitric acid. 2. Write the balanced formula equation for the reaction between magnesium carbonate and sulfuric acid. 3. Identify the base in the reaction - + H 2 O(l) + C H 3 N H 2 (aq) → O H (aq) + C H 3 N H 3 (aq). 4. Identify the conjugate base described in the reaction in Practice Problems 1 and 2. 5. Write the steps in the complete ionization of hydrosulfuric acid. 6. Write the steps in the complete ionization of carbonic acid.

Section 18.2 7. Write the acid ionization equation and ionization constant expression for formic acid (HCOOH). 8. Write the acid ionization equation and ionization constant expression for the hydrogen carbonate ion (HC O 3− ). 9. Write the base ionization constant expression for ammonia.

10. Write the base ionization expression for aniline ( C 6 H 5 N H 2 ) . Section 18.3 11. Is a solution in which [ H + ] = 1.0 × 1 0 − 5 M acidic, basic, or neutral? 12. Is a solution in which [O H - ] = 1.0 × 1 0 − 11 M acidic, basic, or neutral? 13. What is the pH of a solution in which [ H + ] = 4.5 × 1 0 − 4 M? 14. Calculate the pH and pOH of a solution in which [O H - ] = 8.8 × 1 0 − 3 M. 15. Calculate the pH and pOH of a solution in which [ H + ] = 2.7 × 1 0 − 6 M. 16. What is [ H + ] in a solution having a pH of 2.92? 17. What is [O H - ] in a solution having a pH of 13.56?

18. What is the pH of a 0.00067M H 2 S O 4 s o l u t i o n ? 19. What is the pH of a 0.000034M NaOH solution? 20. The pH of a 0.200M HBrO solution is 4.67. What is the acid’s K a ? 21. The pH of a 0.030M C 2 H 5 COOH solution is 3.20. What is the acid’s K a ? Section 18.4 22. Write the formula equation for the reaction between hydriodic acid and beryllium hydroxide. 23. Write the formula equation for the reaction between perchloric acid and lithium hydroxide. 24. In a titration, 15.73 mL of 0.2346M HI solution neutralizes 20.00 mL of a LiOH solution. What is the molarity of the LiOH? 25. What is the molarity of a caustic soda (NaOH) solution if 35.00 mL of solution is neutralized by 68.30 mL of 1.250M HCl?

Supplemental Practice Problems 989 Supplemental Practice Problems

26. Write the chemical equation for the hydrolysis reaction that occurs when sodium hydrogen carbonate is dissolved in water. Is the resulting solution acidic, basic, or neutral? 27. Write the chemical equation for any hydrolysis reaction that occurs when cesium chloride is dissolved in water. Is the resulting solution acidic, basic, or neutral?

Chapter 19 Section 19.1 Identify the following information for each problem. What element is oxidized? Reduced? What is the oxidizing agent? Reducing agent?

1. 2P + 3C l 2 → 2PC l 3

2. C + H 2 O → CO + H 2 − − 3− − 3. C l O3 + A s O 2 → A s O 4 + Cl 4. Determine the oxidation number for each element in the following compounds. a. Na 2 S e O 3 b. H A u C l4 c. H 3 B O 3 5. Determine the oxidation number for the following compounds or ions. a. P 4 O 8 b. Na 2 O 2 (Hint: This is like H2 O2 .) −3 c. A s O4 Section 19.2 6. How many electrons will be lost or gained in each of the following half- reactions? Identify whether each is an oxidation or reduction. a. Cr → C r 3 + 2− b. O 2 → O c. F e +2 → F e 3 + 7. Balance the following reaction by the oxidation number method: − M n O4 + C H3 O H → M n O 2 + HCHO (acidic). (Hint: Assign the oxida- tion of hydrogen and oxygen as usual, and solve for the oxidation number of carbon.) 8. Balance the following reaction by the oxidation number method: Zn + HN O 3 → ZnO + N O 2 + N H 3 9. Use the oxidation number method to balance these net ionic equations. 2− − a. S e O 3 + I → Se + I 2 (acidic solution) 2− 2− b. Ni O2 + S e O 3 → Ni(OH ) 2 + S O 3 (acidic solution) Use the half-reaction method to balance the following redox equations.

10. Zn(s) + HCl(aq) → ZnC l 2 (aq) → H 2 ( g ) − 2+ − 11. M n O4 (aq) + H 2 S O 3 (aq) → M n (aq) + HS O 4 (aq) + H 2 O ( l ) (acidic solution)

− − − 12. N O 2 (aq) + O H (aq) → N O 2 (aq) + N O 3 (aq) + H 2O(l) (basic solution)

− − − 13. H S (aq) + I O 3 (aq) → I (aq) + S(s) + H 2 O(l) (acidic solution)

990 Supplemental Practice Problems Supplemental Practice Problems

Chapter 20 Section 20.1 1. Calculate the cell potential for each of the following. a. C o 2+ (aq) + Al(s) → Co(s) + A l 3 + (aq) b. H g 2+ (aq) + Cu(s) → C u 2 + (aq) + Hg(s) 1− 2+ c. Zn(s) + B r 2 (l) → B r (aq) + Z n (aq) 2. Calculate the cell potential to determine whether the reaction will occur spontaneously or not spontaneously. For each reaction that is not spontaneous, correct the reactants or products so that a reaction would occur spontaneously. a. N i 2+ (aq) + Al(s) → Ni(s) + A l 3 + (aq) + + b. A g (aq) + H 2 (g) → Ag(s) + H (aq) c. F e 2+ (aq) + Cu(s) → Fe(s) + C u 2 + (aq)

Chapter 21 Section 21.2 1. Draw the structure of the following branched alkanes. a. 2,2,4-trimethylheptane b. 4-isopropyl-2-methylnonane 2. Draw the structure of each of the following cycloalkanes. a. 1-ethyl-2-methylcyclobutane b. 1,3-dibutylcyclohexane

Section 21.3 3. Draw the structure of each of the following alkenes. a. 1,4-hexadiene c. 4-propyl-1-octene b. 2,3-dimethyl-2-butene d. 2,3-diethylcyclohexene

Chapter 22 Section 22.1 1. Draw the structures of the following alkyl halides. a. chloroethane d. 1,3-dibromocyclohexane b. chloromethane e. 1,2-dibromo-3-chloropropane c. 1-fluoropentane

Chapter 24 Section 24.2 1. Write balanced equations for each of the following decay processes. a. 244 c. 210 alpha emission of 96 Cm beta emission of 83 Bi b. 70 d. 116 positron emission of 33 A s electron capture by 51 Sb 2. 47 20 C a → β + ? 3. 240 243 95 Am + ? → 97 Bk + n 4. How much time has passed if 1/8 of an original sample of radon-222 is left? Use Table 24.5 for half-life information. 5. If a basement air sample contains 3.64 μg of radon-222, how much radon will remain after 19 days? 6. Cobalt-60, with a half-life of 5 years, is used in cancer radiation treatments. If a hospital purchases 30.0 g, how much would be left after 15 years?

Supplemental Practice Problems 991 33. _0.11 × 100 = 6.92% Chapter 1 1.59 No practice problems _0.10 × 100 = 6.29% 1.59 _0.12 × 100 = 7.55% 1.59 Note: The answers are reported in three significant Chapter 2 figures because student error is the difference between 3 1. No; the density of aluminum is 2.7 g/c m 3 ; the density the actual value (1.59 g/c m ) and the measured value. 20g _ 3 35. a. 4 b. 7 c. 5 d. 3 of the cube is 3 = 4 g/c m . 5c m 1 2 3 mass 147 g 37. two significant figures: 1.0 × 1 0 , 1.0 × 1 0 , 1.0 × 1 0 3. volume = _ = _ = 21.0 mL density 7.00 g/mL three significant figures: 1.00 × 1 0 1 , 1.00 × 1 0 2 , volume = 20.0 mL + 21.0 mL = 41.0 mL 1.00 × 1 0 3 11. a. 7 × 1 0 2 e. 5.4 × 1 0 - 3 four significant figures: 1.000 × 1 0 1 , 1.000 × 10 2 , 3 b. 3.8 × 1 0 4 f. 6.87 × 10 -6 1.000 × 10 c. 4.5 × 1 0 6 g. 7.6 × 1 0 - 8 39. a. 5.482 × 10 -4 g c. 3.087 × 10 8 mm d. 6.85 × 1 0 11 h. 8 × 1 0 -10 b. 1.368 × 10 5 kg d. 2.014 mL 13. a. 7 × 1 0−5 c. 2 × 1 0 2 41. a. 4.32 × 1 0 3 cm - 1.6 × 1 0 6 mm b. 3 × 1 0 8 d. 5 × 1 0 -12 = 4.32 × 1 0 3 cm - 16 × 1 0 6 cm = 4.32 × 1 0 3 cm - 16,000 × 1 0 3 cm 15. a. (4 × 1) × 1 0 2 + 8 = 4 × 1 0 10 = −15,995.68 × 1 0 3 cm = -16.0 × 1 0 6 cm b. (2 × 3) × 1 0 - 4 + 2 = 6 × 1 0 - 2 b. 2.12 × 1 0 7 mm + 1.8 × 1 0 3 cm c. (6 ÷ 2) × 1 0 2 - 1 = 3 × 1 0 1 = 2.12 × 10 7 mm + 1.8 × 1 0 4 mm d. (8 ÷ 4) × 1 0 4 - 1 = 2 × 1 0 3 = 2120 × 10 4 mm + 1.8 × 1 0 4 mm 16 g salt 100 g solution 17. a. __ ; __ = 2121.8 × 1 0 4 mm = 2.12 × 1 0 7 mm 100 g solution 16 g salt 43. a. c. 1.25 g 1 mL 2.0 m/s 2.00 m/s b. _ ; _ b. d. 1 mL 1.25 g 3.00 m/s 2.9 m/s 25 m 1s c. _ ; _ 1 s 25 m 1000 ms Chapter 3 19. a. 360 s × _ = 360,000 ms 1 s 5. amount of bromine that reacted = 100.0 - 8.5 = 91.5 g 1 kg b. 4800 g × _ = 4.8 kg 1000 g amount of compound formed = 100.0 + 10.3 - 8.5 1 m = 101.8 g c. 5600 dm × _ = 560 m 10 dm 7. mas sreactants = mas s 1000 mg products d. 72 g × _ = 72,000 mg mas s + mas s = mas s 1 g sodium chlorine sodium chloride mas s = 15.6 g e. 2 _1 s sodium 2.45 × 10 ms × = 0.245 s 1000 ms mas ssodium chloride = 39.7 g 1 mm 1 m 1 km f. 5 μm × _ × _ × _ Substituting and solving for mas s chlorine yields 1000 μm 1000 mm 1000 m 15.6 g + mas s = 39.7 g −9 chlorine = 5 × 1 0 km mas s = 39.7 g - 15.6 g = 24.1 g used in the 1 m 1 km chlorine g. 6.800 × 10 3 cm × _ × _ 100 cm 1000 m reaction. = 6.800 × 1 0 - 2 km Because the sodium reacts with excess chlorine, 1 Mg all of the sodium is used in the reaction; that is, h. 2.5 × 10 1 kg × __ = 0.025 Mg 1000 kg 15.6 g of sodium are used in the reaction. 1 km 9. 157.5 g - 106.5 g = 51.0 g 21. _65 mi × _ = 105 km/h 1 h 0.62 mi Yes. Mass of reactants equals mass of products. 23. mass = (volume)(density) = (185 mL)(1.02 g/mL) mass 19. _hydrogen percent by masshydrogen = × 100 mass = 189 g vinegar mass compound 12.4 g __5.00 g acetic acid _ (189 g vinegar) = 9.45 g acetic acid percent by masshydrogen = × 100 = 15.9% ( 100 g vinegar ) 78.0 g

992 Solutions to Selected Practice Problems Solutions to Selected Practice Problems

21. mas s xy = 3.50 g + 10.5 g = 14.0 g Chapter 6

_mass x percent by mas sx = × 100 mass xy 9. a. Sc, Y, La, Ac c. Ne, Ar, Kr, Xe, Rn 3.50 g b. percent by mas s = _ × 100 = 25.0% N, P, As, Sb, Bi x 14.0 g mass 17. B. The atomic radius increases when going down a _y percent by mas sy = × 100 mass xy group so helium is the smallest and radon is the biggest. 10.5 g _ 19. a. the element in period 2, group 1 percent by mas sy = × 100 = 75.0% 14.0 g b. the element in period 5, group 2 23. No, you cannot be sure. Having the same mass per- c. the element in period 6, group 15 centage of a single element does not guarantee that d. the element in period 4, group 18 the composition of each compound is the same. Chapter 7 Chapter 4 7. Three Na atoms each lose 1 e-, forming 1+ ions. One - 13. dysprosium 15. Yes. 9 N atom gains 3 e , forming a 3- ion. The ions attract, forming Na3N. 17. 25 protons, 25 electrons, 30 neutrons, manganese 1+ 3- 3 Na ions _ + 1 N ion _ 19. N-14 is more abundant because the atomic mass is (Na ion) (N ion) closer to 14 than 15. = 3(1+) + 1(3-) = 0 The overall charge on one formula unit of Na 3 N is zero. - Chapter 5 9. One Sr atom loses 2 e , forming a 2+ ion. Two F atoms each gain 1 e-, forming 1- ions. The ions 1. c = λν attract, forming Sr F2 . ν = c / λ 2+ 1- 1 Sr ion _ + 2 F ions _ 3.00 × 1 0 8 m/s (Sr ion) (F ion) ν = __ = 6.12 × 1 0 14 Hz 4.90 × 1 0 -7 m = 1(2+) + 2(1-) = 0

3. 3.00 × 10 8 m/s The overall charge on one formula unit of Sr F 2 is zero. 11. - 5. a. E = λν = (6.626 × 10 - 34 J·s)(6.32 × 1 0 20 s - 1 ) Three group 1 atoms lose 1 e , forming 1+ ions. photon - = 4.19 × 1 0 -13 J One group 15 atom gains 3 e , forming a 3- ion. The b. -34 13 -1 ions attract, forming X 3 Y, where X represents a group E photon = λν = (6.626 × 1 0 J·s)(9.50 × 1 0 s ) = 6.29 × 1 0 -20 J 1 atom and Y represents a group 15 atom. c. -34 16 -1 19. 21. E photon = λν = (6.626 × 1 0 J ·s)(1.05 × 1 0 s ) KI AlB r 3 = 6.96 × 1 0 -18 J 23. The general formula is X Y2 , where X represents the 7. E photon = hc / λ group 2 element and Y represents the group 17 element. (6.626 × 1 0 - 34 J·s)(3.00 × 1 0 8 m/s) E = ___ 25. Ca(Cl O ) photon 1.25 × 1 0 -1 m 3 2 -24 = 1.59 × 1 0 J 27. MgC O3 ; answers will vary 21. a. bromine (35 electrons): [Ar]4 s 2 3 d 10 4 p 5 29. calcium chloride 31. copper(II) nitrate b. 2 strontium (38 electrons): [Kr]5 s 33. ammonium perchlorate c. antimony (51 electrons): [Kr]5 s 2 4 d 10 5 p 3 d. rhenium (75 electrons): [Xe]6 s 2 4 f 14 5 d 5 e. terbium (65 electrons): [Xe]6 s 2 4 f 9 Chapter 8 f. titanium (22 electrons): [Ar]4 s 2 3 d 2 1. H 23. Sulfur (15 electrons) has the electron configuration — [Ne]3 s 2 3 p 4 . Therefore, 6 electrons are in orbitals H ++HH+ PP→ H —

related to the third energy level of the sulfur atom. — H 25. [Xe]6 s 2 ; barium 3. H + Cl → H — Cl 27. aluminum; 3 electrons

Solutions to Selected Practice Problems 993 Solutions to Selected Practice Problems

5. H 27. Na 2 C 2 O 4 (aq) + Pb(N O 3 ) 2 (aq) →

— Pb C 2 O 4 (s) + 2NaN O 3 (aq) H +++HH+ H Si→ H — Si — H

— 35. H chemical equation: KI(aq) + AgN O 3 (aq) → KN O 3 (aq) + AgI(s) 15. sulfur dioxide complete ionic equation: + - + - 17. carbon tetrachloride K (aq) + I (aq) + A g (aq) + N O 3 (aq) → K + (aq) + N O - (aq) + AgI(s) 19. hydroiodic acid 3 net ionic equation: I - (aq) + A g + (aq) → AgI(s) 21. chlorous acid 37. 23. hydrosulfuric acid chemical equation: AlC l3 (aq) + 3NaOH(aq) → Al(OH ) (s) + 3NaCl(aq) 25. AgCl 27. Cl F 3 3 complete ionic equation: 3+ - + 2 29. strontium acetate is ionic, not molecular: Sr(C 2 H 3 O 2 ) 2 A l (aq) + 3C l (aq) + 3N a (aq) + 3O H (aq) → + - 37. H 39. HH Al(OH ) 3 (s) + 3Na (aq) + 3C l (aq)

— — — net ionic equation: A l 3+ (aq) + 3O H - (aq) →

— B — C— =C — Al(OH ) (s) H H H H 3 1+ 39. 41. H chemical equation: 5N a 2 C O 3 (aq) + 2MnC l 5 (aq) → 10NaCl(aq) + M n 2 (C O 3 ) 5 (s) HHN complete ionic equation: + 2- 5+ - H 10N a (aq) + 5CO 3 (aq) + 2Mn (aq) + 10Cl (aq) → + - 10Na (aq) + 10C l (aq) + M n 2 (C O 3 ) 5 (s) 1- 1- 43. 2- 5+ N N net ionic equation: 5C O3 (aq) + 2M n (aq) → O O O O M n 2 (C O 3 ) 5 (s) net ionic equation: 2 H + (aq) + 2O H - (aq) → 45. + - O O 2 H2 O(l) or H (aq) + OH (aq) → H 2 O(l) O O O O 41. chemical equation: 2HCl(aq) + Ca(OH ) 2 (aq) → 47. F 49. F 2 H 2 O(l) + CaC l 2 (aq) F Cl F F complete ionic equation: F S F F 2 H + (aq) + 2C l - (aq) + C a 2+ (aq) + 2O H - (aq) → 2+ - F 2 H 2 O(l) + C a (aq) + 2C l (aq) net ionic equation: H + (aq) + O H - (aq) → H O(l) 57. bent, 104.5°, s p 3 59. tetrahedral, 109°, s p 3 2

43. chemical equation: H2 S(aq) + 1 Ca(OH )2 (aq) →

Chapter 9 2 H 2 O(l) + CaS(aq) complete ionic equation: + 2- 2+ - 1. H 2 (g) + B r 2 (g) → HBr(g) 2 H (aq) + S (aq) + C a (aq) + 2O H (aq) → 2+ 2- 2H 2 O(l) + C a (aq) + S (aq) 3. KCl O3 (s) → KCl(s) + O 2 (g) + - net ionic equation: H (aq) + O H (aq) → H 2 O(l) 5. C S 2 (l) + 3 O 2 (g) → C O 2 (g) + 2S O 2 (g) 45. chemical equation: 2HCl O4 (aq) + K 2 C O 3 (aq) → 15. H 2 O(l) + N 2 O 5 (g) → 2HN O 3 (aq); synthesis H 2 O(l) + C O 2 (g) + 2KCl O 4 (aq) 17. H 2 S O 4 (aq) + 2NaOH(aq) → N a 2 S O 4 (aq) + 2 H 2 O(l) complete ionic equation: + - + 2- 2 H (aq) + 2Cl O 4 (aq) + 2 K (aq) + C O 3 (aq) → 19. Ni(OH ) 2 (s) → NiO(s) + H 2 O(l) + - H 2 O(l) + C O 2 (g) + 2 K (aq) + 2Cl O 4 (aq) 21. Yes. K is above Zn in the metal activity series. + 2- net ionic equation: 2 H (aq) + C O 3 (aq) → 2K(s) + ZnC l 2 (aq) → Zn(s) + 2KCl(aq) H 2 O(l) + C O 2 (g) 23. No. Fe is below Na in the metal activity series. 47. chemical equation: 2HBr(aq) + (N H 4 ) 2 C O 3 (aq) → 25. LiI(aq) + AgN O 3 (aq) → AgI(s) + LiN O 3 (aq) H 2 O(l) + C O 2 (g) + 2N H 4 Br(aq)

994 Solutions to Selected Practice Problems Solutions to Selected Practice Problems

- _2 mol C l - complete ionic equation: 29. 2.50 mol ZnC l2 × = 5.00 mol C l 1 mol ZnC l2 2 H + (aq) + 2B r - (aq) + 2N H + (aq) + C O 2 - (aq) → 4 3 3 mol SO 2 - + - 31. __4 2- H 2 O(l) + C O 2 (g) + 2N H 4 (aq) + 2B r (aq) 3.00 mol F e2 ( SO 4 ) 3 × = 9.00 mol S O 4 1 mol F e 2 (S O 4 ) 3 + 2- net ionic equation: 2 H (aq) + C O 3 (aq) → 33. 1 _2 mol H H 2 O(l) + C O 2 (g) 1.15 × 1 0 mol H 2 O × = 23.0 mol H 1 mol H2 O = 2.30 × 1 0 1 mol H 49. chemical equation: 2KI(aq) + Pb(N O 3 ) 2 (aq) → 12.01 g C 2KN O 3 (aq) + Pb I 2 (s) 35. a. 2 mol C × _ = 24.02 g complete ionic equation: 1 mol C + - 2+ - 1.008 g H 2 K (aq) + 2 I (aq) + P b (aq) + 2N O 3 (aq) → 6 mol H × _ = 6.048 g 2K + (aq) + 2N O - (aq) + Pb I (s) 1 mol H 3 2 16.00 g O 2+ - 1 mol O × _ = 16.00 g net ionic equation: P b (aq) + 2 I (aq) → Pb I 2 (s) 1 mol O molar mass C 2 H 5 OH = 46.07 g/mol 1.008 g H Chapter 10 b. 1 mol H × _ = 1.008 g __6.02 × 1 0 23 atoms 1 mol H 1. 2.50 mol Zn × 12.01 g C 1 mol 1 mol C × _ = 12.01 g = 1.51 × 1 0 24 atoms of Zn 1 mol C _14.01 g N __6.02 × 1 0 23 formula units 1 mol N × = 14.01 g 3. 3.25 mol AgN O3 × 1 mol N 1 mol molar mass HCN = 27.03 g/mol 24 = 1.96 × 1 0 formula units of AgN O 3 12.01 g C c. 1 mol C × _ = 12.01 g 1 mol 1 mol C 5. a. 5.75 × 10 24 atoms Al × __ 6.02 × 1 0 23 atoms _35.45 g Cl 4 mol Cl × = 141.80 g = 9.55 mol Al 1 mol Cl 20 1 mol b. 2.50 × 10 atoms Fe × __ molar mass CC l4 = 153.81 g/mol 6.02 × 1 0 23 atoms -4 = 4.15 × 1 0 mol Fe 37. Step 1: Find the molar mass of H 2 S O 4 . 26.98 g Al _1.008 g H 15. a. 3.57 mol Al × _ = 96.3 g Al 2 mol H × = 2.016 g 1 mol Al 1 mol H 32.07 g S 28.09 g Si _ b. 42.6 mol Si × _ = 1.20 × 1 0 3 g Si 1 mol S × = 32.07 g 1 mol Si 1 mol S 16.00 g O 1 mol Ag 4 mol O × _ = 64.00 g 17. a. 25.5 g Ag × _ = 0.236 mol Ag 107.9 g Ag 1 mol O

1 mol S molar mass H 2 S O 4 = 98.09 g/mol b. 300.0 g S × _ = 9.355 mol S 32.07 g S Step 2: Make mole → mass conversion. 1 mol Li 6.02 × 1 0 23 atoms 98.09 g H S O 19. a. 55.2 g Li × _ × __ __2 4 6.94 g Li 1 mol 3.25 mol H2 S O 4 × = 319 g H 2 S O 4 1 mol H2 S O 4 = 4.79 × 1 0 24 atoms Li 39. 1 mol Pb 6.02 × 1 0 23 atoms Potassium permanganate has a formula of KMn O 4 . b. 0.230 g Pb × _ × __ 6.94 g Pb 1 mol Step 1: Find the molar mass of KMn O 4 . = 6.68 × 1 0 20 atoms Pb 39.10 g K 1 mol K × _ = 39.10 g 1 mol Hg 6.02 × 1 0 23 atoms 1 mol K c. 11.5 g Hg × _ × __ 200.6 g Hg 1 mol 54.94 g Mn 22 1 mol Mn × _ = 54.94 g = 3.45 × 1 0 atoms Hg 1 mol Mn 1 mol Si 6.02 × 1 0 23 atoms 16.00 g O 21. a. 4.56 × 1 0 3 g Si × _ × __ 4 mol O × _ = 64.00 g 28.09 g Si 1 mol 1 mol O 25 = 9.77 × 1 0 a t o m s S i molar mass KMn O 4 = 158.04 g/mol 1000 g Ti 1 mol Ti Step 2: Make mole → mass conversion. b. 0.120 kg Ti × _ × _ 1 kg Ti 47.87 g Ti 158.04 g KMn O4 23 __ __6.02 × 1 0 atoms 24 2.55 mol KMn O 4 × = 403 g KMn O 4 × = 1.51 × 1 0 atoms Ti 1 mol KMn O 4 1 mol

Solutions to Selected Practice Problems 995 Solutions to Selected Practice Problems

41. a. ionic compound 45. Step 1: Find the number of moles of NaCl. 4.59 × 1 0 24 formula units NaCl × Step 1: Find the molar mass of F e 2 O 3 . 1 mol NaCl 55.85 g Fe ___ 2 mol Fe × _ = 111.70 g 6.02 × 1 0 23 formula unit NaCl 1 mol Fe = 7.62 mol NaC l 2 16.00 g O 3 mol O × _ = 48.00 g Step 2: Find the molar mass of NaCl. 1 mol O 22.99 g Na 1 mol Na × _ = 22.99 g molar mass F e 2 O 3 = 159.70 g/mol 1 mol Na Step 2: Make mass → mole conversion. 35.45 g Cl 1 mol Cl × _ = 35.45 g 1 mol Cl __1 mol Fe 2 O 3 1 2500 g F e2 O 3 × = 15.7 × 10 mol Fe 2 O 3 159.70 g F e2 O 3 molar mass NaCl = 58.44 g/mol b. ionic compound Step 3: Make mole → mass conversion. 58.44 g NaCl 7.62 mol NaCl × _ = 445 g NaCl Step 1: Find the molar mass of PbC l 4 . 1 mol NaCl 207.2 g Pb 1 mol Pb × _ = 207.2 g 55. Steps 1 and 2: Assume 1 mole; calculate molar mass of 1 mol Pb H2 S O 3 . _35.45 g Cl 1.008 g H 4 mol Cl × = 141.80 g 2 mol H × _ = 2.016 g 1 mol Cl 1 mol H molar mass PbC l = 349.0 g/mol 32.06 g S 4 1 mol S × _ = 32.06 g 1 mol S Step 2: Make mass → mole conversion. 16.00 g O 3 mol O × _ = 48.00 g __1 mol PbC l4 1 mol O 254 g PbC l4 × = 0.728 mol PbC l 4 349.0 g PbC l4 molar mass H2 S O 3 = 82.08 g/mol

43. a. Step 1: Find the molar mass of N a 2 S O 3 Step 3: Determine percent by mass of S. 22.99 g Na 32.06 g S 2 mol Na × _ = 45.98 g percent S = __ × 100 = 39.06% S 1 mol Na 82.08 g H2 S O 3 32.07 g S Repeat steps 1 and 2 for H S O . Assume 1 mole; 1 mol S × _ = 32.07 g 2 2 8 1 mol S calculate molar mass of H2 S 2 O 8 . 16.00 g O 1.008 g H 3 mol O × _ = 48.00 g 2 mol H × _ = 2.016 g 1 mol O 1 mol H molar mass N a S O = 126.05 g/mol 32.06 g S 2 3 2 mol S × _ = 64.12 g 1 mol S Step 2: Make mass → mole conversion. _16.00 g O __1 mol N a2 S O 3 8 mol O × = 128.00 g 2.25 g N a2 S O 3 × 1 mol O 126.05 g N a2 S O 3 molar mass H2 S 2 O 8 = 194.14 g/mol = 0.0179 mol N a 2 S O 3 Step 3: Determine percent by mass of S.

Step 3: Make mole → formula unit conversion. 64.12 g S __ 6.02 × 1 0 23 formula units percent S = × 100 = 33.03% S 0.0179 mol N a S O × __ 194.14 g H2 S 2 O 8 2 3 1 mol N a 2 S O 3 H 2 S O 3 has a larger percent by mass of S. 22 = 1.08 × 1 0 formula units N a 2 S O 3 57. a. sodium, sulfur, and oxygen; N a2 S O 4 Step 4: Determine the number of N a + ions. b. ionic 22 1.08 × 10 formula units Na 2 S O 3 × c. Steps 1 and 2: Assume 1 mole; calculate molar 2 N a + ions __ = 2.16 × 1 0 22 N a + ions mass of N a 2 S O 4 . 1 formula unit N a2 S O 3 22.99 g Na 2 mol Na × _ = 45.98 g 22 1 mol Na b. 1.08 × 1 0 formula units N a 2 S O 3 × 2- 32.07 g S __1 S O 3 ion 22 2- 1 mol S × _ = 32.07 g = 1.08 × 1 0 S O 3 ions 1 mol S 1 formula unit N a2 S O 3 _16.00 g O 126.08 g N a2 S O 3 1 mol N a S O 4 mol O × = 64.00 g c. __ × ___ 2 3 1 mol O 1 mol N a S O 6.02 × 1 0 23 formula unit N a S O 2 3 2 3 molar mass N a2 S O 4 = 142.05 g/mol -22 = 2.09 × 1 0 g N a 2 S O 3 /formula unit

996 Solutions to Selected Practice Problems Solutions to Selected Practice Problems

Step 3: Determine percent by mass of each element. The simplest ratio is 1 mol N: 1 mol O. 45.98 g Na The empirical formula is NO. percent Na = __ × 100 = 32.37% Na 142.05 g N a2 S O 4 Step 3: Calculate the molar mass of the empirical 32.07 g S percent S = __ × 100 = 22.58% S formula. 142.05 g N a S O 14.01 g N 2 4 1 mol N × _ = 14.01 g 64.00 g O 1 mol N __ percent O = × 100 = 45.05% O 16.00 g O 142.05 g N a 2 S O 4 1 mol O × _ = 16.00 g 1 mol O 59. Step 1: Assume 100 g sample; calculate moles of each molar mass NO = 30.01 g/mol element.

1 mol Al Step 4: Determine whole number multiplier. 35.98 g Al × _ = 1.334 mol Al 26.98 g Al 60.01 g/mol _ = 2.000 1 mol S 64.02 g S × _ = 1.996 mol S 30.01 g/mol 32.06 g S The molecular formula is N2 O 2 . Step 2: Calculate mole ratios. 65. Step 1: Assume 100 g sample; calculate moles of each _1.334 mol Al = _1.000 mol Al = _1 mol Al 1.334 mol Al 1.000 mol Al 1 mol Al element. 1.996 mol S 1.500 mol S 1.5 mol S _1 mol C _ = _ = _ 65.45 g C × = 5.450 mol C 1.334 mol Al 1.000 mol Al 1 mol Al 12.01 g C 1 mol H The simplest ratio is 1 mol Al: 1.5 mol S. 5.45 g H × _ = 5.41 mol H 1.008 g H Step 3: Convert decimal fraction to whole number. 1 mol O 29.09 g O × _ = 1.818 mol O In this case, multiply by 2 because 1.5 × 2 = 3. 16.00 g O Therefore, the empirical formula is A l 2 S 3 . Step 2: Calculate mole ratios. 5.450 mol C 3.000 mol C 3 mol C 61. _ = _ = _ Step 1: Assume 100 g sample; calculate moles of each 1.818 mol O 1.000 mol O 1 mol O element. 5.41 mol H 2.97 mol H 3 mol H 1 mol C _ = _ = _ 60.00 g C × _ = 5.00 mol C 1.818 mol O 1.00 mol O 1 mol O 12.01 g C 1.818 mol O 1.000 mol O 1 mol O 1 mol H _ = _ = _ 4.44 g H × _ = 4.40 mol H 1.000 mol O 1 mol O 1.008 g H 1.818 mol O The simplest ratio is 3 mol C: 3 mol H: 1 mol O. 35.56 g O × _1 mol O = 2.22 mol O 16.00 g O Therefore, the empirical formula is C3 H 3 O. Step 2: Calculate mole ratios. Step 3: Calculate the molar mass of the empirical _5.00 mol C _2.25 mol C _2.25 mol C formula. = = 12.01 g C 2.22 mol O 1.00 mol O 1 mol O 3 mol C × _ = 36.03 g 1.98 mol H 2 mol H 1 mol C _4.40 mol H = _ = _ 2.22 mol O 1.00 mol O 1 mol O 1.008 g H 3 mol H × _ = 3.024 g 1 mol H _2.22 mol O = _1.00 mol O = _1 mol O 2.22 mol O 1.00 mol O 1 mol O 16.00 g O 1 mol O × _ = 16.00 g The simplest ratio is 2.25 mol C: 2 mol H: 1 mol O. 1 mol O

Step 3: Convert decimal fraction to whole number. molar mass C3 H 3 O = 55.05 g/mol In this case, multiply by 4 because 2.25 × 4 = 9. Step 4: Determine whole number multiplier. Therefore, the empirical formula is C9 H 8 O 4 . 110.00 g/mol __ = 1.998, or 2 55.05 g/mol 63. Step 1: Assume 100 g sample; calculate moles of each

element. The molecular formula is C 6 H 6 O 2 . 1 mol N 46.68 g N × _ = 3.332 mol N 75. Step 1: Calculate the mass of CoC l remaining. 14.01 g N 2 129.83 g CoC l 1 mol O __2 53.32 g O × _ = 3.333 mol O 0.0712 mol CoC l2 × = 9.24 g CoC l 2 16.00 g O 1 mol CoC l2 Step 2: Calculate mole ratios. Step 2: Calculate the mass of water driven off.

_3.332 mol N = _1.000 mol N = _1 mol N mass of hydrated compound - mass of anhydrous 3.332 mol N 1.000 mol N 1 mol N compound remaining 3.333 mol O 1.000 mol O 1 mol O _ = _ = _ = 11.75 g CoC l ·x H O - 9.24 g CoC l = 2.51 g H O 3.332 mol N 1.000 mol N 1 mol N 2 2 2 2

Solutions to Selected Practice Problems 997 Solutions to Selected Practice Problems

Step 3: Calculate moles of each component. 13. Step 1: Balance the chemical equation. __1 mol CoC l2 2NaCl(s) → 2Na(s) + C l (g) 9.24 g CoC l2 × 2 129.83 g CoC l2 Step 2: Make mole → mole conversion. = 0.0712 mol CoC l 2 _1 mol C l2 2.50 mol NaCl × = 1.25 mol C l 2 _1 mol H2 O 2 mol NaCl 2.51 g H2 O × = 0.139 mol H 2 O 18.02 g H2 O Step 3: Make mole → mass conversion. Step 4: Calculate mole ratios. 70.9 g C l _2 0.0712 mol CoC l 1.00 mol CoC l 1 mol CoC l 1.25 mol C l 2 × = 88.6 g C l 2 __ 2 = __ 2 = _2 1 mol C l2 0.0712 mol CoC l2 1.00 mol CoC l2 1 mol CoC l2 15. 2Na N3 (s) → 2Na(s) + 3 N 2 (g) __0.139 mol H 2 O __1.95 mol H2 O _2 mol H2 O = = Step 1: Make mass → mole conversion. 0.0712 mol CoC l2 1.00 mol CoC l2 1 mol CoC l2 1 mol Na N The formula of the hydrate is CoC l ·2 H O. Its name 100.0 g Na N × _3 = 1.538 mol Na N 2 2 3 65.02 g Na N 3 is cobalt(II) chloride dehydrate. 3 Step 2: Make mole → mole conversion. _3 mol N2 1.538 mol Na N3 × = 2.307 mol N 2 Chapter 11 2 mol Na N3 Step 3: Make mole → mass conversion. 1. a. 1 molecule N2 + 3 molecules H 2 → 28.02 g N _2 2 molecules N H3 2.307 mol N 2 × = 64.64 g N 2 1 mol N2 1 mole N2 + 3 moles H 2 → 2 moles N H 3 23. Step 1: Make mass → mole conversion. 28.02 g N + 6.06 g H → 34.08 g N H 2 2 3 1 mol Na 100.0 g Na × _ = 4.350 mol Na b. 1 molecule HCl + 1 formula unit KOH → 22.99 g Na

1 formula unit KCl + 1 molecule H 2 O __1 mol F e2 O 3 100.0 g F e2 O 3 × = 0.6261 mol F e 2 O 3 1 mole HCl + 1 mole KOH → 159.7 g F e2 O 3 1 mole KCl + 1 mole H 2 O Step 2: Make mole ratio comparison. 36.46 g HCl + 56.11 g KOH → 0.6261 mol Fe O 1 mol F e2 O 3 __ 2 3 compared to _ 74.55 g KCl + 18.02 g H 2 O 4.350 mol Na 6 mol Na

c. 2 atoms Mg + 1 molecule O2 → 0.1439 compared to 0.1667 2 formula units MgO a. The actual ratio is less than the needed ratio, so 2 moles Mg + 1 mole O → 2 moles MgO 2 iron(III) oxide is the limiting reactant. 48.62 g Mg + 32.00 g O 2 → 80.62 g MgO b. Sodium is the excess reactant.

3. a. _4 mol Al _3 mol O 2 _2 mol A l 2 O 3 c. 3 mol O2 2 mol A l2 O 3 4 mol Al Step 1: Make mole → mole conversion. 3 mol O2 2 mol A l2 O 3 4 mol Al _2 mol Fe _ _ _ 0.6261 mol F e2 O 3 × = 1.252 mol Fe 1 mol Fe 2 O 3 4 mol Al 3 mol O 2 2 mol A l2 O 3

3 mol Fe 3 mol Fe 3 mol Fe Step 2: Make mole → mass conversion. b. _ _ _ 4 mol H O 4 mol H 1 mol F e O 55.85 g Fe 2 2 3 4 1.252 mol Fe × _ = 69.92 g Fe 4 mol H O 4 mol H 1 mol Fe O 1 mol Fe _2 _2 _ 3 4 3 mol Fe 3 mol Fe 3 mol Fe d. Step 1: Make mole → mole conversion.

1 mol F e3 O 4 1 mol F e3 O 4 4 mol H2 O _6 mol Na _ _ _ 0.6261 mol F e2 O 3 × 1 mol Fe 2 O 3 4 mol H2 4 mol H2 O 4 mol H 2 = 3.757 mol Na needed 4 mol H2 4 mol H2 O 4 mol H 2 _ _ _ 1 mol F e3 O 4 1 mol F e3 O 4 4 mol H2 O Step 2: Make mole → mass conversion. 22.9 g Na 2 mol HgO 1 mol O2 1 mol O2 _ c. _ _ _ 3.757 mol Na × = 86.37 g Na needed 2 mol Hg 2 mol Hg 2 mol HgO 1 mol Na 100.0 g Na given - 86.37 g Na needed _2 mol Hg _2 mol Hg _2 mol HgO = 13.6 g Na in excess 2 mol HgO 1 mol O2 1 mol O2 29. a. Step 1: Write the balanced chemical equation. 11. a. 2C H4 (g) + S 8 (s) → 2C S 2 (l) + 4 H 2 S(g) Zn(s) + I 2 (s) → Zn I 2 (s) b. _2 mol C S 2 1.50 mol S8 × = 3.00 mol C S 2 1 mol S 8 Step 2: Make mass → mole conversion. _4 mol H2 S _1 mol Zn c. 1.50 mol S8 × = 6.00 mol H 2 S 125.0 g Zn × = 1.912 mol Zn 1 mol S8 65.38 g Zn

998 Solutions to Selected Practice Problems Solutions to Selected Practice Problems

13. Step 3: Make mole → mole conversion. T 1 = 0.00°C + 273 = 273 K

_1 mol Zn I 2 T 2 = 30.0°C + 273 = 303 K 1.912 mol Zn × = 1.912 mol Zn I 2 1 mol Zn V P T (1.00 atm)(303 K) _2 = _1 2 = __ = 0.92 Step 4: Make mole → mass conversion. V 1 P2 T1 (1.20 atm)(273 K) 319.2 g Zn I2 1.912 mol Zn I × _ = 610.3 g Zn I This is a ratio, so there are no units. The final volume 2 2 1 mol Zn I 2 is less than the original volume, so the piston will

610.3 g of Zn I2 is the theoretical yield. move down. 515.6 g Zn I2 b. % yield = ___ × 100 1 mol 21. 1.0 L × _ = 0.045 mol 610.3 g Zn I2 22.4 L

= 84.48% yield of Zn I 2 44.0 g 0.045 mol × _ = 2.0 g 1 mol 1 mol Chapter 12 23. 0.416 g × _ = 0.00496 mol 83.80 g Rate nitrogen 20.2 g/mol 1. _ = _ = √0.721 = 0.849 _22.4 L Rate neon 28.0 g/mol 0.00496 mol × = 0.111 L 1 mol 3. Rearrange Graham’s law to solve for Rat e . A 25. 0.860 g - 0.205 g = 0.655 g He remaining _molar mas s B Rate A = Rat e B × molar mas sA Set up the problem as a ratio. V 19.2 L Rate B = 3.6 mol/min _ = _ 0.655 g 0.860 g _molar mas sB = 0.5 Solve for V. molar mas sA __(19.2 L)(0.655 g) Rate A = 3.6 mol/min × √0.5 V = = 14.6 L = 3.6 mol/min × 0.71 0.860 g L·atm = 2.5 mol/min (0.323 mol) 0.0821 _ (265 K) nRT ( mol·K) 5. 27. V = _ = ___ = 7.81 L P total = 5.00 kPa + 4.56 kPa + 3.02 kPa + 1.20 kPa P 0.900 atm = 13.78 kPa 7. PV (3.81 atm)(0.44 L) -3 N 2 = 590 mm Hg; O 2 = 160 mm Hg; Ar = 8 mm Hg 29. n = _ = __ = 6.9 × 1 0 mol RT L·atm 0.0821 _ (298 K) ( mol·K) Chapter 13 39. 2 H2 (g) + O 2 (g) → 2 H 2 O(g)

1. _ V 1 P 1 __(300.0 mL)(99.0 kPa) 2 volumes H V 2 = = = 158 mL __2 P 2 188 kPa 5.00 L O2 × = 10.0 L H 2 1 volume O 2 3. P = 1.08 atm + (1.08 atm × 0.25) = 1.35 atm 2 41. N + O = N O 2 2 2 _ V 1 P 1 __(145.7 mL)(1.08 atm) V 2 = = = 117 mL 2 N2 + O 2 = 2 N 2 O P 2 1.35 atm

__1 volume O 2 5. T 1 = 89°C + 273 = 362 K 34 L N 2 O × = 17 L O 2 2 volumes N2

_ T 1 V 2 __(362 K)(1.12 L) T 2 = = = 605 K 1000 g 1 mol CaC O3 1 mol C O2 V 1 0.67 L 43. 2.38 kg × _ × __ × __ 1 kg 100.09 g 1 mol CaC O3 605 - 273 = 332°C = 330°C 22.4 L × _ = 533 L C O 1 mol 2 7. V 2 = 0.67 L - (0.67 L × 0.45) = 0.37 L T V (350 K)(0.37 L) 45. T = _ 1 2 = __ = 190 K Molecular mass of sodium = 83.9 g/mol 2 V 0.67 L 1 __1 mol NaHC O3 28 g NaHC O3 × = 0.33 mol NaHC O 3 9. T 2 = 36.5°C + 273 = 309.5 K 83.9 g For each mole of sodium bicarbonate, one mole of _ T 2 P 1 __(309.5 K)(1.12 atm) T 1 = = = 135 K P2 2.56 atm C O 2 is produced, so 0.33 mol NaHC O 3 will produce 135 K - 273 = -138°C 0.33 mol C O2 . For an ideal gas, molar volume is 22.4 L at 273 K and 11. T = 22.0°C + 273 = 295 K 1 1 atm. T = 100.0°C + 273 = 373 K 2 T = 20°C + 273 = 293 K

_ V 2 T 1 P 2 ___(0.224 mL)(295 K)(1.23 atm) _22.4 L _293 K V 1 = = = 0.214 mL 0.33 mol C O2 × × = 7.9 L of C O 2 T 2 P 1 (373 K)(1.02 atm) 1 mol 273 K

Solutions to Selected Practice Problems 999 Solutions to Selected Practice Problems

Chapter 14 = 0.118 The mole fraction of NaOH is 0.118. 9. 600.0 mL H2 O × 1.0 g/mL = 600.0 g H 2 O 1.5 g 20.0 g NaHC O3 37. S = _ = 1.5 g/L ___ × 100 = 3% 2 1.0 L 600.0 g H2 O + 20.0 g NaHC O 3 _ S2 _1.5 g/L P2 = P 1 × = 10.0 atm × = 23 atm 11. 1500.0 g - 54.3 g = 1445.7 g solvent S1 0.66 g/L 45. ∆ T = 0.512°C/m × 0.625m = 0.320°C 13. __35 mL × 100 = 18% b 155 mL + 35 mL Tb = 100°C + 0.320°C = 100.320°C 18 mL 15. 15% = __ × 100 = 120 mL ∆ T = 1.86°C/m × 0.625m = 1.16°C x mL solution f

Tf = 0.0°C − 1.16°C = −1.16°C 17. _1 mol mol KBr = 1.55 g × = 0.0130 mol KBr 119.0 g 47. _∆ T f K f = __mol KBr _0.0130 mol m molarity = = 0.080°C 1.60 L solution 1.60 L = _ = 8.13 × 1 0 -3 M 0.045 m = 1.8°C/m x mol Ca(OH ) 2 19. 0.25M = __ It is most likely water because the calculated value is 1.5 L solution closest to 1.86°C/m. x = 0.38 mol Ca(OH ) 2 74.08 g 0.38 mol Ca(OH ) × _ 2 1 mol Chapter 15 = 28 g Ca(OH ) 2 1. 142 Calories = 142 kcal 1 L 21. mol CaC l = 500.0 mL × _ × 0.20M 1000 cal 2 1000 mL 142 kcal × _ = 142,000 cal 1 kcal 1 L 0.20 mol = 500.0 mL × _ × _ = 0.10 mol 1000 mL 1 L 3. Unit X = 0.1 cal 110.98 g mass CaC l = 0.10 mol CaC l × _ 1 cal = 4.184 J 2 2 1 mol =11 g X = (0.1 cal)(4.184 J/cal) = 0.4184 J 1 cal = 0.001 Calorie 1 L 0.15 mol ethanol 46 g ethanol 23. 100 mL × _ × __ × __ 1000 mL 1 L solution 1 mol ethanol X = (0.1 cal)(1 Cal/1000 cal) = 0.0001 Calorie 1 mL ethanol × __ = 0.87 mL 5. q = c × m × ∆T 0.7893 g ethanol 5696 J = c × 155 g × 15.0°C 25. (5.0M) V1 = (0.25M)(100.0 mL) c = 2.45 J/(g·°C) (0.25M)(100.0 mL) V = __ = 5.0 mL The specific heat is very close to the value for ethanol. 1 5.0M 13. __1 mol q = c × m × ∆T 27. mol N a 2 S O 4 = 10.0 g N a 2 S O 4 × 142.04 g N a2 S O 4 5650 J = 4.184 J/(g·°C) × m × 26.6°C

= 0.0704 mol N a 2 S O 4 m = 50.8 g 0.0704 mol Na S O molality = __ 2 4 = 0.0704m 15. q = c × m × ∆T 1.0000 kg H2 O 9750 J = 4.184 J/(g·ºC) × 335 g × ∆T mass NaOH 29. 22.8% = __ × 100 mass NaOH + mass H 2 O ∆T = 6.96°C Assume 100.0 g sample. Because the water lost heat, let ∆T = −6.96°C. Then, mass NaOH = 22.8 g ∆T = −6.96°C = T f − 65.5°C mass H O = 100.0 g - (mass NaOH) = 77.2 g 2 Tf = 58.5°C 1 mol mol NaOH = 22.8 g × _ = 0.570 mol NaOH 1 mol C H3 OH 3.22 kJ 40.00 g 23. 25.7 g C H OH × __ × __ 3 32.04 g C H OH 1 mol CH OH 1 mol 3 3 mol H O = 77.2 g × _ = 4.28 mol H O = 2.58 kJ 2 18.02 g 2 1 mol C H 891 kJ __mol NaOH 25. _4 _ mol fraction NaOH = 12,880 kJ = m × × mol NaOH + mol H 2 O 16.04 g C H 4 1 mol C H4 0.570 mol NaOH 0.570 16.04 g C H4 1 mol C H = ___ = _ m = 12,880 kJ × _ × _ 4 0.570 mol NaOH + 4.28 mol H 2 O 4.85 1 mol C H4 891 kJ

1000 Solutions to Selected Practice Problems Solutions to Selected Practice Problems

0.020M - 0.030M m = 232 g C H Average reaction rate = - __ 4 4.00 s - 0.00 s -0.010M 33. a. 4Al(s) + 3 O 2 (g) → 2A l 2 O 3 (s) ∆H = -3352 kJ = - _ = 0.0025 mol/(L·s) 4.00 s b. ∆H for Equation b = -x kJ 3. HCl is formed so the average rate expression should Add Equation a to Equation b reversed and tripled. be positive. 4Al(s) + 3 O 2 (g) → 2A l 2 O 3 (s) ∆H = -3352 kJ Average reaction rate = 3Mn O (s) → 3Mn(s) + 3 O (g) ∆H = 3x kJ [HCl] at time t2 - [HCl] at time t1 2 2 ___ = 0.0050 mol/(L·s) t - t 4Al(s) + 3Mn O 2 (s) → 2A l 2 O 3 (s) + 3Mn(s) 2 1

-1789 kJ = 3x kJ + (-3352 kJ) [HCl ] at time t2 = (0.0050 mol/(L·s))( t - t ) + [HCl ] 3x kJ = -1789 kJ + 3352 kJ = +1563 kJ 2 1 at time t1 1563 kJ = (0.0050 mol/L·s)(4.00 s - 0.00 s) + 0.00 s x = _ = +521 kJ 3 = 0.020M

Because the direction of Equation b was changed, 19. Rate = k[A ] 3 ∆H for Equation b = -521 kJ. 21. Examining trials 1 and 2, doubling [A] has no effect 35. 0 ∆ Hrxn = [4(33.18 kJ) + 6(-285.83 kJ)] - on the rate; therefore, the reaction is zero order in A. 4(-46.11) kJ = -1397.82 Examining trials 2 and 3, doubling [B] doubles the 37. Reverse Equation a and change the sign of ∆H 0 to rate; therefore, the reaction is first order in B. Rate = f 0 obtain Equation c. k[A ] [B] = k[B] Add equation b. 31. [NO] = 0.00500M 0 c. NO(g) → Ω N2 (g) + ΩO 2 (g) ∆ Hf = -91.3 kJ [ H2 ] = 0.00200M 0 2 2 2 b. Ω N2 (g) + O 2 (g) → N O 2 (g) ∆ H f = ? k = 2.90 × 1 0 L /(mo l ·s) 2 Add the equations. Rate = k [NO ] [ H 2 ] 2 2 2 2 NO(g) + Ω O2 (g) → N O 2 (g) = [2.90 × 1 0 L /(mo l ·s)](0.00500M ) (0.00200M) 0 0 0 2 2 2 2 ∆ Hrxn = -58.1 kJ = ∆ H f (c) + ∆ H f (b) = [2.90 × 1 0 L /(mo l ·s)](0.00500 mol/k ) 0 −58.1 kJ = -91.3 kJ + ∆ H f (b) (0.00200 mol/L) 0 -5 ∆ Hf ( b) = -58.1 kJ + 91.3 kJ = 33.2 kJ = 1.45 × 1 0 mol/(L·s) 2 45. The states of the two reactants are the same on both 33. Rate = k [NO ] [ H 2 ] -5 sides of the equation, so it is impossible from the _Rate ___9.00 × 10 mol/(L × s) [NO] = = 2 equation alone to predict the sign of ∆ S system . k[ H2 ] √(2.90 × 1 0 )(0.00300mol/L) = 1.02 × 1 0 -2 M 47. Calculate T when ∆ G system = 0. 1 kJ -36.8 J/K × _ = -0.0368 kJ/K 1000 J Chapter 17

∆ Gsystem = ∆ Hsystem - T∆ Ssystem 2 4 6 1. a. _[N O 2 ] d. __[NO ] [ H 2 O ] K eq = K eq = 4 5 -144 kJ - (T × (−0.0368 kJ/K)) = -144 kJ + [ N2 O 4 ] [N H3 ] [ O 2 ] 0.0368T kJ/K = 0 2 4 b. _[ H 2 ] [ S 2 ] e. _[C S 2 ][ H 2 ] 144 kJ K eq = 2 K eq = 2 T = _ = 3910 K [ H2 S ] [C H4 ][ H 2 S ] 0.0368 kJ/K [C H ][ H O] At any temperature above 3910 K, the reaction is c. K = _ 4 2 eq [CO][ H ] 3 spontaneous. 2 [CO(g)][ H (g)] 3. a. d. __2 Keq = [C 10 H 8 (g)] Keq = [ H2 O(g)] [CO 2 (g)] Chapter 16 b. K = [H O(g)] e. K = _ eq 2 eq [CO(g)] c. 1. H 2 is consumed. Average reaction rate expression Keq = [C O 2 (g)] should be negative. 2 2 5. _[NO 2 ] _0.062 7 Keq = = = 0.213 Average reaction rate = [ N2 O 4 ] 0.0185 [ H ] at time t - [ H ] at time t ∆[ H ] - ___ 2 2 2 1 = - _ 2 t2 − t1 ∆t [CO][C l ] 7. _2 = 8.2 × 1 0 -2 [COC l2 ]

Solutions to Selected Practice Problems 1001 Solutions to Selected Practice Problems

+ - __(0.150)(0.150) -2 __[ C 6 H 13 N H 3 ][O H ] = 8.2 × 10 Kb = [COC l2 ] [ C6 H 13 N H 2 ] (0.150)(0.150) __ b. C3 H 7 N H 2 (aq) + H 2 O(l) ⇌ [COC l 2 ] = -2 = 0.28M 8.2 × 1 0 - - C 3 H 7 N H 3 (aq) + O H (aq) 19. + - According to the stoichiometry of the equation, the __[ C 3 H 7 N H 3 ][O H ] Kb = concentration of B is 0.450M; C and D are 1.00 - [ C3 H 7 N H 2 ] 0.450 = 0.550M. 2- - - c. C O3 (aq) + H 2 O(l) ⇌ HC O 3 (aq) + O H (aq) __(0.550)(0.550) [HC O - ][O H - ] Keq = = 1.49 __3 (0.450)(0.450) K b = 2- [C O3 ] 21. 2+ 2- -14 - - Ksp = [P b ][C O3 ] = 7.40 × 10 d. HS O3 (aq) + H 2 O(l) ⇌ H 2 S O 3 (aq) + O H (aq) (s)(s) = 7.40 × 1 0 - 14 - - __[ H 2 S O 3 ][O H ] -14 -7 K b = - s = √7.40 × 1 0 = 2.72 × 1 0 M [HS O 3 ] s = 2.72 × 1 0 -7 mol/L × 267.2 g/mol 23. At 298 K, [ H + ] = [O H − ] = 1.0 × 10 −7 M -5 = 7.27 × 1 0 g/L 1.0 × 1 0 −7 mol 1 L Mol H + = __ × _ × 300 mL = 23. + 3 3- -18 1 L 1000 mL Ksp = [A g ] [P O 4 ] = 2.6 × 1 0 3.0 × 10 − 8 mol [P O 3 - ] = s, [A g + ] = 3s 6.02 × 1 0 23 H + ions 4 3.0 × 1 0 − 8 mol H + ions × __ = (3s ) 3 ( s) = (27s 3 )(s) = 27 s 4 = 2.6 × 1 0 −18 1 mol 1.8 × 1 0 16 H + ions -18 4 _2.6 × 1 0 -5 s = = 1.8 × 1 0 mol/L + − 16 27 Number of H = number of O H = 1.8 × 1 0 ions

2+ - 25. a. [ H + ] = 0.0055M b. [ H + ] = 0.000084M 25. a. Pb F 2 (s) ⇌ P b (aq) + 2 F (aq) 2+ - 2 2 + + Qsp = [P b ][ F ] = (0.050M)(0.015M) pH = −log [H ] pH = −log [H ] = 1.12 × 1 0 -5 pH = −log 0.0055 pH = −log 0.000084 -8 Ksp = 3.3 × 1 0 pH = 2.26 pH = 4.08 Qsp > Ksp , so a precipitate of PbF will form. 2 27. a. [O H − ] = 1.0 × 1 0 − 6 M b. + 2- − Ag 2 S O 4 (s) ⇌ 2A g (aq) + S O4 (aq) pOH = −log [OH ] + 2 2- 2 −6 Q sp = [A g ] [S O 4 ] = (0.0050M ) (0.125M) pOH = −log(1.0 × 1 0 ) = 3.1 × 1 0 - 6 pOH = 6.00 -5 K sp = 1.2 × 1 0 pH = 14.00 − pOH = 14.00 − 6.00 = 8.00 Qsp < Ksp , so a precipitate will not form. b. [O H − ] = 6.5 × 1 0 − 4 M pOH = −log [OH − ] pOH = −log(6.5 × 1 0 − 4 ) Chapter 18 pOH = 3.19

1. a. 2Al(s) + 3 H 2 S O 4 (aq) → A l 2 (S O 4 ) 3 (aq) + 3 H 2 (g) pH = 14.00 − pOH = 14.00 − 3.19 = 10.81 c. + −9 b. CaC O3 (s) + 2HBr(aq) → [ H ] = 3.6 × 1 0 M + CaB r 2 (aq) + H 2 O(l) + C O 2 (g) pH = −log [H ] 3. pH = −log(3.6 × 10 − 9 ) Acid Conjugate Base Conjugate pH = 8.44 base acid pOH = 14.00 − pH = 14.00 − 8.44 = 5.56 a. + - + −2 N H 4 N H3 OH H 2 O d. [ H ] = 2.5 × 1 0 M - + pH = −log(−2.5 × 10 −2 ) b. HBr B r H 2 O H 3 O pH = 1.60 c. H O O H - C O 2 - HC O - 2 3 3 pOH = 14.00 − pH = 14.00 − 1.60 = 12.40 13. - + 1.0 × 1 0 −3 mol H 2 Se O 3 (aq) + H 2 O(l) ⇌ HSe O 3 (aq) + H 3 O (aq) 29. [HCl] = [ H + ] = __ = 0.00020M = - 2- + 5.0 L HSe O 3 (aq) + H 2 O(l) ⇌ Se O 3 (aq) + H 3 O (aq) 2.0 × 1 0 − 4 M −4 15. a. C 6 H 13 N H 2 (aq) + H 2 O(l) ⇌ pH = −log(2.0 × 10 ) = −(−3.70) = 3.70 - − C 6 H 13 N H 3 (aq ) + O H (aq) pOH = 14.00 − 3.70 = 10.30

1002 Solutions to Selected Practice Problems Solutions to Selected Practice Problems

31. [O H − ] = antilog (−pOH) Chapter 19 [O H − ] = antilog (−5.60) = 2.5 × 10 −6 M 1. a. reduction c. oxidation

pH = 14.00 − 5.60 = 8.40 b. oxidation d. reduction [H + ] = antilog (−8.40) = 4.0 × 1 0 −9 M 3. A g + is the oxidizing agent, Fe is the reducing agent; 33. a. pH = 14.00 − pOH A g + is reduced, Fe is oxidized

pH = 14.00 − 10.70 = 3.30 5. a. +7 b. +5 c. +3 [ H + ] = antilog (−pH) 7. a. -3 b. -3 c. -2 [ H + ] = antilog (−3.30) = 5.0 × 1 0 −4 M − + −4 15. 3(+2) [ C6 H 5 CO O ] = [ H ] = 5.0 × 10 M −4 [ C6 H 5 COOH] = 0.0040M − 5.0 × 1 0 M = +1 -1 +1 +5 -2 +1 -2 +1 +2 -2 +1 -2 HCl + HNO HOCl + NO + H O 0.0035M 3 → 2 + − −4 −4 [ H ][ C6 H 5 CO O ] (5.0 × 10 )(5.0 × 1 0 ) a __ __ K = = − 3 2(–3) [ C6 H 5 COOH] (3.5 × 1 0 ) −5 Ka = 7.1 × 1 0 3HCl + 2HN O 3 → 3HOCl + 2NO + H 2 O b. pH = 14.00 − pOH 17. 4(+3)(2) pH = 14.00 − 11.00 = 3.00 [ H + ] = antilog (−pH) -3 +1 +4 -2 0+1 -2 NH3(g) + NO2(g) → N2(g) + H2O(l) [ H + ] = antilog (−3.00) = 1.0 × 1 0 −3 M [CN O − ] = [ H + ] = 1.0 × 1 0 − 3 M 3(–4)(2) [HCNO] = 0.100 − 1.0 × 1 0 −3 M = 0.099M 8N H3 (g) + 6N O 2 (g) → 7 N 2 (g) + 12 H 2 O(l) [ H + ][CN O − ] (1.0 × 1 0 −3 )(1.0 × 1 0 − 3 ) Ka = __ = __ [HCNO] (0.099) 19. 3(+2) −5 K a = 1.0 × 1 0 +1 -2 +5 -2 0 +2 -2 c. - pH = 14.00 − pOH H2S(g) + NO3 (aq) → S(s) + NO(g) pH = 14.00 − 11.18 = 2.82 2( 3) [ H + ] = antilog (−pH) – + −3 + - [ H ] = antilog (−2.82) = 1.5 × 10 M 2 H (aq) + 3 H 2 S(g) + 2N O 3 (aq) → − + −3 [ C3 H 7 CO O ] = [ H ] = 1.5 × 10 M 3S(s) + 2NO(g) + 4H 2 O(l) −3 [ C3 H 7COOH] = 0.150M − 1.5 × 1 0 M = 0.149M 21. 2 + − −3 −3 + [ H ][ C3 H 7 CO O ] (1.5 × 10 )(1.5 × 1 0 ) K a = __ = __ [ C3 H 7 COOH] (0.149) 0 +5 -2 +2 +4 -2 - + 2+ −5 Zn 2NO3 4H Zn 2NO2 2H2O K a = 1.5 × 1 0 + + → + + 1 L 0.5900 mol HCl 45. 49.90 mL HCl × _ × __ = (–1) 1000 mL 1 L HCl −2 - + 2+ 2.944 × 1 0 mol HCl Zn + 2N O 3 + 4 H → Z n + 2N O 2 + 2 H 2 O 1 mol N H 2.944 × 1 0 −2 mol HCl × _3 = 2.944 × 23. - - 1 mol HCl 2 I (aq) → I 2 (s) + 2e (oxidation) −2 + - 2- 1 0 mol N H 3 14 H (aq) + 6 e + C r O 7 (aq) → 2.944 × 1 0 − 2 mol N H 2 __3 3+ M N H3 = = 1.178M 2C r (aq) + 7H 2 O(l) (reduction) 0.02500 L N H3 Multiply oxidation half-reaction by 3 and add to 47. a. + + N H4 (aq) + H 2 O(l)  N H 3 (aq) + H 3 O (aq) reduction half-reaction. The solution is acidic. + - 2- - 14 H (aq) + 6 e + Cr O 7 (aq) + 6I (aq) → b. S O 2 − (aq) + H O(l)  HS O − (aq) + O H − (aq) 3+ - 4 2 4 3I 2 (s) + 2C r (aq) + 7 H 2 O(l) + 6 e The solution is neutral. + 2- - 14 H (aq) + Cr O 7 (aq) + 6 I (aq) → − c. C H3 CO O (aq) + H 2 O(l)  3+ 3I 2 (s) + 2C r (aq) + 7 H 2 O(l) C H COOH(aq) + O H − (aq) 3 25. - The solution is basic. 6O H (aq) + N 2 O(g) → - - 2− − − 2NO 2 (aq) + 4 e + 3 H2 O(l) (oxidation) d. C O3 (aq) + H 2 O(l)  HC O 3 (aq) + O H (aq) - - The solution is basic. Cl O (aq) + 2 e + H 2 O(l) → C l - (aq) + 2O H - (aq) (reduction)

Solutions to Selected Practice Problems 1003 Solutions to Selected Practice Problems

Multiply reduction half-reaction by 2 and add to oxi- 31. a. propylbenzene dation half-reaction. b. 1-ethyl-2-methylbenzene - - - c. 6O H (aq) + N 2O(g) + 2ClO (aq) + 4e + 2H 2 O(l) → 1-ethyl-2,3-dimethylbenzene - - - - 2N O2 (aq) + 4e + 3H 2O(l) + 2Cl (aq) + 4OH (aq) - - N 2 O(g) + 2Cl O (aq) + 2O H (aq) → Chapter 22 - - 2N O 2 (aq) + 2C l (aq) + H 2 O(l) 1. 2,3-difluorobutane 3. 1,3-dibromo-2-chlorobenzene Chapter 20 1. P t 2+ (aq) + Sn(s) → Pt(s) + S n 2+ (aq) Chapter 23 0 E cell = +1.18 V - (-0.1375 V) 0 No practice problems E cell = +1.32 V Sn|S n 2+ ||P t 2+ | Pt 3. H g 2+ (aq) + Cr(s) → Hg(l) + C r 2 + (aq) 0 E cell = +0.851 V - (-0.913 V) Chapter 24 0 E cell = +1.764 V 7. 229 4 225 90 Th → 2He + 88 Ra Cr|C r 2+ ||H g 2+ | Hg Alpha decay 0 5. E = +0.3419 V - (-0.1375 V) cell 9. For one half-life, amount remaining = (initial 0 n E cell = +0.4794 V 1 1 1 amount) _ = (10.0 mg) _ = 5.00 mg. 0 (2) (2) E cell > 0 spontaneous 0 For two half-lives, amount remaining = (initial 7. E = 0.920 V - (+1.507 V) n 2 cell _1 _1 0 amount) = (10.0 mg) = 2.50 mg. E cell = -0.587 V (2) (2) 0 E cell < 0 not spontaneous For three half-lives, amount remaining = (initial 1 n 1 3 9. 3+ 2+ 2+ amount) _ = (10.0 mg) _ = 1.25 mg. Al|Al ||H g |H g 2 (2) (2) 2Al(s) + 6H g 2 + (aq) → 2A l 3+ (aq) + 3H g 2 + (aq) 2 11. 0 Sample A will have 16.2 grams remaining after two E = 0.920 V - (-1.662 V) = +2.582 V cell half-lives, or 10.54 years. For Sample B, amount t _10.54y The reaction is spontaneous. 1 _ 1 remaining = (initial amount) _ T = (58.4 g) _ 12.32y (2) (2) ≈ 32.3 g Chapter 21 For Sample C, amount remaining = 10.54y _t _ 9. a. CH C H 1 28.79y 3 3 7 (initial amount ) T = (37.6 g) _ ≈ 29.2 g (2) — — CH3CHCHCH2CH(CH2)4CH3 19. 27 24 4 — 13 Al + n → 11 Na + 2He CH3 21. b. C2H5 C2H5 Let T = target and I = unstable isotope. Then,

— — 110 n + T = I and I = β + Cd CH3CH2CHCHCHCH2CH2CH3 48

— Balancing the second equation gives: C2H5 110 110 47 Ag = β + 48 Cd 11. a. C H b. CH 110 2 5 3 The first equation must then be: n + T = 47 Ag CH 3 109 110 Balancing this equation gives: n + 47 Ag = 47 Ag CH 3 The target, then, was silver-109, and the unstable isotope was silver-110.

CH3 C3H7 17. a. 4-methyl-2-pentene b. 2,2,6-trimethyl-3-octene

1004 Solutions to Selected Practice Problems A multilingual science glossary at glencoe.com includes Arabic, Bengali, Chinese, English, Haitian Creole, Hmong, Korean, Portuguese, Russian, Tagalog, Urdu, and Vietnamese.

Pronunciation Key Use the following key to help you sound out words in the glossary. a ...... back (BAK) ew ...... food (FEWD) ay ...... day (DAY) yoo ...... pure (PYOOR) ah ...... father (FAH thur) yew ...... few (FYEW) ow ...... flower (FLOW ur) uh ...... comma (CAHM uh) ar ...... car (CAR) u (+con) ...... rub (RUB) e ...... less (LES) sh ...... shelf (SHELF) ee ...... leaf (LEEF) ch ...... nature (NAY chur) ih ...... trip (TRIHP) g ...... gift (GIHFT) i (i+con+e)...... idea, life (i DEE uh, life) j ...... gem (JEM) oh ...... go (GOH) ing ...... sing (SING) aw ...... soft (SAWFT) zh ...... vision (VIHZH un) or ...... orbit (OR but) k ...... cake (KAYK) oy ...... coin (COYN) s ...... seed, cent (SEED, SENT) oo ...... foot (FOOT) z ...... zone, raise (ZOHN, RAYZ)

Como usar el glosario en espanol: 1. Busca el termino en ingles que desees encontrar. 2. El termino en espanol, junto con la defi nicion, A se encuentran en la columna de la derecha. English Español absolute zero (p. 445) Zero on the Kelvin scale which repre- cero absoluto (pág. 445) Equivale a cero grados en la escala sents the lowest possible theoretical temperature; atoms de Kelvin y representa la temperatura teórica más fría are all in the lowest possible energy state. posible; a esta temperatura todos los átomos se encuen- tran en el menor estado energético posible. accuracy (p. 47) Refers to how close a measured value is to exactitud (pág. 47) Se refiere a la cercanía entre un valor an accepted value. medido y el valor aceptado. acid-base indicator (p. 662) A chemical dye whose color is indicador ácido-base (pág. 662) tinción química cuyo color affected by acidic and basic solutions. cambia al entrar en contacto con soluciones ácidas y básicas. acidic solution (p. 636) Contains more hydrogen ions than solución ácida (pág. 636) Solución que contiene más iones hydroxide ions. hidrógeno que iones hidróxido. acid ionization constant (p. 647) The value of the equilib- constante ácida de ionización (pág. 647) Valor de la expre- rium constant expression for the ionization of a weak sión de la constante de equilibrio para la ionización de acid. un ácido débil. actinide series (p. 180) In the periodic table, the f-block ele- serie de actínidos (pág. 180) Elementos del bloque F del ments from period 7 that follow the element actinium. período 7 de la tabla periódica que aparecen después del elemento actinio. activated complex (p. 564) A short-lived, unstable arrange- complejo activado (pág. 564) Complejo efímero e inestable ment of atoms that can break apart and re-form the reac- de átomos que se puede romper para volver a formar los tants or can form products; also sometimes referred to as reactivos o para formar los productos; a veces también se the transition state. le llama estado de transición. activation energy (p. 564) The minimum amount of energy energía de activación (pág. 564) La cantidad mínima de required by reacting particles in order to form the acti- energía que requieren las partículas de una reacción para vated complex and lead to a reaction. formar el complejo activado y producir la reacción. active site (p. 830) The pocket or crevice to which a sub- sitio activo (pág. 830) Saliente o hendidura a la que se enlaza strate binds in an enzyme-catalyzed reaction. un sustrato durante una reacción catalizada por enzimas.

Glossary/Glosario 1005 Glossary/Glosario

actual yield/rendimiento real amino acid/amino ácido

actual yield (p. 385) The amount of product produced when rendimiento real (pág. 385) Cantidad de producto que se a chemical reaction is carried out. obtiene al realizar una reacción química. addition polymerization (p. 811) Occurs when all the atoms polimerización de adición (pág. 811) Ocurre cuando todos present in the monomers are retained in the polymer los átomos presentes en los monómeros forman parte del product. producto polimérico. addition reaction (p. 804) A reaction that occurs when other reacción de adición (pág. 804) Reacción que ocurre cuando atoms bond to each of two atoms bonded by double or dos átomos unidos entre sí por enlaces covalentes dobles triple covalent bonds. o triples se unen con otros átomos. alcohol (p. 792) An organic compound in which a hydroxyl alcohol (pág. 792) Compuesto orgánico en el que un grupo group replaces a hydrogen atom of a hydrocarbon. hidroxilo reemplaza a un átomo de hidrógeno de un hidrocarburo. aldehyde (p. 796) An organic compound containing the aldehído (pág. 796) Compuesto orgánico que contiene una structure in which a carbonyl group at the end of a car- estructura en la que un grupo carbonilo, situado al final de bon chain is bonded to a carbon atom on one side and a una cadena de carbonos, se une a un átomo de carbono por hydrogen atom on the other side. un lado y a un átomo de hidrógeno por el lado opuesto. aliphatic compounds (a luh FA tihk • KAHM pownd) compuestos alifáticos (pág. 771) Hidrocarburos no aromáti- (p. 771) Nonaromatic hydrocarbons, such as the alkanes, cos como los alcanos, los alquenos y los alquinos. alkenes, and alkynes. alkali metals (p. 177) Group 1 elements, except for hydro- metales alcalinos (pág. 177) Incluyen los elementos del gen, they are reactive and usually exist as compounds grupo 1, a excepción del hidrógeno. Son reactivos y gene- with other elements. ralmente existen como compuestos con otros elementos. alkaline earth metals (p. 177) Group 2 elements in the mod- metales alcalinotérreos (pág. 177) Elementos altamente ern periodic table and are highly reactive. reactivos del grupo 2 de la tabla periódica moderna. alkane (p. 750) Hydrocarbon that contains only single alcano (pág. 750) Hidrocarburo que sólo contiene enlaces bonds between atoms. sencillos entre sus átomos. alkene (p. 759) An unsaturated hydrocarbon, such as eth- alqueno (pág. 759) Hidrocarburo no saturado, como el ene ( C 2 H 4 ), with one or more double covalent bonds eteno (C 2 H 4), que tiene uno o más enlaces covalentes between carbon atoms in a chain. dobles entre los átomos de carbono en una cadena. alkyl halide (p. 787) An organic compound containing a haluro de alquilo (pág. 787) Compuesto orgánico que con- halogen atom covalently bonded to an aliphatic carbon tiene un átomo de halógeno enlazado covalentemente a atom. un átomo de carbono alifático. alkyne (p. 763) An unsaturated hydrocarbon, such as alquino (pág. 763) Hidrocarburo no saturado, como el ace- ethyne ( C2 H 2 ), with one or more triple bonds between tileno (C 2 H 2 ), que tiene uno o más enlaces triples entre carbon atoms in a chain. los átomos de carbono en una cadena. allotrope (p. 422) One of two or more forms of an element alótropos (pág. 422) Formas de un elemento que tienen with different structures and properties when they are in estructura y propiedades distintas cuando están en el the same state—solid, liquid, or gas. mismo estado: sólido, líquido o gaseoso. alloy (p. 227) A mixture of elements that has metallic prop- aleación (pág. 227) Mezcla de elementos que posee propie- erties; most commonly forms when the elements are dades metálicas; en general se forman cuando los elemen- either similar in size (substitutional alloy) or the atoms tos tienen un tamaño similar (aleación de sustitución) of one element are much smaller than the atoms of the o cuando los átomos de un elemento son mucho más other (interstitial alloy). pequeños que los átomos del otro (aleación intersticial). alpha particle (p. 123) A particle with two protons and two partícula alfa (pág. 123) Partícula con dos protones y dos neutrons, with a 2+ charge; is equivalent to a helium-4 neutrones que tiene una carga 2+ ; equivale a un núcleo nucleus, can be represented as α; and is emitted during de helio 4, se puede representar como α y es emitida radioactive decay. durante la desintegración radiactiva. alpha radiation (p. 123) Radiation that is made up of alpha radiación alfa (pág. 123) Radiación compuesta de partículas particles; is deflected toward a negatively charged plate alfa; si la radiación proveniente de una fuente radiactiva es when radiation from a radioactive source is directed dirigida hacia dos placas cargadas eléctricamente, este tipo between two electrically charged plates. de radiación se desvía hacia la placa con carga negativa. amide (AM ide) (p. 800) An organic compound in which amida (pág. 800) Compuesto orgánico en el que el grupo the -H group of a carboxylic acid is replaced by a nitro- -H de un ácido carboxílico es sustituido por un átomo gen atom bonded to other atoms. de nitrógeno unido a otros átomos. amines (A meen) (p. 795) Organic compounds that con- aminas (pág. 795) Compuestos orgánicos que contienen tain nitrogen atoms bonded to carbon atoms in aliphatic átomos de nitrógeno unidos a átomos de carbono en chains or aromatic rings and have the general formula cadenas alifáticas o anillos aromáticos; su fórmula gene- RN H 2 . ral es RN H 2 . amino acid (p. 826) An organic molecule that has both an amino ácido (pág. 826) Molécula orgánica que posee un amino group (-N H 2 ) and a carboxyl group (-COOH). grupo amino (-N H 2 ) y un grupo carboxilo (-COOH).

1006 Glossary/Glosario Glossary/Glosario amorphous solid/sólido amorfo ATP/ATP amorphous solid (p. 424) A solid in which particles are sólido amorfo (pág. 424) Sólido cuyas partículas no están not arranged in a regular, repeating pattern that often is ordenadas de modo que formen un patrón regular repe- formed when molten material cools too quickly to form titivo; a menudo se forma cuando el material fundido se crystals. enfría demasiado rápido como para formar cristales. amphoteric (AM foh TAR ihk) (p. 639) Describes water anfotérico (pág. 639) Término que describe al agua y otras and other substances that can act as both acids and bases. sustancias que pueden actuar como ácidos y bases. amplitude (p. 137) The height of a wave from the origin to amplitud (pág. 137) Altura de una onda desde el origen a crest, or from the origin to a trough. hasta una cresta o desde el origen hasta un valle. anabolism (ah NAB oh lih zum) (p. 844) Refers to the anabolismo (pág. 844) Reacciones metabólicas en las que metabolic reactions through which cells use energy and las células usan energía y pequeñas unidades básicas para small building blocks to build large, complex molecules formar las moléculas grandes y complejas que requieren needed to carry out cell functions and for cell structures. para realizar sus funciones celulares y para construir sus estructuras. anion (AN i ahn) (p. 209) An ion that has a negative anión (pág. 209) Ion con carga negativa. charge. anode (p. 710) In an electrochemical cell, the electrode ánodo (pág. 710) Electrodo donde sucede la oxidación en where oxidation takes place. una celda electroquímica. applied research (p. 17) A type of scientific investigation investigación aplicada (pág. 17) Tipo de investigación cientí- that is undertaken to solve a specific problem. fica que se realiza para resolver un problema concreto. aqueous solution (p. 299) A solution in which the solvent is solución acuosa (pág. 299) Solución en la que el agua fun- water. ciona como disolvente. aromatic compounds (p. 771) Organic compounds that con- compuestos aromáticos (pág. 771) Compuestos orgánicos tain one or more benzene rings as part of their molecular que contienen uno o más anillos de benceno como parte structure. de su estructura molecular. Arrhenius model (ah REE nee us • MAH dul) (p. 637) modelo de Arrhenius (pág. 637) Modelo de ácidos y bases; A model of acids and bases; states that an acid is a sub- establece que un ácido es una sustancia que contiene stance that contains hydrogen and ionizes to produce hidrógeno y se ioniza para producir iones hidrógeno en hydrogen ions in aqueous solution and a base is a sub- solución acuosa, y que una base es una sustancia que stance that contains a hydroxide group and dissociates to contiene un grupo hidróxido y se disocia para producir produce a hydroxide ion in aqueous solution. un ion hidróxido en solución acuosa. aryl halide (p. 788) An organic compound that contains a haluro de arilo (pág. 788) Compuesto orgánico que con- halogen atom bonded to a benzene ring or another aro- tiene un átomo de halógeno unido a un anillo de ben- matic group ceno u otro grupo aromático. asymmetric carbon (p. 768) A carbon atom that has four carbono asimétrico (pág. 768) Átomo de carbono que está different atoms or groups of atoms attached to it; occurs unido a cuatro átomos o grupos de átomos diferentes; se in chiral compounds. hallan en compuestos quirales. atmosphere (p. 407) The unit that is often used to report air atmósfera (pág. 407) Unidad que a menudo se usa para pressure. reportar la presión atmosférica. atom (p. 106) The smallest particle of an element that átomo (pág. 106) La partícula más pequeña de un elemento retains all the properties of that element; is electrically que retiene todas las propiedades de ese elemento; es neutral, spherically shaped, and composed of electrons, eléctricamente neutro, de forma esférica y está com- protons, and neutrons. puesto de electrones, protones y neutrones. atomic emission spectrum (p. 144) A set of frequencies of espectro de emisión atómica (pág. 144) Conjunto de fre- electromagnetic waves given off by atoms of an element; cuencias de ondas electromagnéticas que emiten los áto- consists of a series of fine lines of individual colors. mos de un elemento; consta de una serie de líneas finas de distintos colores. atomic mass (p. 119) The weighted average mass of the iso- masa atómica (pág. 119) La masa promedio ponderada de topes of that element. los isótopos de un elemento. atomic mass unit (amu) (p. 119) One-twelfth the mass of a unidad de masa atómica (uma) (pág. 119) La doceava parte carbon-12 atom. de la masa de un átomo de carbono 12. atomic number (p. 115) The number of protons in an atom. número atómico (pág. 115) El número de protones en un átomo. atomic orbital (p. 152) A three-dimensional region around orbital atómico (pág. 152) Región tridimensional alrededor the nucleus of an atom that describes an electron’s prob- del núcleo de un átomo que describe la ubicación proba- able location. ble de un electrón. ATP (p. 845) Adenosine triphosphate—a nucleotide that ATP (pág. 845) Trifosfato de adenosina; nucleótido que functions as the universal energy-storage molecule in sirve como la molécula universal de almacenamiento de living cells. energía en las células vivas.

Glossary/Glosario 1007 Glossary/Glosario

aufbau principle/principio de aufbau buffer capacity/capacidad amortiguadora

aufbau principle (p. 156) States that each electron occupies principio de aufbau (pág. 156) Establece que cada electrón the lowest energy orbital available. ocupa el orbital de energía más bajo disponible. Avogadro’s number (p. 321) The number 6.0221367 × 10 23 , número de Avogadro (pág. 321) Equivale al número which is the number of representative particles in 6.0221367 × 1 0 23; es el número de partículas representa- a mole, and can be rounded to three significant digits tivas en un mol; se puede redondear a tres dígitos signifi- 6.02 × 1 0 23 . cativos: 6.02 × 1 0 23 . Avogadro’s principle (p. 452) States that equal volumes of principio de Avogadro (pág. 452) Establece que los gases at the same temperature and pressure contain equal volúmenes iguales de gases, a la misma temperatura y numbers of particles. presión, contienen igual número de partículas. B

band of stability (p. 866) The region on a graph within banda de estabilidad (pág. 866) Región de una gráfica en la which all stable nuclei are found when plotting the num- que se hallan todos los núcleos estables cuando se grafica ber of neutrons versus the number of protons. el número de neutrones contra el número de protones. barometer (p. 407) An instrument that is used to measure barómetro (pág. 407) Instrumento que se utiliza para medir atmospheric pressure. la presión atmosférica. base ionization constant (p. 649) The value of the equilib- constante de ionización básica (pág. 649) El valor de la rium constant expression for the ionization of a base. expresión de la constante de equilibrio para la ionización de una base. base unit (p. 33) A defined unit in a system of measurement unidad básica (pág. 33) Unidad definida en un sistema de that is based on an object or event in the physical world medidas; está basada en un objeto o evento del mundo and is independent of other units. físico y es independiente de otras unidades. basic solution (p. 636) Contains more hydroxide ions than solución básica (pág. 636) Solución que contiene más iones hydrogen ions. hidróxido que iones hidrógeno. battery (p. 718) One or more electrochemical cells in a batería (pág. 718) Una o más celdas electroquímicas con- single package that generates electrical current. tenidas en una sola unidad que genera corriente eléctrica. beta particle (p. 123) A high-speed electron with a 1− partícula beta (pág. 123) Electrón de alta velocidad con charge that is emitted during radioactive decay. una carga 1− que es emitido durante la desintegración radiactiva. beta radiation (p. 123) Radiation that is made up of beta radiación beta (pág. 123) Radiación compuesta de partículas particles; is deflected toward a positively charged plate beta; si la radiación proveniente de una fuente radiactiva es when radiation from a radioactive source is directed dirigida hacia dos placas cargadas eléctricamente, este tipo between two electrically charged plates. de radiación se desvía hacia la placa con carga positiva. boiling point (p. 427) The temperature at which a liquid’s punto de ebullición (pág. 427) Temperatura a la cual la pre- vapor pressure is equal to the external or atmospheric sión de vapor de un líquido es igual a la presión externa pressure. o atmosférica. boiling-point elevation (p. 500) The temperature difference elevación del punto de ebullición (pág. 500) Diferencia de between a solution’s boiling point and a pure solvent’s temperatura entre el punto de ebullición de una solución boiling point. y el punto de ebullición de un disolvente puro. Boyle’s law (p. 442) States that the volume of a fixed amount ley de Boyle (pág. 442) Establece que el volumen de una of gas held at a constant temperature varies inversely cantidad dada de gas a temperatura constante varía with the pressure. inversamente según la presión. breeder reactor (p. 882) A nuclear reactor that is able to reactor generador (pág. 882) Reactor nuclear capaz de pro- produce more fuel than it uses. ducir más combustible del que utiliza. Brønsted-Lowry model (p. 638) A model of acids and bases modelo de Brønsted-Lowry (pág. 638) Modelo de áci- in which an acid is a hydrogen-ion donor and a base is a dos y bases en el que un ácido es un donante de iones hydrogen-ion acceptor. hidrógeno y una base es un receptor de iones hidrógeno. Brownian motion (p. 477) The erratic, random, movements movimiento browniano (pág. 477) Movimientos erráticos, of colloid particles that results from collisions of particles aleatorios de las partículas coloidales, producidos por el of the dispersion medium with the dispersed particles. choque entre las partículas del medio de dispersión con las partículas dispersas. buffer (p. 666) A solution that resists changes in pH when amortiguador (pág. 666) Solución que resiste los cambios limited amounts of acid or base are added. de pH cuando se agregan cantidades moderadas del ácido o la base. buffer capacity (p. 667) The amount of acid or base a buffer capacidad amortiguadora (pág. 667) Cantidad de ácido o solution can absorb without a significant change in pH. base que una solución amortiguadora puede absorber sin sufrir un cambio significativo en el pH.

1008 Glossary/Glosario Glossary/Glosario calorie/caloría chemical property/propiedad química C calorie (p. 518) The amount of heat required to raise the caloría (pág. 518) Cantidad de calor que se requiere para temperature of one gram of pure water by one degree elevar un grado centígrado la temperatura de un gramo Celsius. de agua pura. calorimeter (p. 523) An insulated device that is used to calorímetro (pág. 523) Dispositivo aislado que sirve para measure the amount of heat released or absorbed during medir la cantidad de calor liberada o absorbida durante a physical or chemical process. un proceso físico o químico. carbohydrates (p. 832) Compounds that contain multiple carbohidratos (pág. 832) Compuestos que contienen múlti- hydroxyl groups, plus an aldehyde or a ketone functional ples grupos hidroxilo, además de un grupo funcional group, and function in living things to provide immedi- aldehído o cetona, cuya función en los seres vivos es pro- ate and stored energy. porcionar energía inmediata o almacenada. carbonyl group (p. 796) Arrangement in which an oxygen grupo carbonilo (pág. 796) Grupo formado por un átomo atom is double-bonded to a carbon atom. de oxígeno unido por un enlace doble a un átomo de carbono. carboxyl group (p. 798) Consists of a carbonyl group grupo carboxilo (pág. 798) Consiste en un grupo carbonilo bonded to a hydroxyl group. unido a un grupo hidroxilo. carboxylic acid (p. 798) An organic compound that contains ácido carboxílico (pág. 798) Compuesto orgánico que con- a carboxyl group and is polar and reactive. tiene un grupo carboxilo; es polar y reactivo. catabolism (kuh TAB oh lih zum) (p. 844) Refers to meta- catabolismo (pág. 844) Reacciones metabólicas en las bolic reactions that break down complex biological mol- que se desdoblan moléculas biológicas complejas para ecules for the purpose of forming smaller building blocks obtener unidades básicas más pequeñas y energía. and extracting energy. catalyst (p. 571) A substance that increases the rate of a catalizador (pág. 571) Sustancia que aumenta la velocidad de chemical reaction by lowering activation energies but is una reacción química al reducir su energía de activación; not itself consumed in the reaction. el catalizador no es consumido durante la reacción. cathode (p. 710) In an electrochemical cell, the electrode cátodo (pág. 710) Electrodo donde sucede la reducción en where reduction takes place. una celda electroquímica. cathode ray (p. 108) Radiation that originates from the rayo catódico (pág. 108) Radiación que se origina en el cathode and travels to the anode of a cathode-ray tube. cátodo y viaja hacia el ánodo de un tubo de rayos catódicos. cation (KAT i ahn) (p. 207) An ion that has a positive catión (pág. 207) Ion con carga positiva. charge. cellular respiration (p. 846) The process in which glucose is respiración celular (pág. 846) Proceso en el cual la glucosa broken down in the presence of oxygen gas to produce es desdoblada en presencia del gas oxígeno para producir carbon dioxide, water, and energy. dióxido de carbono, agua y energía. Charles’s law (p. 445) States that the volume of a given mass Ley de Charles (pág. 445) Establece que el volumen de una of gas is directly proportional to its kelvin temperature at masa dada de gas es directamente proporcional a su tem- constant pressure. peratura Kelvin a presión constante. chemical bond (p. 206) The force that holds two atoms enlace químico (pág. 206) La fuerza que mantiene a dos áto- together; may form by the attraction of a positive ion for mos unidos; puede formarse por la atracción de un ion a negative ion or by sharing electrons. positivo por un ion negativo compartiendo electrones. chemical change (p. 77) A process involving one or more cambio químico (pág. 77) Proceso que involucra una o más substances changing into new substances; also called a sustancias que se transforman en sustancias nuevas; tam- chemical reaction. bién se conoce como reacción química. chemical equation (p. 285) A statement using chemical ecuación química (pág. 285) Expresión que utiliza fórmu- formulas to describe the identities and relative amounts las químicas para describir las identidades y cantidades of the reactants and products involved in the chemical relativas de los reactivos y productos presentes en una reaction. reacción química. chemical equilibrium (p. 596) The state in which forward equilibrio químico (pág. 596) Estado en el que se equilibran and reverse reactions balance each other because they mutuamente las reacciones en sentido directo e inverso de occur at equal rates. una reacción química debido a que suceden a tasas iguales. chemical potential energy (p. 517) The energy stored in a energía potencial química (pág. 517) La energía almacenada substance because of its composition; most is released or en una sustancia debido a su composición; la mayoría absorbed as heat during chemical reactions or processes. es liberada o absorbida como calor durante reacciones o procesos químicos. chemical property (p. 74) The ability or inability of a sub- propiedad química (pág. 74) La capacidad de una sustancia stance to combine with or change into one or more new de combinarse con una o más sustancias nuevas o de substances. transformarse en una o más sustancias nuevas.

Glossary/Glosario 1009 Glossary/Glosario

chemical reaction/reacción química condensation polymerization/polimerización por condensación

chemical reaction (p. 282) The process by which the atoms reacción química (pág. 282) Proceso por el cual los átomos of one or more substances are rearranged to form differ- de una o más sustancias se reordenan para formar sus- ent substances; occurrence can be indicated by changes tancias diferentes; su pueden identificar cuando suceden in temperature, color, odor, and physical state. cambios en temperatura, color, olor o estado físico. chemistry (p. 4) The study of matter and the changes that it química (pág. 4) El estudio de la materia y los cambios que undergoes. ésta experimenta. chirality (p. 767) A property of a compound to exist in both quiralidad (pág. 767) Propiedad de un compuesto para left (l-) and right (d-) forms; occurs whenever a com- existir en forma levógira (i-) o dextrógira (d-); ocurre pound contains an asymmetric carbon. cuando un compuesto contiene un carbono asimétrico. chromatography (p. 83) A technique that is used to separate cromatografía (pág. 83) Técnica que sirve para separar los the components of a mixture based on the tendency of componentes de una mezcla según la tendencia de cada each component to travel or be drawn across the surface componente a desplazarse o ser atraído a lo largo de la of another material. superficie de otro material. coefficient (p. 285) In a chemical equation, the number coeficiente (pág. 285) Número que precede a un reactivo o written in front of a reactant or product; in a balanced un producto en una ecuación química; en una ecuación equation describes the lowest whole-number ratio of the equilibrada, indica la razón más pequeña expresada en amounts of all reactants and products. números enteros de las cantidades de reactivos y produc- tos en dicha reacción. colligative property (kol LIHG uh tihv • PRAH pur tee) propiedad coligativa (pág. 498) Propiedad física de una (p. 498) A physical property of a solution that depends solución que depende del número, pero no de la identi- on the number, but not the identity, of the dissolved sol- dad, de las partículas de soluto disueltas. ute particles. collision theory (p. 563) States that atoms, ions, and mol- teoría de colisión (pág. 563) Establece que los átomos, iones ecules must collide in order to react. y moléculas deben chocar para reaccionar. colloids (p. 477) A heterogeneous mixture of intermediate- coloides (pág. 477) Mezcla heterogénea de partículas de sized particles (between atomic-size of solution particles tamaño intermedio (entre el tamaño atómico de partícu- and the size of suspension particles). las en solución y el de partículas en suspensión). combined gas law (p. 449) A single law combining Boyle’s, ley combinada de los gases (pág. 449) Ley que combina Charles’s, and Gay-Lussac’s laws that states the relation- las leyes de Boyle, Charles y de Gay-Lussac; indica la ship among pressure, volume, and temperature of a fixed relación entre la presión, el volumen y la temperatura de amount of gas. una cantidad constante de gas. combustion reaction (p. 290) A chemical reaction that reacción de combustión (pág. 290) Reacción química que occurs when a substance reacts with oxygen, releasing ocurre al reaccionar una sustancia con el oxígeno, libe- energy in the form of heat and light. rando energía en forma de calor y luz. common ion (p. 620) An ion that is common to two or more ion común (pág. 620) Ion común a dos o más compuestos ionic compounds. iónicos. common ion effect (p. 620) The lowering of the solubility of efecto del ion común (pág. 620) Disminución de la solu- a substance by the presence of a common ion. bilidad de una sustancia debida a la presencia de un ion común. complete ionic equation (p. 301) An ionic equation that ecuación iónica total (pág. 301) Ecuación iónica que mues- shows all the particles in a solution as they realistically tra cómo existen realmente todas las partículas en una exist. solución. complex reaction (p. 580) A chemical reaction that consists reacción compleja (pág. 580) Reacción química que consiste of two or more elementary steps. en dos o más pasos elementales. compound (p. 85) A chemical combination of two or more compuesto (pág. 85) Combinación química de dos o más different elements; can be broken down into simpler sub- elementos diferentes; puede ser separado en sustancias stances by chemical means and has properties different más sencillas por medios químicos y exhibe propiedades from those of its component elements. que difieren de los elementos que lo componen. concentration (p. 480) A measure of how much solute is concentración (pág. 480) Medida de la cantidad de soluto que dissolved in a specific amount of solvent or solution. se disuelve en una cantidad dada de disolvente o solución. conclusion (p. 15) A judgment based on the information conclusión (pág. 15) Juicio basado en la información obtained. obtenida. condensation (p. 428) The energy-releasing process by condensación (pág. 428) El proceso de liberación de energía which a gas or vapor becomes a liquid. mediante el cual un gas o vapor se convierte en líquido. condensation polymerization (p. 811) Occurs when mono- polimerización por condensación (pág. 811) Ocurre cuando mers containing at least two functional groups combine monómeros que contienen al menos dos grupos funcio- with the loss of a small by-product, usually water. nales se combinan y pierden un producto secundario pequeño, generalmente agua.

1010 Glossary/Glosario Glossary/Glosario condensation reaction/reacción de condensación Dalton’s atomic theory/teoría atómica de Dalton condensation reaction (p. 801) Occurs when two smaller reacción de condensación (pág. 801) Ocurre cuando dos organic molecules combine to form a more complex moléculas orgánicas pequeñas se combinan para formar molecule, accompanied by the loss of a small molecule una molécula más compleja; esta reacción es acompañada such as water. de la pérdida de una molécula pequeña como el agua. (p. 638) The species produced when a base ácido conjugado (pág. 638) Especie que se produce cuando accepts a hydrogen ion from an acid. una base acepta un ion hidrógeno de un ácido. conjugate acid-base pair (p. 638) Consists of two substances par ácido-base conjugado (pág. 638) Consiste en dos sus- related to each other by the donating and accepting of a tancias que se relacionan entre sí mediante la donación y single hydrogen ion. aceptación de un solo ion hidrógeno. conjugate base (p. 638) The species produced when an acid base conjugada (pág. 638) Especie que se produce cuando donates a hydrogen ion to a base. un ácido dona un ion hidrógeno a una base. control (p. 14) In an experiment, the standard that is used control (pág. 14) Estándar de comparación en un experi- for comparison. mento. conversion factor (p. 44) A ratio of equivalent values used factor de conversión (pág. 44) Razón de valores equivalentes to express the same quantity in different units; is always que sirve para expresar una misma cantidad en unidades equal to 1 and changes the units of a quantity without diferentes; siempre es igual a 1 y cambia las unidades de changing its value. una cantidad sin cambiar su valor. coordinate covalent bond (p. 259) Forms when one atom enlace covalente coordinado (pág. 259) Se forma cuando donates a pair of electrons to be shared with an atom or un átomo dona un par de electrones para compartirlos ion that needs two electrons to become stable. con un átomo o un ion que requieren dos electrones para adquirir estabilidad. corrosion (p. 724) The loss of metal that results from an oxi- corrosión (pág. 724) Pérdida de metal producida por una dation-reduction reaction of the metal with substances in reacción de óxido-reducción del metal con sustancias en the environment. el ambiente. covalent bond (p. 241) A chemical bond that results from enlace covalente (pág. 241) Enlace químico que se produce the sharing of valence electrons. al compartir electrones de valencia. cracking (p. 748) The process by which heavier fractions cracking (pág. 748) Proceso por el cual las fracciones más of petroleum are converted to gasoline by breaking their pesadas de petróleo son convertidas en gasolina al romper large molecules into smaller molecules. las moléculas grandes en moléculas más pequeñas. critical mass (p. 880) The minimum mass of a sample of masa crítica (pág. 880) La masa mínima de una muestra fissionable material necessary to sustain a nuclear chain de material fisionable que se necesita para sostener una reaction. reacción nuclear en cadena. crystal lattice (p. 214) A three-dimensional geometric red cristalina (pág. 214) Ordenamiento geométrico tri- arrangement of particles in which each positive ion is dimensional de partículas en el que cada ion positivo surrounded by negative ions and each negative ion is queda rodeado de iones negativos y cada ion negativo surrounded by positive ions; vary in shape due to sizes queda rodeado de iones positivos; su forma varía según and relative numbers of the ions bonded. el tamaño y número de iones enlazados. crystalline solid (p. 420) A solid whose atoms, ions, or sólido cristalino (pág. 420) Sólido cuyos átomos, iones o molecules are arranged in an orderly, geometric, three- moléculas forman una estructura tridimensional, orde- dimensional structure. nada y geométrica. crystallization (p. 83) A separation technique that produces cristalización (pág. 83) Técnica de separación que produce pure solid particles of a substance from a solution that partículas sólidas puras de una sustancia a partir de una contains the dissolved substance. solución que contiene dicha sustancia en solución. cyclic hydrocarbon (p. 755) An organic compound that con- hidrocarburo cíclico (pág. 755) Compuesto orgánico que tains a hydrocarbon ring. contiene un anillo de hidrocarburos. cycloalkane (p. 755) Cyclic hydrocarbons that contain cicloalcano (pág. 755) Hidrocarburos cíclicos que sólo con- single bonds only and can have rings with three, four, tienen enlaces simples; pueden formar anillos con tres, five, six, or more carbon atoms. cuatro, cinco, seis o más átomos de carbono. D Dalton’s atomic theory (p. 104) States that matter is com- teoría atómica de Dalton (pág. 104) Establece que la mate- posed of extremely small particles called atoms; atoms ria se compone de partículas extremadamente peque- are invisible and indestructable; atoms of a given ele- ñas denominadas átomos; los átomos son invisibles e ment are identical in size, mass, and chemical proper- indestructibles; los átomos de un elemento dado son ties; atoms of a specific element are different from those idénticos en tamaño, masa y propiedades químicas; los of another element; different atoms combine in simple átomos de un elemento específico difieren de los de otros whole-number ratios to form compounds; in a chemical elementos; átomos diferentes se combinan en razones reaction, atoms are separated, combined, or rearranged. simples de números enteros para formar compuestos; los átomos se separan, se combinan o se reordenan durante una reacción química. Glossary/Glosario 1011 Glossary/Glosario

Dalton’s law of partial pressures/ley de Dalton de las presiones parciales elastic collision/choque elástico

Dalton’s law of partial pressures (p. 408) States that the total ley de Dalton de las presiones parciales (pág. 408) Establece pressure of a mixture of gases is equal to the sum of the que la presión total de una mezcla de gases es igual a la pressures of all the gases in the mixture. suma de las presiones de todos los gases en la mezcla. de Broglie equation (p. 150) Predicts that all moving par- ecuación de deBroglie (pág. 150) Predice que todas las ticles have wave characteristics and relates each particle’s partículas móviles tienen características ondulatorias y wavelength to its frequency, its mass, and Planck’s con- relaciona la longitud de onda de cada partícula con su stant. frecuencia, su masa y la constante de Planck. decomposition reaction (p. 292) A chemical reaction that reacción de descomposición (pág. 292) Reacción química occurs when a single compound breaks down into two or que ocurre cuando un solo compuesto se divide en dos o more elements or new compounds. más elementos o nuevos compuestos. dehydration reaction (p. 803) An elimination reaction in reacción de deshidratación (pág. 803) Una reacción de elimi- which the atoms removed form water. nación en la que los átomos que se pierden forman agua. dehydrogenation reaction (p. 803) A reaction that elimi- reacción de deshidrogenación (pág. 803) Reacción orgánica nates two hydrogen atoms, which form a hydrogen mol- en la que se pierden dos átomos de hidrógeno, los cuales ecule of gas. se unen y forman una molécula de hidrógeno. delocalized electrons (p. 225) The electrons involved in electrones deslocalizados (pág. 225) Los electrones que metallic bonding that are free to move easily from one forman un enlace metálico; estos electrones pasan fácil- atom to the next throughout the metal and are not mente de un átomo a otro a través del metal y no están attached to a particular atom. unidos a ningún átomo en particular. denaturation (p. 829) The process in which a protein’s natu- desnaturalización (pág. 829) Proceso que afecta la estruc- ral, intricate three-dimensional structure is disrupted. tura tridimensional, compleja y natural de una proteína. denatured alcohol (p. 793) Ethanol to which noxious sub- alcohol desnaturalizado (pág. 793) Etanol al cual se añaden stances have been added in order to make it unfit to drink. sustancias nocivas para evitar que se pueda beber. density (p. 36) The amount of mass per unit volume; a densidad (pág. 36) La cantidad de masa por unidad de physical property. volumen; una propiedad física. dependent variable (p. 14) In an experiment, the variable variable dependiente (pág. 14) Es la variable de un experi- whose value depends on the independent variable. mento cuyo valor depende de la variable independiente. deposition (p. 429) The energy-releasing process by which a depositación (pág. 429) Proceso de liberación de energía substance changes from a gas or vapor to a solid without por el cual una sustancia cambia de gas o vapor a sólido first becoming a liquid. sin antes convertirse en un líquido. derived unit (p. 35) A unit defined by a combination of base unidad derivada (pág. 35) Unidad definida por una combi- units. nación de unidades básicas. diffusion (p. 404) The movement of one material through difusión (pág. 404) El movimiento de un material a través another from an area of higher concentration to an area de otro en dirección al área de menor concentración. of lower concentration. dimensional analysis (p. 44) A systematic approach to prob- análisis dimensional (pág. 44) Un enfoque sistemático para lem solving that uses conversion factors to move from resolver un problema en el que se usan factores de con- one unit to another. versión para pasar de una unidad a otra. dipole-dipole forces (p. 412) The attractions between oppo- fuerzas dipolo-dipolo (pág. 412) La atracción entre regiones sitely charged regions of polar molecules. con cargas opuestas de moléculas polares. disaccharide (p. 833) Forms when two monosaccharides disacárido (pág. 833) Se forma a partir de la unión de dos bond together. monosacáridos. dispersion forces (p. 412) The weak forces resulting from fuerzas de dispersión (pág. 412) Fuerzas débiles causadas temporary shifts in the density of electrons in electron por los cambios temporales en la densidad de electrones clouds. en las nubes electrónicas. disaccharide (p. 82) A technique that can be used to physi- destilación (pág. 82) Técnica que se usa para separar física- cally separate most homogeneous mixtures based on the mente la mayoría de las mezclas homogéneas según las differences in the boiling points of the substances. diferencias en los puntos de ebullición de las sustancias. double-replacement reaction (p. 296) A chemical reaction reacción de sustitución doble (pág. 296) Reacción química that involves the exchange of ions between two com- en la que dos compuestos intercambian iones positivos, pounds and produces either a precipitate, a gas, or water. produciendo un precipitado, un gas o agua. dry cell (p. 718) An electrochemical cell that contains a pila seca (pág. 718) Celda electroquímica que contiene una moist electrolytic paste inside a zinc shell. pasta electrolítica húmeda dentro de un armazón de zinc. E elastic collision (p. 403) Collision in which no kinetic choque elástico (pág. 403) Colisión en que no se pierde energy is lost; kinetic energy can be transferred between energía cinética; la energía cinética es transferida entre the colliding particles, but the total kinetic energy of the las partículas en choque, pero la energía cinética total de two particles remains the same. las dos partículas permanece igual.

1012 Glossary/Glosario Glossary/Glosario electrochemical cell/celda electroquímica end point/punto final electrochemical cell (p. 709) An apparatus that uses a redox celda electroquímica (pág. 709) Aparato que usa una reac- reaction to produce electrical energy or uses electrical ción redox para producir energía eléctrica o que utiliza energy to cause a chemical reaction. energía eléctrica para causar una reacción química. electrolysis (p. 728) The process that uses electrical energy electrólisis (pág. 728) Proceso que emplea energía eléctrica to bring about a chemical reaction. para producir una reacción química. electrolyte (p. 215) An ionic compound whose aqueous electrolito (pág. 215) Compuesto iónico cuya solución solution conducts an electric current. acuosa conduce una corriente eléctrica. electrolytic cell (p. 728) An electrochemical cell in which celda electrolítica (pág. 728) Celda electroquímica en donde electrolysis occurs. ocurre la electrólisis. electromagnetic radiation (p. 137) A form of energy exhib- radiación electromagnética (pág. 137) Forma de energía que iting wavelike behavior as it travels through space; can exhibe un comportamiento ondulatorio al viajar por el be described by wavelength, frequency, amplitude, and espacio; se puede describir por su longitud de onda, su speed. frecuencia, su amplitud y su rapidez. electromagnetic spectrum (p. 139) Includes all forms of espectro electromagnético (pág. 139) Incluye toda forma electromagnetic radiation; the types of radiation differ in de radiación electromagnética; los distintos tipos de their frequencies and wavelengths. radiación difirien en sus frecuencias y sus longitudes de onda. electron (p. 108) A negatively charged, fast-moving particle electrón (pág. 108) Partícula móvil rápida, de carga negativa with an extremely small mass that is found in all forms of y con una masa extremadamente pequeña. que se encuen- matter and moves through the empty space surrounding tra en todas las formas de materia y que se mueve a través an atom’s nucleus. del espacio vacío que rodea el núcleo de un átomo. electron capture (p. 868) A radioactive decay process that captura electrónica (pág. 868) Proceso de desintegración occurs when an atom’s nucleus draws in a surrounding radiactiva que ocurre cuando el núcleo de un átomo electron, which combines with a proton to form a neu- atrae un electrón circundante, que luego se combina con tron, resulting in an X-ray photon being emitted. un protón para formar un neutrón, provocando la emi- sión de un fotón de rayos X. electron configuration (p. 156) The arrangement of elec- configuración electrónica (pág. 156) El ordenamiento de los trons in an atom, which is prescribed by three rules— electrones en un átomo; está determinado por tres reglas: the aufbau principle, the Pauli exclusion principle, and el principio de Aufbau, el principio de exclusión de Pauli Hund’s rule. y la regla de Hund. electron-dot structure (p. 161) Consists of an element’s estructura de puntos de electrones (pág. 161) Consiste en el symbol, representing the atomic nucleus and inner-level símbolo del elemento, que representa al núcleo atómico y electrons, that is surrounded by dots, representing the los electrones de los niveles internos, rodeado por puntos atom’s valence electrons. que representan los electrones de valencia del átomo. electron sea model (p. 225) Proposes that all metal atoms in modelo del mar de electrones (pág. 225) Propone que todos a metallic solid contribute their valence electrons to form los átomos de metal en un sólido metálico contribuyen a “sea” of electrons, and can explain properties of metal- con sus electrones de valencia para formar un “mar” de lic solids such as malleability, conduction, and ductility. electrones. electronegativity (p. 194) Indicates the relative ability of an electronegatividad (pág. 194) Indica la capacidad relativa element’s atoms to attract electrons in a chemical bond. de los átomos de un elemento para atraer electrones en element (p. 84) A pure substance that cannot be broken un enlace químico. down into simpler substances by physical or chemical elemento (pág. 84) Sustancia pura que no puede separarse means. en sustancias más sencillas por medios físicos ni quími- elimination reaction (p. 802) A reaction of organic com- cos. pounds that occurs when a combination of atoms is reacción de eliminación (pág. 802) Reacción de compuestos removed from two adjacent carbon atoms forming an orgánicos que ocurre cuando se pierden un conjunto de additional bond between the atoms. átomos en dos átomos adyacentes de carbono, al for- empirical formula (p. 344) A formula that shows the small- marse un enlace entre dichos átomos de carbono. est whole-number mole ratio of the elements of a com- fórmula empírica (pág. 344) Fórmula que muestra la pro- pound, and may or may not be the same as the actual porción molar más pequeña expresada en números ente- molecular formula. ros de los elementos de un compuesto; puede ser distinta de la fórmula molecular real. endothermic (p. 247) A chemical reaction or process in endotérmica (pág. 247) Reacción o proceso químico que which a greater amount of energy is required to break requiere una mayor cantidad de energía para romper los the existing bonds in the reactants than is released when enlaces existentes en los reactivos, que la que se se libera al the new bonds form in the product molecules. formarse los enlaces nuevos en las moléculas del producto. end point (p. 663) The point at which the indicator that is punto final (pág. 663) Punto en el que el indicador que se used in a titration changes color. utiliza en una titulación cambia de color.

Glossary/Glosario 1013 Glossary/Glosario

energy/energía fatty acid/ácido graso

energy (p. 516) The capacity to do work or produce heat; energía (pág. 516) Capacidad de realizar trabajo o producir exists as potential energy, which is stored in an object calor; existe como energía potencial (almacenada en due to its composition or position, and kinetic energy, un objeto debido a su composición o posición) o como which is the energy of motion. energía cinética (energía del movimiento). energy sublevels (p. 153) The energy levels contained subniveles de energía (pág. 153) Los niveles de energía den- within a principal energy level. tro de un nivel principal de energía. enthalpy (p. 527) The heat content of a system at constant entalpía (pág. 527) El contenido de calor en un sistema a pressure. presión constante. enthalpy (heat) of combustion (p. 529) The enthalpy change entalpía (calor) de combustión (pág. 529) El cambio de for the complete burning of one mole of a given sub- entalpía causado por la combustión completa de un mol stance. de una sustancia dada. enthalpy (heat) of reaction (p. 527) The change in enthalpy entalpía (calor) de reacción (pág. 527) El cambio en la for a reaction—the difference between the enthalpy of entalpía que ocurre en una reacción; es decir, la diferen- the substances that exist at the end of the reaction and cia entre la entalpía de las sustancias que existen al final the enthalpy of the substances present at the start de la reacción y la entalpía de las sustancias presentes al comienzo de la misma. entropy (p. 543) A measure of the number of possible ways entropía (pág. 543) Una medida de las formas posibles en that the energy of a system can be distributed; related que se puede distribuir la energía de un sistema; está to the freedom of the system’s particles to move and the relacionada con la libertad de movimiento de las partícu- number of ways they can be arranged. las del sistema y el número de maneras en que éstas se pueden ordenar. enzyme (p. 829) A biological catalyst. enzima (pág. 829) Catalizador biológico. equilibrium constant (p. 599) K eq is the numerical value that constante de equilibrio (pág. 599) K eq es el valor numérico describes the ratio of product concentrations to reactant que describe la razón de las concentraciones de los pro- concentrations, with each raised to the power corre- ductos con respecto a las concentraciones de los reac- sponding to its coefficient in the balanced equation. tivos, cada una de ellas elevada a la potencia correspon- diente a su coeficiente en la ecuación equilibrada. equivalence point (p. 661) The point at which the moles of punto de equivalencia (pág. 661) Punto en el cual los moles H + ions from the acid equals moles of O H - ions from de iones H + del ácido equivalen a los moles de iones the base. O H - de la base. error (p. 48) The difference between an experimental value error (pág. 48) La diferencia entre el valor experimental y el and an accepted value valor aceptado. ester (p. 799) An organic compound with a carboxyl group éster (pág. 799) Compuesto orgánico con un grupo car- in which the hydrogen of the hydroxyl group is replaced boxilo en el que el hidrógeno del grupo de hidroxilo es by an alkyl group; may be volatile and sweet-smelling reemplazado por un grupo alquilo; es polar y puede ser and is polar. volátil y de olor dulce. ether (p. 794) An organic compound that contains an oxy- éter (pág. 794) Compuesto orgánico que contiene un gen atom bonded to two carbon atoms. átomo de oxígeno unido a dos átomos de carbono. evaporation (p. 426) The process in which vaporization evaporación (pág. 426) Proceso en el cual la vaporización occurs only at the surface of a liquid. ocurre sólo en la superficie de un líquido. excess reactant (p. 379) A reactant that remains after a reactivo en exceso (pág. 379) Reactivo que sobra luego de chemical reaction stops. finalizar una reacción química. exothermic (p. 247) A chemical reaction or process in exotérmica (pág. 247) Reacción o proceso químico en el which more energy is released than is required to break que se libera más energía que la requerida para romper bonds in the initial reactants. los enlaces en los reactivos iniciales. experiment (p. 14) A set of controlled observations that test experimento (pág. 14) Conjunto de observaciones controla- a hypothesis. das que se realizan para probar una hipótesis. extensive property (p. 73) A physical property, such as propiedad extensiva (pág. 73) Propiedades físicas, como la mass, length, and volume, that is dependent upon the masa, la longitud y el volumen, que dependen de la can- amount of substance present. tidad de sustancia presente. F

fatty acid (p. 835) A long-chain carboxylic acid that usually ácido graso (pág. 835) Ácido carboxílico de cadena larga has between 12 and 24 carbon atoms and can be satu- que tiene generalmente entre 12 y 24 átomos de carbono; rated (no double bonds), or unsaturated (one or more puede ser saturado (sin enlaces dobles) o insaturado o no double bonds). saturado (con uno o más enlaces dobles).

1014 Glossary/Glosario Glossary/Glosario fermentation/fermentación group/grupo fermentation (p. 847) The process in which glucose is bro- fermentación (pág. 847) Proceso en el cual la glucosa es ken down in the absence of oxygen, producing either desdoblada en ausencia de oxígeno produciendo etanol, ethanol, carbon dioxide, and energy (alcoholic fermenta- dióxido de carbono y energía (fermentación alcohólica) tion) or lactic acid and energy (lactic acid fermentation). o ácido láctico y energía (fermentación del ácido láctico). filtration (p. 82) A technique that uses a porous barrier to filtración (pág. 82) Técnica que utiliza una barrera porosa separate a solid from a liquid. para separar un sólido de un líquido. formula unit (p. 218) The simplest ratio of ions represented fórmula unitaria (pág. 218) La razón más simple de iones in an ionic compound. representados en un compuesto iónico. fractional distillation (p. 747) The process by which petro- destilación fraccionaria (pág. 747) Proceso mediante el cual leum can be separated into simpler components, called se separa el petróleo en componentes más simples llama- fractions, as they condense at different temperatures. dos fracciones, las cuales se condensan a temperaturas diferentes. free energy (p. 546) The energy available to do work—the energía libre (pág. 546) Energía disponible para hacer tra- difference between the change in enthalpy and the prod- bajo: la diferencia entre el cambio en la entalpía y el pro- uct of the entropy change and the kelvin temperature. ducto del cambio de entropía por la temperatura kelvin. freezing point (p. 428) The temperature at which a liquid is punto de congelación (pág. 428) La temperatura a la cual un converted into a crystalline solid. líquido se convierte en un sólido cristalino. freezing-point depression (p. 502) The difference in temper- depresión del punto de congelación (pág. 502) Diferencia de ature between a solution’s freezing point and the freezing temperatura entre el punto de congelación de una solu- point of its pure solvent. ción y el punto de congelación de su disolvente puro. frequency (p. 137) The number of waves that pass a given frecuencia (pág. 137) Número de ondas que pasan por un point per second. punto dado en un segundo. fuel cell (p. 722) A voltaic cell in which the oxidation of a celda de combustible (pág. 722) Celda voltaica en la cual la fuel, such as hydrogen gas, is used to produce electric oxidación de un combustible, como el gas hidrógeno, se energy. utiliza para producir energía eléctrica. (p. 786) An atom or group of atoms that grupo funcional (pág. 786) Átomo o grupo de átomos que always reacts in a certain way in an organic molecule. siempre reaccionan de cierta manera en una molécula orgánica. G galvanization (p. 727) The process in which an iron object galvanizado (pág. 727) Proceso en el cual un objeto de is dipped into molten zinc or electroplated with zinc to hierro en sumergido o galvanizado en zinc para aumen- make the iron more resistant to corrosion. tar la resistencia del hierro a la corrosión. gamma rays (p. 124) High-energy radiation that has no rayos gamma (pág. 124) Radiación de alta energía sin carga electrical charge and no mass, is not deflected by electric eléctrica ni masa; no es desviada por campos eléctricos ni or magnetic fields, usually accompanies alpha and beta magnéticos; acompaña generalmente a la radiación alfa y radiation, and accounts for most of the energy lost dur- beta; representa la mayor parte de la energía perdida ing radioactive decay. durante la desintegración radiactiva. gas (p. 72) A form of matter that flows to conform to the gas (pág. 72) Forma de la materia que fluye para adaptarse shape of its container, fills the container’s entire volume, a la forma de su contenedor, llena el volumen entero del and is easily compressed. recipiente y se comprime fácilmente. Gay-Lussac’s law (p. 447) States that the pressure of a fixed ley de Gay-Lussac (pág. 447) Establece que la presión de una mass of gas varies directly with the kelvin temperature masa dada de gas varía directamente con la temperatura when the volume remains constant. en grados Kelvin cuando el volumen permanece cons- tante. geometric (p. 766) A category of stereoisomers that isómeros geométricos (pág. 766) Categoría de este- results from different arrangements of groups around a reoisómeros originada por los diversos ordenamientos double bond. posibles de grupos alrededor de un enlace doble. Graham’s law of effusion (p. 404) States that the rate of effu- ley de efusión de Graham (pág. 404) Establece que la tasa de sion for a gas is inversely proportional to the square root efusión de un gas es inversamente proporcional a la raíz of its molar mass. cuadrada de su masa molar. graph (p. 55) A visual display of data. gráfica (pág. 55) Representación visual de datos. ground state (p. 146) The lowest allowable energy state of estado base (pág. 146) Estado de energía más bajo posible an atom. de un átomo. group (p. 177) A vertical column of elements in the peri- grupo (pág. 177) Columna vertical de los elementos en la odic table arranged in order of increasing atomic num- tabla periódica ordenados en sentido creciente según su ber; also called a family. número atómico; llamado también familia.

Glossary/Glosario 1015 Glossary/Glosario

half-cells/semiceldas Hund’s rule/regla de Hund H

half-cells (p. 710) The two parts of an electrochemical cell semiceldas (pág. 710) Las dos partes de una celda electro- in which the separate oxidation and reduction reactions química en las que ocurren las reacciones separadas de occur. oxidación y reducción. half-life (p. 870) The time required for one-half of a radio- vida media (pág. 870) Tiempo requerido para que la mitad isotope’s nuclei to decay into its products. de los núcleos de un radioisótopo se desintegren en sus productos. half-reaction (p. 693) One of two parts of a redox reac- semirreacción (pág. 693) Una de dos partes de una reac- tion—the oxidation half, which shows the number of ción redox: la correspondiente a la oxidación muestra el electrons lost when a species is oxidized, or the reduction número de electrones que se pierden al oxidarse una espe- half, which shows the number of electrons gained when a cie y la correspondiente a la reducción muestra el número species is reduced. de electrones que se ganan al reducirse una especie. halocarbon (p. 787) Any organic compound containing a halocarbono (pág. 787) Cualquier compuesto orgánico que halogen substituent. contiene un sustituyente halógeno. halogen (p. 180) A highly reactive group 17 element. halógeno (pág. 180) Elemento sumamente reactivo del grupo 17. halogenation (p. 790) A process by which hydrogen atoms halogenación (pág. 790) Proceso mediante el cual se reem- are replaced by halogen atoms. plazan átomos de hidrógeno por átomos de halógeno. heat (p. 518) A form of energy that flows from a warmer calor (pág. 518) Forma de energía que fluye hacia cuerpos object to a cooler object. más fríos. heat of solution (p. 492) The overall energy change that calor de solución (pág. 492) El cambio global de energía que occurs during the solution formation process. ocurre durante el proceso de formación de una solución. Heisenberg uncertainty principle (p. 151) States that it is not principio de incertidumbre de Heisenberg (pág. 151) Establece possible to know precisely both the velocity and the posi- que no es posible saber con precisión y al mismo tion of a particle at the same time. tiempo la velocidad y la posición de una partícula. Henry’s law (p. 496) States that at a given temperature, the ley de Henry (pág. 496) Establece que a una temperatura solubility of a gas in a liquid is directly proportional to dada, la solubilidad de un gas en un líquido es directa- the pressure of the gas above the liquid. mente proporcional a la presión del gas sobre el líquido. Hess’s law (p. 534) States that if two or more thermochemi- ley de Hess (pág. 534) Establece que si para producir la ecua- cal equations can be added to produce a final equation ción final para una reacción se pueden sumar dos o más for a reaction, then the sum of the enthalpy changes for ecuaciones termoquímicas, entonces la suma de los cam- the individual reactions is the enthalpy change for the bios de entalpía para las reacciones individuales equivale final reaction. al cambio de entalpía de la reacción final. heterogeneous catalyst (p. 573) A catalyst that exists in a catalizador heterogéneo (pág. 573) Catalizador que existe en different physical state than the reaction it catalyzes. un estado físico diferente al de la reacción que cataliza. heterogeneous equilibrium (p. 602) A state of equilibrium equilibrio heterogéneo (pág. 602) Estado de equilibrio que that occurs when the reactants and products of a reaction ocurre cuando los reactivos y los productos de una reac- are present in more than one physical state. ción están presentes en más de un estado físico. heterogeneous mixture (p. 81) One that does not have a mezcla heterogénea (pág. 81) Aquella que no tiene una uniform composition and in which the individual sub- composición uniforme y en la que las sustancias indi- stances remain distinct. viduales permanecen separadas. homogeneous catalyst (p. 573) A catalyst that exists in the catalizador homogéneo (pág. 573) Catalizador que existe en same physical state as the reaction it catalyzes. el mismo estado físico de la reacción que cataliza. homogeneous equilibrium (p. 600) A state of equilibrium equilibrio homogéneo (pág. 600) Estado de equilibrio que that occurs when all the reactants and products of a reac- ocurre cuando todos los reactivos y productos de una tion are in the same physical state. reacción están en el mismo estado físico. homogeneous mixture (p. 81) One that has a uniform com- mezcla homogénea (pág. 81) Aquella que tiene una com- position throughout and always has a single phase; also posición uniforme y siempre tiene una sola fase; también called a solution. llamada solución. homologous series (p. 751) Describes a series of compounds serie homóloga (pág. 751) Describe una serie de compues- that differ from one another by a repeating unit. tos que difieren entre sí por una unidad repetitiva. Hund’s rule (p. 157) States that single electrons with the regla de Hund (pág. 157) Establece que los electrones indi- same spin must occupy each equal-energy orbital before viduales con igual rotación deben ocupar cada uno orbi- additional electrons with opposite spins can occupy the tales distintos con la misma energía, antes de que elec- same orbitals. trones adicionales con rotación opuesta puedan ocupar los mismos orbitales.

1016 Glossary/Glosario Glossary/Glosario hybridization/hibridación intermediate/intermediario hybridization (p. 262) A process in which atomic orbitals hibridación (pág. 262) Proceso mediante el cual se mezclan are mixed to form new, identical hybrid orbitals. los orbitales atómicos para formar orbitales híbridos nuevos e idénticos. hydrate (p. 351) A compound that has a specific number of hidrato (pág. 351) Compuesto que tiene un número especí- water molecules bound to its atoms. fico de moléculas de agua unidas a sus átomos. hydration reaction (p. 804) An addition reaction in which a reacción de hidratación (pág. 804) Reacción de adición en hydrogen atom and a hydroxyl group from a water mol- la que se añaden el átomo de hidrógeno y el grupo hidro- ecule add to a double or triple bond. xilo de una molécula de agua a un enlace doble o triple. hydrocarbon (p. 745) Simplest organic compound com- hidrocarburo (pág. 745) El compuesto orgánico más simple; posed only of the elements carbon and hydrogen. está formado sólo por los elementos carbono e hidrógeno. hydrogenation reaction (p. 804) An addition reaction in reacción de hidrogenación (pág. 804) Reacción de adición which hydrogen is added to atoms in a double or triple en la que se agrega hidrógeno a los átomos que forman bond; usually requires a catalyst. un enlace doble o triple; requiere generalmente de un catalizador. (p. 413) A strong dipole-dipole attraction enlace de hidrógeno (pág. 413) Fuerte atracción dipolo- between molecules that contain a hydrogen atom bonded dipolo entre moléculas que contienen un átomo de to a small, highly electronegative atom. hidrógeno unido a un átomo pequeño, sumamente elec- tronegativo. hydroxyl group (p. 792) An oxygen-hydrogen group cova- grupo hidroxilo (pág. 792) Un grupo hidrógeno-oxígeno lently bonded to a carbon atom. unido covalentemente a un átomo de carbono. hypothesis (p. 13) A tentative, testable statement or predic- hipótesis (pág. 13) Enunciado tentativo y comprobable o tion about what has been observed. predicción acerca de lo que ha sido observado. I ideal gas constant (R) (p. 454) An experimentally deter- constante de los gases ideales (R) (pág. 454) Constante mined constant whose value in the ideal gas equation determinada experimentalmente cuyo valor en la ecua- depends on the units that are used for pressure. ción de los gases ideales depende de las unidades en las que se expresa la presión. ideal gas law (p. 454) Describes the physical behavior of an ley de los gases ideales (pág. 454) Describe el comporta- ideal gas in terms of pressure, volume, temperature, and miento físico de un gas ideal en términos de la presión, el number of moles of gas. volumen, la temperatura y el número de moles del gas. immiscible (ih MIHS ih bul) (p. 479) Describes two liquids inmiscible (pág. 479) Describe dos líquidos que se pueden that can be mixed together but separate shortly after you mezclar entre sí, pero que se separan poco después de cease mixing them. que se cesa de mezclarlos. independent variable (p. 14) In an experiment, the variable variable independiente (pág. 14) La variable de un experi- that the experimenter plans to change. mento que el experimentador piensa cambiar. induced transmutation (p. 875) The process in which nuclei transmutación inducida (pág. 875) Proceso en cual se bom- are bombarded with high-velocity charged particles in bardean núcleos con partículas cargadas de alta veloci- order to create new elements. dad para crear elementos nuevos. inhibitor (p. 571) A substance that slows down the reaction inhibidor (pág. 571) Sustancia que reduce la tasa de reac- rate of a chemical reaction or prevents a reaction from ción de una reacción química o evita que ésta suceda. happening. inner transition metal (p. 180) A type of group B element metal de transición interna (pág. 180) Tipo de elemento that is contained in the f-block of the periodic table and del grupo B contenido dentro del bloque F de la tabla is characterized by a filled outermost orbital, and filled or periódica; se caracteriza por tener el orbital más externo partially filled 4f and 5f orbitals. lleno y los orbitales 4f y 5f parcialmente llenos. insoluble (p. 479) Describes a substance that cannot be dis- insoluble (pág. 479) Describe una sustancia que no se solved in a given solvent. puede disolver en un disolvente dado. instantaneous rate (p. 578) The rate of decomposition at a velocidad instantánea (pág. 578) La tasa de descomposición specific time, calculated from the rate law, the specific en un tiempo dado, se calcula a partir de la ley de veloci- rate constant, and the concentrations of all the reactants. dad de la reacción, la constante de velocidad de la reac- ción y las concentraciones de los reactivos. intensive property (p. 73) A physical property that remains propiedad intensiva (pág. 73) Propiedad física que perma- the same no matter how much of a substance is present. nece igual sea cual sea la cantidad de sustancia presente. intermediate (p. 580) A substance produced in one elemen- intermediario (pág. 580) Sustancia producida en un paso tary step of a complex reaction and consumed in a subse- elemental de una reacción compleja y que es consumida quent elementary step. en un paso elemental subsecuente.

Glossary/Glosario 1017 Glossary/Glosario

ion/ion law of conservation of mass/ley de conservación de la masa

ion (p. 189) An atom or bonded group of atoms with a ion (pág. 189) Átomo o grupo de átomos unidos que tienen positive or negative charge. carga positiva o negativa. ionic bond (p. 210) The electrostatic force that holds oppo- enlace iónico (pág. 210) Fuerza electrostática que mantiene sitely charged particles together in an ionic compound. unidas las partículas con carga opuesta en un compuesto iónico. ionic compounds (p. 210) Compounds that contain ionic compuestos iónicos (pág. 210) Compuestos que contienen bonds enlaces iónicos. ionization energy (p. 191) The energy required to remove energía de ionización (pág. 191) Energía que se requiere an electron from a gaseous atom; generally increases in para separar un electrón de un átomo en estado gaseoso; moving from left-to-right across a period and decreases generalmente aumenta al moverse de izquierda a derecha in moving down a group a lo largo de un período de la tabla periódica y disminuye al moverse hacia abajo a lo largo de un grupo. ionizing radiation (p. 885) Radiation that is energetic radiación ionizante (pág. 885) Radiación que posee suficiente enough to ionize matter it collides with. energía como para ionizar la materia con la que choca. ion product constant for water (p. 650) The value of the constante del producto iónico del agua (pág. 650) Valor de equilibrium constant expression for the self-ionization la expresión de la constante de equilibrio de la ionización of water. del agua. isomers (p. 765) Two or more compounds that have the isómeros (pág. 765) Dos o más compuestos que tienen same molecular formula but have different molecular la misma fórmula molecular pero poseen estructuras structures. moleculares diferentes. isotopes (p. 117) Atoms of the same element with different isótopos (pág. 117) Átomos del mismo elemento con dife- numbers of neutrons. rente número de neutrones. J

joule (p. 518) The SI unit of heat and energy. julio (pág. 518) La unidad SI de medida del calor y la energía. K

kelvin (p. 35) The SI base unit of temperature. kelvin (pág. 35) Unidad básica de temperatura del SI. ketone (p. 797) An organic compound in which the carbon cetona (pág. 797) Compuesto orgánico en el que el car- of the carbonyl group is bonded to two other carbon bono del grupo carbonilo está unido a otros dos átomos atoms. de carbono. kilogram (p. 34) The SI base unit for mass. kilogramo (pág. 34) Unidad básica de masa del SI. kinetic-molecular theory (p. 402) Describes the behavior teoría cinético-molecular (pág. 402) Explica el comporta- of gases in terms of particles in motion; makes several miento de los gases en términos de partículas en movi- assumptions about size, motion, and energy of gas par- miento; hace varias suposiciones acerca del tamaño, ticles. movimiento y energía de las partículas de gas. L lanthanide series (p. 180) In the periodic table, the f-block serie de los lantánidos (pág. 180) Los elementos del blo- elements from period 6 that follow the element lantha- que F del período 6 de la tabla periódica que siguen al num. elemento lantano. lattice energy (p. 216) The energy required to separate one energía reticular (pág. 216) Energía que se requiere para mole of the ions of an ionic compound, which is directly separar un mol de los iones de un compuesto iónico; related to the size of the ions bonded and is also affected está directamente relacionada con el tamaño de los iones by the charge of the ions. enlazados y es afectada también por la carga de los iones. law of chemical equilibrium (p. 599) States that at a given ley del equilibrio químico (pág. 599) Establece que a una temperature, a chemical system may reach a state in temperatura dada, un sistema químico puede alcanzar un which a particular ratio of reactant and product concen- estado en el que la razón particular de las concentracio- trations has a constant value. nes del reactivo y el producto tiene un valor constante. law of conservation of energy (p. 517) States that in any ley de conservación de la energía (pág. 517) Establece que chemical reaction or physical process, energy may change en toda reacción química y en todo proceso físico la from one form to another, but it is neither created nor energía puede cambiar de una forma a otra, pero no destroyed. puede ser creada ni destruida. law of conservation of mass (p. 77) States that mass is nei- ley de conservación de la masa (pág. 77) Establece que ther created nor destroyed during a chemical reaction durante una reacción química la masa no se crea ni se but is conserved. destruye, sino que se conserva.

1018 Glossary/Glosario Glossary/Glosario law of definite proportions/ley de las proporciones definidas meter/metro law of definite proportions (p. 87) States that, regardless ley de las proporciones definidas (pág. 87) Establece que, of the amount, a compound is always composed of the independientemente de la cantidad, un compuesto siem- same elements in the same proportion by mass. pre se compone de los mismos elementos en la misma proporción por masa. law of multiple proportions (p. 89) States that when different ley de las proporciones múltiples (pág. 89) Establece que compounds are formed by the combination of the same cuando la combinación de los mismos elementos forma elements, different masses of one element combine with compuestos diferentes, una masa dada de uno de los the same mass of the other element in a ratio of small elementos se combina con masas diferentes del otro whole numbers. elemento de acuerdo con una razón que se expresa en números enteros pequeños. Le Châtelier’s principle (luh SHAHT uh lee yays • PRIHN Principio de Le Châtelier (pág. 607) Establece que si se aplica sih puhl) (p. 607) States that if a stress is applied to a una perturbación a un sistema en equilibrio, el sistema system at equilibrium, the system shifts in the direction cambia en la dirección que reduce la perturbación. that relieves the stress. Lewis model (p. 641) An acid is an electron-pair acceptor modelo de Lewis (pág. 641) Un ácido es un receptor de and a base is an electro-pair donor. pares de electrones y una base es un donante de pares de electrones. Lewis structure (p. 242) A model that uses electron-dot estructura de Lewis (pág. 242) Modelo que utiliza diagramas structures to show how electrons are arranged in mol- de puntos de electrones para mostrar la disposición de ecules. Pairs of dots or lines represent bonding pairs. los electrones en las moléculas. Los pares de puntos o líneas representan pares de electrones enlazados. limiting reactant (p. 379) A reactant that is totally con- reactivo limitante (pág. 379) Reactivo que se consume com- sumed during a chemical reaction, limits the extent of pletamente durante una reacción química, limita la dura- the reaction, and determines the amount of product. ción de la reacción y determina la cantidad del producto. lipids (p. 835) Large, nonpolar biological molecules that lípidos (pág. 835) Moléculas biológicas no polares de gran vary in structure, store energy in living organisms, and tamaño que varían en estructura, almacenan energía en make up most of the structure of cell membranes. los seres vivos y conforman la mayor parte de la estruc- tura de las membranas celulares. liquid (p. 71) A form of matter that flows, has constant vol- líquido (pág. 71) Forma de materia que fluye, tiene volu- ume, and takes the shape of its container. men constante y toma la forma de su envase. liter (p. 35) The metric unit for volume equal to one cubic litro (pág. 35) Unidad de volumen del sistema métrico; decimeter. equivale a un decímetro cúbico. M mass (p. 9) A measure that reflects the amount of matter. masa (pág. 9) Medida que refleja la cantidad de materia. mass defect (p. 877) The difference in mass between a defecto másico (pág. 877) La diferencia de masa entre un nucleus and its component nucleons. núcleo y los nucleones que lo componen. mass number (p. 117) The number after an element’s name, número de masa (pág. 117) El número que va después del representing the sum of its protons and neutrons. nombre de un elemento; representa la suma de sus pro- tones y neutrones. matter (p. 4) Anything that has mass and takes up space. materia (pág. 4) Cualquier cosa que tiene masa y ocupa espacio. melting point (p. 426) For a crystalline solid, the tempera- punto de fusión (pág. 426) Para un sólido cristalino, es la ture at which the forces holding a crystal lattice together temperatura a la que se rompen las fuerzas que mantienen are broken and it becomes a liquid. unida la red cristalina y el sólido se convierte en líquido. metabolism (p. 844) The sum of the many chemical reac- metabolismo (pág. 844) El conjunto de las numerosas reac- tions that occur in living cells. ciones químicas que ocurren en las células vivas. metal (p. 177) An element that is solid at room tempera- metal (pág. 177) Elemento sólido a temperatura ambiente, ture, a good conductor of heat and electricity, and gener- es buen conductor de calor y electricidad y generalmente ally is shiny; most metals are ductile and malleable. es brillante; la mayoría de los metales son dúctiles y maleables. metallic bond (p. 225) The attraction of a metallic cation for enlace metálico (pág. 225) Atracción de un catión metálico delocalized electrons. por los electrones deslocalizados. metalloid (p. 181) An element that has physical and chemi- metaloide (pág. 181) Elementos que tienen las propiedades cal properties of both metals and nonmetals. físicas y químicas de metales y de no metales. meter (p. 33) The SI base unit for length. metro (pág. 33) Unidad básica de longitud del SI.

Glossary/Glosario 1019 Glossary/Glosario

method of initial rates/método de las velocidades iniciales neutralization reaction/reacción de neutralización

method of initial rates (p. 576) Determines the reaction método de las velocidades iniciales (pág. 576) Determina el order by comparing the initial rates of a reaction carried orden de la reacción al comparar las velocidades iniciales out with varying reactant concentrations. de una reacción realizada con diversas concentraciones de reactivo. miscible (p. 479) Describes two liquids that are soluble in miscible (pág. 479) Describe dos líquidos que son solubles each other. entre sí. mixture (p. 80) A physical blend of two or more pure mezcla (pág. 80) Combinación física de dos o más sustan- substances in any proportion in which each substance cias puras en cualquier proporción en la que cada sustan- retains its individual properties; can be separated by cia retiene sus propiedades individuales; las sustancias se physical means. pueden separar por medios físicos. model (p. 10) A visual, verbal, and/or mathematical expla- modelo (pág. 10) Explicación matemática, verbal o visual nation of data collected from many experiments. de datos recolectados en muchos experimentos. molality (p. 487) The ratio of the number of moles of sol- molalidad (pág. 487) La razón del número de moles de ute dissolved in one kilogram of solvent; also known as soluto disueltos en un kilogramo de disolvente; también molal concentration. se conoce como concentración molal. molar enthalpy (heat) of fusion (p. 530) The amount of heat entalpía (calor) molar de fusión (pág. 530) Cantidad required to melt one mole of a solid substance. requerida de calor para fundir un mol de una sustancia sólida. molar enthalpy (heat) of vaporization (p. 530) The amount entalpía (calor) molar de vaporización (pág. 530) Cantidad of heat required to vaporize one mole of a liquid. requerida de calor para vaporizar un mol de un líquido. molarity (p. 482) The number of moles of solute dissolved molaridad (pág. 482) Número de moles de soluto disueltos per liter of solution; also known as molar concentration. por litro de solución; también se conoce como concen- tración molar. molar mass (p. 326) The mass in grams of one mole of any masa molar (pág. 326) Masa en gramos de un mol de pure substance. cualquier sustancia pura. molar volume (p. 452) For a gas, the volume that one mole volumen molar (pág. 452) Para un gas, es el volumen que occupies at 0.00°C and 1.00 atm pressure. ocupa un mol a 0.00°C y una presión de 1.00 atm. mole (p. 321) The SI base unit used to measure the amount mol (pág. 321) Unidad básica del SI para medir la cantidad of a substance, abbreviated mol; the number of carbon de una sustancia, se abrevia mol; el número de átomos atoms in exactly 12 g of pure carbon; one mole is the de carbono en 12 g exactos de carbono puro; un mol es amount of a pure substance that contains 6.02 × 1 0 23 rep- la cantidad de sustancia pura que contiene 6.02 × 1 0 23 resentative particles. partículas representativas. molecular formula (p. 346) A formula that specifies the fórmula molecular (pág. 346) Fórmula que especifica actual number of atoms of each element in one molecule el número real de átomos de cada elemento en una of a substance. molécula de la sustancia. molecule (p. 241) Forms when two or more atoms cova- molécula (pág. 241) Se forma cuando dos o más átomos se lently bond and is lower in potential energy than its con- unen covalentemente y posee menor energía potencial stituent atoms. que los átomos que la conforman. mole fraction (p. 488) The ratio of the number of moles of fracción molar (pág. 488) La razón del número de moles de solute in solution to the total number of moles of solute soluto en solución al número total de moles de soluto y and solvent. disolvente. mole ratio (p. 371) In a balanced equation, the ratio razón molar (pág. 371) En una ecuación equilibrada, se between the numbers of moles of any two substances. refiere a la razón entre el número de moles de dos sus- tancias cualesquiera. monatomic ion (p. 218) An ion formed from only one atom. ion poliatómico (pág. 218) Ion formado de un sólo átomo. monomer (p. 810) A molecule from which a polymer is monómero (pág. 810) Molécula a partir de la cual se forma made. un polímero. monosaccharides (p. 832) The simplest carbohydrates, also monosacáridos (pág. 832) Los carbohidratos más simples; called simple sugars. se llaman también azúcares simples. N

net ionic equation (p. 301) An ionic equation that includes ecuación iónica neta (pág. 301) Ecuación iónica que incluye only the particles that participate in the reaction. sólo las partículas que participan en la reacción. neutralization reaction (p. 659) A reaction in which an acid reacción de neutralización (pág. 659) Reacción en la que un and a base react in aqueous solution to produce a salt ácido y una base reaccionan en una solución acuosa para and water. producir sal y agua.

1020 Glossary/Glosario Glossary/Glosario neutron/neutrón osmotic pressure/presión osmótica neutron (p. 113) A neutral, subatomic particle in an atom’s neutrón (pág. 113) Partícula subatómica neutral en el nucleus that has a mass nearly equal to that of a proton. núcleo de un átomo que tiene una masa casi igual a la de un protón. noble gas (p. 180) An extremely unreactive group 18 ele- gas noble (pág. 180) Elemento extremadamente no reactivo ment. del grupo 18. nonmetals (p. 180) Elements that are generally gases or no metales (pág. 180) Elementos que generalmente son dull, brittle solids that are poor conductors of heat and gases o sólidos quebradizos, sin brillo y malos conducto- electricity. res de calor y electricidad. nuclear equation (p. 123) A type of equation that shows ecuación nuclear (pág. 123) Tipo de ecuación que muestra the atomic number and mass number of the particles el número atómico y el número de masa de las partículas involved. involucradas. nuclear fission (p. 883) The splitting of a nucleus into fisión nuclear (pág. 883) Ruptura de un núcleo en fragmen- smaller, more stable fragments, accompanied by a large tos más pequeños y más estables; se acompaña de una release of energy. gran liberación de energía. nuclear fusion (p. 878) The process of binding smaller fusión nuclear (pág. 878) Proceso de unión de núcleos atomic nuclei into a single, larger, and more stable atómicos pequeños en un solo núcleo más grande y más nucleus. estable. nuclear reaction (p. 122) A reaction that involves a change reacción nuclear (pág. 122) Reacción que implica un cam- in the nucleus of an atom. bio en el núcleo de un átomo. nucleic acid (p. 840) A nitrogen-containing biological poly- ácido nucleico (pág. 840) Polímero biológico que contiene mer that is involved in the storage and transmission of nitrógeno y que participa en el almacenamiento y trans- genetic information. misión de información genética. nucleons (p. 865) The positively charged protons and neu- nucleones (pág. 865) Los protones de carga positiva y los tral neutrons contained in an atom’s nucleus. neutrones sin carga que contiene el núcleo de un átomo. nucleotide (p. 840) The monomer that makes up a nucleic nucleótido (pág. 840) Monómeros que forman los ácidos acid; consists of a nitrogen base, an inorganic phosphate nucleicos; consisten de una base nitrogenada, un grupo group, and a five-carbon monosaccharide sugar. fosfato inorgánico y un azúcar monosacárido de cinco carbonos. nucleus (p. 112) The extremely small, positively charged, núcleo (pág. 112) El diminuto y denso centro con carga dense center of an atom that contains positively charged positiva de un átomo; contiene protones con su carga protons and neutral neutrons. positiva y neutrones sin carga. O octet rule (p. 193) States that atoms lose, gain, or share elec- regla del octeto (pág. 193) Establece que los átomos trons in order to acquire the stable electron configuration pierden, ganan o comparten electrones para adquirir la of a noble gas. configuración electrónica estable de un gas noble. optical isomers (p. 768) Result from different arrangements isómeros ópticos (pág. 768) Son resultado de los distin- of four different groups around the same carbon atom tos ordenamientos que adquieren los cuatro grupos and have the same physical and chemical properties diferentes que rodean a un mismo átomo de carbono; except in chemical reactions where chirality is important. todos poseen las mismas propiedades químicas y físicas, excepto en las reacciones químicas donde la quiralidad es importante. optical rotation (p. 769) An effect that occurs when polar- rotación óptica (pág. 769) Efecto que ocurre cuando la ized light passes through a solution containing an optical luz polarizada atraviesa una solución que contiene un and the plane of polarization is rotated to the isómero óptico y el plano de polarización rota a la dere- right by a d-isomer or to the left by an l-isomer. cha en los isómeros dextrógiros (-d) y a la izquierda en los isómeros levógiros (-l). organic compounds (p. 745) All compounds that contain compuestos orgánicos (pág. 745) Todo compuesto que con- carbon with the primary exceptions of carbon oxides, tiene carbono; las excepciones más importantes son los , and carbonates, all of which are considered óxidos de carbono, los carburos y los carbonatos, todos inorganic. los cuales se consideran inorgánicos. osmosis (p. 504) The diffusion of solvent particles across a osmosis (pág. 504) Difusión de partículas de disolvente a semipermeable membrane from an area of higher solvent través de una membrana semipermeable hacia el área concentration to an area of lower solvent concentration. donde la concentración del disolvente es menor. osmotic pressure (p. 504) The pressure caused when water presión osmótica (pág. 504) La presión que causan las molecules move into or out of a solution. moléculas de agua al entrar o salir de una solución.

Glossary/Glosario 1021 Glossary/Glosario

oxidation/oxidación periodic table/tabla periódica

oxidation (p. 681) The loss of electrons from the atoms of a oxidación (pág. 681) Pérdida de electrones de los átomos substance; increases an atom’s oxidation number. de una sustancia; aumenta el número de oxidación de un átomo. oxidation number (p. 219) The positive or negative charge número de oxidación (pág. 219) La carga positiva o negativa of a monatomic ion. de un ion monoatómico. oxidation-number method (p. 689) The technique that can método del número de oxidación (pág. 689) Técnica que be used to balance more difficult redox reactions, based sirve para equilibrar las reacciones redox más difíciles; on the fact that the number of electrons transferred from se basa en el hecho de que el número de electrones trans- atoms must equal the number of electrons accepted by feridos por los átomos debe ser igual al número de elec- other atoms. trones aceptados por otros átomos. oxidation-reduction reaction (p. 680) Any chemical reac- reacción de oxidación-reducción (pág. 680) Toda reacción tion in which electrons are transferred from one atom to química en la que sucede transferencia de electrones de another; also called a redox reaction. un átomo a otro; también se llama reacción redox. oxidizing agent (p. 683) The substance that oxidizes another agente oxidante (pág. 683) Sustancia que oxida otra sustan- substance by accepting its electrons. cia al aceptar sus electrones. (p. 250) Any acid that contains hydrogen and an oxiácido (pág. 250) Todo ácido que contiene hidrógeno y . un oxianión. oxyanion (ahk see AN i ahn) (p. 222) A polyatomic ion oxianión (pág. 222) Ion poliatómico compuesto de un ele- composed of an element, usually a nonmetal, bonded to mento, generalmente un no metal, unido a uno o a más one or more oxygen atoms. átomos de oxígeno. P

parent chain (p. 753) The longest continuous chain of car- cadena principal (pág. 753) La cadena continua más larga bon atoms in a branched-chain alkane, alkene, or alkyne. de átomos de carbono en un alcano, un alqueno o un alquino ramificados. pascal (p. 407) The SI unit of pressure; one pascal (Pa) is pascal (pág. 407) La unidad SI de presión; un pascal (Pa) es equal to a force of one newton per square meter. igual a una fuerza de un newton por metro cuadrado. Pauli exclusion principle (p. 157) States that a maximum of principio de exclusión de Pauli (pág. 157) Establece que cada two electrons can occupy a single atomic orbital but only orbital atómico sólo puede ser ocupado por un máximo if the electrons have opposite spins. de dos electrones, pero sólo si los electrones tienen giros opuestos. penetrating power (p. 864) The ability of radiation to pass poder de penetración (pág. 864) La capacidad de la radia- through matter. ción de atravesar la materia. peptide (p. 828) A chain of two or more amino acids linked péptido (pág. 828) Cadena de dos o más aminoácidos uni- by peptide bonds. dos por enlaces peptídicos. peptide bond (p. 828) The amide bond that joins two amino enlace peptídico (pág. 828) Enlace amida que une dos ami- acids. noácidos. percent by mass (p. 87) A percentage determined by the porcentaje en masa (pág. 87) Porcentaje determinado por ratio of the mass of each element to the total mass of the la razón de la masa de cada elemento respecto a la masa compound. total del compuesto. percent composition (p. 342) The percent by mass of each composición porcentual (pág. 342) Porcentaje en masa de element in a compound. cada elemento en un compuesto. percent error (p. 48) The ratio of an error to an accepted porcentaje de error (pág. 48) La razón del error al valor value. aceptado. percent yield (p. 386) The ratio of actual yield (from an porcentaje de rendimiento (pág. 386) Razón del rendimiento experiment) to theoretical yield (from stoichiometric real (de un experimento) al rendimiento teórico (de cál- calculations) expressed as a percent. culos estequiométricos) expresada como porcentaje. period (p. 177) A horizontal row of elements in the modern período (pág. 177) Fila horizontal de elementos en la tabla periodic table. periódica moderna. periodic law (p. 176) States that when the elements are ley periódica (pág. 176) Establece que al ordenar los ele- arranged by increasing atomic number, there is a peri- mentos por número atómico en sentido ascendente, odic repetition of their properties. existe una repetición periódica de sus propiedades. periodic table (p. 85) A chart that organizes all known ele- tabla periódica (pág. 85) Tabla en la que se organizan ments into a grid of horizontal rows (periods) and verti- todos los elementos conocidos en una cuadrícula de filas cal columns (groups or families) arranged by increasing horizontales (períodos) y columnas verticales (grupos o atomic number. familias), ordenados según su número atómico en sen- tido ascendente.

1022 Glossary/Glosario Glossary/Glosario pH/pH positron emission/emisión de positrones pH (p. 652) The negative logarithm of the hydrogen ion pH (pág. 652) El logaritmo negativo de la concentración de concentration of a solution; acidic solutions have pH val- iones hidrógeno de una solución; las soluciones ácidas ues between 0 and 7, basic solutions have values between poseen valores de pH entre 0 y 7, las soluciones básicas 7 and 14, and a solution with a pH of 7.0 is neutral. tienen valores entre 7 y 14 y una solución con un pH de 7.0 es neutra. phase change (p. 76) A transition of matter from one state cambio de fase (pág. 76) La transición de la materia de un to another. estado a otro. phase diagram (p. 429) A graph of pressure versus tempera- diagrama de fase (pág. 429) Gráfica de presión contra tem- ture that shows which phase a substance exists in under peratura que muestra la fase en la que se encuentra una different conditions of temperature and pressure. sustancia bajo distintas condiciones de temperatura y presión. phospholipid (p. 838) A triglyceride in which one of the fosfolípido (pág. 838) Triglicérido en el que uno de los áci- fatty acids is replaced by a polar phosphate group dos grasos es sustituido por un grupo fosfato polar. photoelectric effect (p. 142) A phenomenon in which pho- efecto fotoeléctrico (pág. 142) Fenómeno en el cual la toelectrons are emitted from a metal’s surface when light superficie de un metal emiten fotoelectrones cuando una of a certain frequency shines on the surface. luz de cierta frecuencia ilumina su superficie. photon (p. 143) A particle of electromagnetic radiation fotón (pág. 143) Partícula de radiación electromagnética with no mass that carries a quantum of energy. sin masa que transporta un cuanto de energía. photosynthesis (p. 846) The complex process that converts fotosíntesis (pág. 846) Proceso complejo que convierte energy from sunlight to chemical energy in the bonds of la energía de la luz solar en la energía química de los carbohydrates. enlaces en carbohidratos. physical change (p. 76) A type of change that alters the cambio físico (pág. 76) Tipo de cambio que altera las physical properties of a substance but does not change its propiedades físicas de una sustancia pero no cambia su composition. composición. physical property (p. 73) A characteristic of matter that can propiedad física (pág. 73) Característica de la materia que be observed or measured without changing the sample’s se puede observar o medir sin cambiar la composición composition—or example, density, color, taste, hardness, de una muestra de la materia; por ejemplo, la densidad, and melting point. el color, el sabor, la dureza y el punto de fusión. pi bond (p. 245) A bond that is formed when parallel orbit- enlace pi (pág. 245) Enlace que se forma cuando orbitales als overlap to share electrons. paralelos se superponen para compartir electrones. Planck’s constant (h) (p. 142) 6.626 × 1 0 - 34 J ·s, where J is constante de Planck (h) (pág. 142) 6.626 × 10 -34 J ·s, donde the symbol for the joule. J es el símbolo de julios. plastic (p. 789) A polymer that can be heated and molded plástico (pág. 789) Polímero que se puede calentar y mol- while relatively soft. dear mientras esté relativamente suave. pOH (p. 652) The negative logarithm of the hydroxide ion pOH (pág. 652) El logaritmo negativo de la concentración concentration of a solution; a solution with a pOH above de iones hidróxido de una solución; una solución con un 7.0 is acidic, a solution with a pOH below 7.0 is basic, pOH mayor que 7.0 es ácida, una solución con un pOH and a solution with a pOH of 7.0 is neutral. menor que 7.0 es básica y una solución con un pOH de 7.0 es neutra. polar covalent bond (p. 266) A type of bond that forms enlace covalente polar (pág. 266) Tipo de enlace que se when electrons are not shared equally. forma cuando los electrones no se comparten de manera equitativa. polyatomic ion (p. 221) An ion made up of two or more ion poliatómico (pág. 221) Ion compuesto de dos o más atoms bonded together that acts as a single unit with a átomos unidos entre sí que actúan como una unidad con net charge. carga neta. polymerization reaction (p. 810) A reaction in which mono- reacción de polimerización (pág. 810) Reacción en la cual los mer units are bonded together to form a polymer. monómeros se unen para formar un polímero. polymers (p. 809) Large molecules formed by combining polímeros (pág. 809) Moléculas grandes formadas por many repeating structural units (monomers); are synthe- la unión de muchas unidades estructurales repetidas sized through addition or condensation reactions. (monómeros); se sintetizan a través de reacciones de adición o de condensación. polysaccharide (p. 833) A complex carbohydrate, which polisacárido (pág. 833) Carbohidrato complejo; es un is a polymer of simple sugars that contains 12 or more polímero de azúcares simples que contiene 12 ó más monomer units. monómeros. positron (p. 868) A particle that has the same mass as an positrón (pág. 868) Partícula que tiene la misma masa que electron but an opposite charge. un electrón pero carga opuesta. positron emission (p. 868) A radioactive decay process in emisión de positrones (pág. 868) Proceso de desintegración which a proton in the nucleus is converted into a neutron radiactiva en el que un protón del núcleo se convierte en and a positron, and then the positron is emitted from the un neutrón y un positrón y luego el positrón es emitido nucleus. del núcleo. Glossary/Glosario 1023 Glossary/Glosario

precipitate/precipitado radiochemical dating/datación radioquímica

precipitate (p. 296) A solid produced during a chemical precipitado (pág. 296) Sólido que se produce durante una reaction in a solution. reacción química en una solución. precision (p. 47) Refers to how close a series of measure- precisión (pág. 47) Se refiere a la cercanía de una serie de ments are to one another; precise measurements show medidas entre sí; las medidas precisas muestran poca little variation over a series of trials but might not be variación durante una serie de pruebas, incluso si no son accurate. exactas. pressure (p. 406) Force applied per unit area. presión (pág. 406) Fuerza aplicada por unidad de área. primary battery (p. 720) A type of battery that produces batería primaria (pág. 720) Tipo de batería que produce electric energy by redox reactions that are not easily energía eléctrica por reacciones redox que no son fácil- reversed, delivers current until the reactants are gone, mente reversibles, produce corriente hasta que se agotan and then is discarded. los reactivos y luego se desecha. principal energy levels (p. 153) The major energy levels of niveles energéticos principales (pág. 153) Los niveles ener- an atom. géticos más importantes de un átomo. principal quantum number (n) (p. 153) Assigned by the número cuántico principal (pág. 153) Asignado por el quantum mechanical model to indicate the relative sizes mo delo mecánico cuántico para indicar el tamaño y la and energies of atomic orbitals. energía relativas de los orbitales atómicos. product (p. 283) A substance formed during a chemical producto (pág. 283) Sustancia que se forma durante una reaction. reacción química. protein (p. 826) An organic polymer made up of animo proteína (pág. 826) Polímero orgánico compuesto de ami- acids linked together by peptide bonds that can function noácidos unidos por enlaces peptídicos; puede funcionar as an enzyme, transport important chemical substances, como enzima, transportar sustancias químicas impor- or provide structure in organisms. tantes o ser parte de la estructura en los organismos. proton (p. 113) A subatomic particle in an atom’s nucleus protón (pág. 113) Partícula subatómica en el núcleo de un that has a positive charge of 1+. átomo con carga positiva 1+. pure research (p. 17) A type of scientific investigation that investigación pura (pág. 17) Tipo de investigación científica seeks to gain knowledge for the sake of knowledge itself. que busca obtener conocimiento sin otro interés que sa tisfacer el interés científico. Q

qualitative data (p. 13) Information describing color, odor, datos cualitativos (pág. 13) Información que describe el shape, or some other physical characteristic. color, el olor, la forma o alguna otra característica física. quantitative data (p. 13) Numerical information describing datos cuantitativos (pág. 13) Información numérica que how much, how little, how big, how tall, or how fast. describe cantidad, tamaño o rapidez. quantum (p. 141) The minimum amount of energy that can cuanto (pág. 141) La cantidad mínima de energía que be gained or lost by an atom. puede ganar o perder un átomo. quantum mechanical model of the atom (p. 152) An atomic modelo mecánico cuántico del átomo (pág. 152) Modelo model in which electrons are treated as waves; also called atómico en el cual los electrones se estudian como si the wave mechanical model of the atom. fueran ondas; también se denomina modelo mecánico ondulatorio del átomo. quantum number (p. 146) The number assigned to each número cuántico (pág. 146) Número que se asigna a cada orbit of an electron. órbita de un electrón. R

radiation (p. 122) The rays and particles—alpha and beta radiación (pág. 122) Los rayos y partículas que emiten particles and gamma rays—that are emitted by radioac- los materiales radiactivos (partículas alfa y beta y rayos tive materials. gamma). radioactive decay (p. 122) A spontaneous process in which desintegración radiactiva (pág. 122) Proceso espontáneo unstable nuclei lose energy by emitting radiation. en el que los núcleos inestables pierden energía al emitir radiación. radioactive decay series (p. 870) A series of nuclear reac- serie de desintegración radiactiva (pág. 870) Serie de reac- tions that starts with an unstable nucleus and results in ciones nucleares que empieza con un núcleo inestable y the formation of a stable nucleus. produce la formación de un núcleo estable. radioactivity (p. 122) The process in which some substances radiactividad (pág. 122) Proceso en el que algunas sustan- spontaneously emit radiation. cias emiten radiación espontáneamente. radiochemical dating (p. 873) The process that is used to datación radioquímica (pág. 873) Proceso que sirve para determine the age of an object by measuring the amount determinar la edad de un objeto al medir la cantidad res- of a certain radioisotope remaining in that object. tante de cierto radioisótopo en dicho objeto.

1024 Glossary/Glosario Glossary/Glosario radioisotopes/radioisótopos salt hydrolysis/hidrólisis de sales radioisotopes (p. 861) Isotopes of atoms that have unstable radioisótopos (pág. 861) Isótopos de átomos que poseen nuclei and emit radiation to attain more stable atomic núcleos inestables y emiten radiación para obtener una configurations. configuración atómica más estable. radiotracer (p. 887) An isotope that emits non-ionizing radiolocalizador (pág. 887) Isótopo que emite radiación radiation and is used to signal the presence of an element no ionizante y se utiliza para señalar la presencia de un or specific substance; can be used to analyze complex elemento o sustancia específica; se usan para analizar los chemical reactions mechanisms and to diagnose disease. mecanismos de reacciones químicas complejas y para diagnosticar enfermedades. rate-determining step (p. 581) The slowest elementary step paso determinante de la velocidad de reacción (pág. 581) in a complex reaction; limits the instantaneous rate of the El paso elemental más lento en una reacción compleja; overall reaction. limita la velocidad instantánea de la reacción general. rate law (p. 574) The mathematical relationship between ley de velocidad de la reacción (pág. 574) Relación the rate of a chemical reaction at a given temperature matemática entre la velocidad de una reacción química and the concentrations of reactants. a una temperatura dada y las concentraciones de los reactivos. reactant (p. 283) The starting substance in a chemical reac- reactivo (pág. 283) Sustancia inicial en una reacción tion. química. reaction mechanism (p. 580) The complete sequence of mecanismo de reacción (pág. 580) Sucesión completa de elementary steps that make up a complex reaction. pasos elementales que componen una reacción compleja. reaction order (p. 575) For a reactant, describes how the orden de la reacción (pág. 575) Describe cómo la concen- rate is affected by the concentration of that reactant. tración de un reactivo afecta la velocidad de la reacción para dicho reactivo. reaction rate (p. 561) The change in concentration of a tasa de reacción (pág. 561) Cambio en la concentración de reactant or product per unit time, generally calculated un reactivo o producto por unidad de tiempo, general- and expressed in moles per liter per second. mente se calcula y expresa en moles por litro por segundo. redox reaction (p. 680) An oxidation-reduction reaction. reacción redox (pág. 680) Una reacción de oxidorreducción. reducing agent (p. 683) The substance that reduces another agente reductor (pág. 683) Sustancia que reduce otra sus- substance by losing electrons. tancia al perder electrones. reduction (p. 681) The gain of electrons by the atoms of a reducción (pág. 681) Ganancia de electrones por los átomos substance; decreases an atom’s oxidation number. de una sustancia; reduce el número de oxidación de los átomos. reduction potential (p. 711) The tendency of a substance to potencial de reducción (pág. 711) Tendencia de una sustan- gain electrons. cia a ganar electrones. representative elements (p. 177) Elements from groups 1, elementos representativos (pág. 177) Elementos de los gru- 2, and 13–18 in the modern periodic table, possessing a pos 1, 2 y 13 a 18 de la tabla periódica moderna; poseen wide range of chemical and physical properties. una gran variedad de propiedades químicas y físicas. resonance (p. 258) Condition that occurs when more than resonancia (pág. 258) Condición que ocurre cuando existe one valid Lewis structure exists for the same molecule. más de una estructura válida de Lewis para una misma molécula. reversible reaction (p. 595) A reaction that can take place in reacción reversible (pág. 595) Reacción que puede both the forward and reverse directions; leads to an equi- ocurrir en direcciones normal e inversa; produce un librium state where the forward and reverse reactions estado de equilibrio donde las reacciones en sentido nor- occur at equal rates and the concentrations of reactants mal e inverso ocurren a tasas iguales, ocasionando que and products remain constant. la concentración de reactivos y productos permanezcan constantes. S salt (p. 659) An ionic compound made up of a cation from sal (pág. 659) Compuesto iónico formado por un catión pro- a base and an anion from an acid. veniente de una base y un anión proveniente de un ácido. salt bridge (p. 709) A pathway constructed to allow positive puente salino (pág. 709) Medio que permite el movimiento and negative ions to move from one solution to another. de iones positivos y negativos de una solución a otra. salt hydrolysis (p. 665) The process in which anions of the hidrólisis de sales (pág. 665) Proceso en el que los aniones dissociated salt accept hydrogen ions from water, or the de una sal disociada aceptan iones hidrógeno del agua cations of the dissociated salt donate hydrogen ions to o en el que los cationes de la sal disociada donan iones water. hidrógeno al agua.

Glossary/Glosario 1025 Glossary/Glosario

saponification/saponificación species/especie

saponification (suh pahn ih fih KAY shuhn) (p. 837) The saponificación (pág. 837) La hidrólisis de los enlaces éster hydrolysis of the ester bonds of a triglyceride using an de un triglicérido, usando una solución acuosa de una aqueous solution of a strong base to form carboxylate base fuerte, para formar sales de carboxilato y glicerol. salts and glycerol. saturated hydrocarbon (p. 746) A hydrocarbon that contains hidrocarburo saturado (pág. 746) Hidrocarburo que sólo only single bonds. contiene enlaces sencillos. saturated solution (p. 493) Contains the maximum amount solución saturada (pág. 493) Solución que contiene la can- of dissolved solute for a given amount of solvent at a spe- tidad máxima de soluto disuelto para una cantidad dada cific temperature and pressure. de disolvente a una temperatura y presión específicas. scientific law (p. 16) Describes a relationship in nature that ley científica (pág. 16) Describe una relación natural is supported by many experiments. demostrada en muchos experimentos. scientific methods (p. 12) A systematic approach used in métodos científicos (pág. 12) Enfoque sistemático que se scientific study; an organized process used by scientists usa en los estudios científicos; proceso organizado que to do research and to verify the work of others. siguen los científicos para realizar sus investigaciones y verificar el trabajo realizado por otros científicos. scientific notation (p. 40) Expresses any number as a num- notación científica (pág. 40) Expresa cualquier número ber between 1 and 10 (known as a coefficient) multiplied como un número entre 1 y 10 (conocido como coefi- by 10 raised to a power (known as an exponent). ciente) multiplicado por 10 elevado a alguna potencia (conocida como exponente). second (p. 33) The SI base unit for time. segundo (pág. 33) Unidad básica de tiempo del SI. second law of thermodynamics (p. 543) The spontaneous segunda ley de la termodinámica (pág. 543) Los pro- processes always proceed in such a way that the entropy cesos espontáneos siempre proceden de una forma que of the universe increases. aumenta la entropía del universo. secondary battery (p. 720) A rechargeable battery that batería secundaria (pág. 720) Batería recargable que depends on reversible redox reactions. depende de reacciones redox reversibles. sigma bond (p. 244) A single covalent bond that is formed enlace sigma (pág. 244) Enlace covalente simple que se when an electron pair is shared by the direct overlap of forma cuando se comparte un par de electrones me diante bonding orbitals. la superposición directa de los orbitales del enlace. significant figures (p. 50) The number of all known digits cifras significativas (pág. 50) El número de dígitos conoci- reported in measurements plus one estimated digit. dos que se reportan en medidas, más un dígito estimado. single-replacement reaction (p. 293) A chemical reaction reacción de sustitución simple (pág. 293) Reacción química that occurs when the atoms of one element replace the que ocurre cuando los átomos de un elemento reempla- atoms of another element in a compound. zan a los átomos de otro elemento en un compuesto. solid (p. 71) A form of matter that has its own definite sólido (pág. 71) Forma de la materia que tiene su propia shape and volume, is incompressible, and expands only forma y volumen, es incompresible y sólo se expande slightly when heated. levemente cuando se calienta. solubility (p. 614) The maximum amount of solute that will solubilidad (pág. 614) Cantidad máxima de soluto que se dissolve in a given amount of solvent at a specific tem- disolverá en una cantidad dada de disolvente a una tem- perature and pressure. peratura y presión específicas. solubility product constant (p. 614) K sp , which is an equi- constante de producto de solubilidad (pág. 614) Se repre- librium constant for the dissolving of a sparingly soluble senta como K sp ; es la constante de equilibrio para la diso- ionic compound in water. lución de un compuesto iónico moderadamente soluble en agua. soluble (p. 479) Describes a substance that can be dissolved soluble (pág. 479) Describe una sustancia que se puede in a given solvent. disolver en un disolvente dado. solute (p. 299) One or more substances dissolved in a solu- soluto (pág. 299) Una o más sustancias disueltas en una tion. solución. solution (p. 81) A uniform mixture that can contain solids, solución (pág. 81) Mezcla uniforme que puede contener sóli- liquids, or gases; also called a homogeneous mixture. dos, líquidos o gases; llamada también mezcla homogénea. solvation (p. 489) The process of surrounding solute parti- solvatación (pág. 489) Proceso de rodear las partículas de cles with solvent particles to form a solution; occurs only soluto con partículas del disolvente para formar una solu- where and when the solute and solvent particles come in ción; ocurre sólo en los lugares y en el momento en que contact with each other. las partículas de soluto y disolvente entran en contacto. solvent (p. 299) The substance that dissolves a solute disolvente (pág. 299) Sustancia que disuelve un soluto para to form a solution; the most plentiful substance in the formar una solución; la sustancia más abundante en la solution. solución. species (p. 693) Any kind of chemical unit involved in a especie (pág. 693) Cualquier clase de unidad química que process. participa en un proceso.

1026 Glossary/Glosario Glossary/Glosario specific heat/calor específico substitution reaction/reacción de sustitución specific heat (p. 519) The amount of heat required to raise calor específico (pág. 519) Cantidad de calor requerida para the temperature of one gram of a given substance by one elevar la temperatura de un gramo de una sustancia dada degree Celsius. en un grado centígrado (Celsius). specific rate constant (p. 575) A numerical value that relates constante de velocidad de la reacción (pág. 575) Valor reaction rate and concentration of reactant at a specific numérico que relaciona la velocidad de la reacción y la temperature. concentración de reactivos a una temperatura específica. spectator ion (p. 301) Ion that does not participate in a ion espectador (pág. 301) Ion que no participa en una reaction. reacción. spontaneous process (p. 542) A physical or chemical change proceso espontáneo (pág. 542) Cambio físico o químico que that occurs without outside intervention and may require ocurre sin intervención externa; la iniciación del proceso energy to be supplied to begin the process. puede requerir un suministro de energía. standard enthalpy (heat) of formation (p. 537) The change entalpía (calor) estándar de formación (pág. 537) Cambio en in enthalpy that accompanies the formation of one mole la entalpía que acompaña la formación de un mol de un of a compound in its standard state from its constituent compuesto en su estado normal, a partir de sus elemen- elements in their standard states. tos constituyentes en su estado normal. standard hydrogen electrode (p. 711) The standard elec- electrodo normal de hidrógeno (pág. 711) Electrodo están- trode against which the reduction potential of all elec- dar que sirve de referencia para medir el potencial de trodes can be measured. reducción de todos los electrodos. states of matter (p. 71) The physical forms in which all estados de la materia (pág. 71) Las formas físicas en las que matter naturally exists on Earth—most commonly as a la materia existe naturalmente en la Tierra, más común- solid, a liquid, or a gas. mente como sólido, líquido o gas. stereoisomers (p. 766) A class of isomers whose atoms are estereoisómeros (pág. 766) Clase de isómeros cuyos átomos bonded in the same order but are arranged differently in se unen en el mismo orden, pero con distinta disposición space. espacial. steroids (p. 839) Lipids that have multiple cyclic rings in esteroides (pág. 839) Lípidos con múltiples anillos en sus their structures. estructuras. stoichiometry (p. 368) The study of quantitative relation- estequiometría (pág. 368) El estudio de las relaciones cuan- ships between the amounts of reactants used and prod- titativas entre las cantidades de reactivos utilizados y los ucts formed by a chemical reaction; is based on the law productos formados durante una reacción química; se of conservation of mass. basa en la ley de la conservación de la masa. strong acid (p. 644) An acid that ionizes completely in ácido fuerte (pág. 644) Ácido que se ioniza completamente aqueous solution. en solución acuosa. strong base (p. 648) A base that dissociates entirely into base fuerte (pág. 648) Base que se disocia enteramente en metal ions and hydroxide ions in aqueous solution. iones metálicos e iones hidróxido en solución acuosa. strong nuclear force (p. 865) A force that acts on subatomic fuerza nuclear fuerte (pág. 865) Fuerza que actúa sólo en particles that are extremely close together. las partículas subatómicas que se encuentran extremada- mente cercanas. structural formula (p. 253) A molecular model that uses fórmula estructural (pág. 253) Modelo molecular que usa symbols and bonds to show relative positions of atoms; símbolos y enlaces para mostrar las posiciones relati- can be predicted for many molecules by drawing the vas de los átomos; esta fórmula se puede predecir para Lewis structure. muchas moléculas al trazar su estructura de Lewis. structural isomers (p. 765) A class of isomers whose atoms isómeros estructurales (pág. 765) Clase de isómeros cuyos are bonded in different orders with the result that they átomos están unidos en distinto orden, por lo que tienen have different chemical and physical properties despite propiedades químicas y físicas diferentes a pesar de tener having the same formula. la misma fórmula. sublimation (p. 83) The energy-requiring process by which sublimación (pág. 83) Proceso que requiere de energía en el a solid changes directly to a gas without first becoming a que un sólido se convierte directamente en gas, sin con- liquid. vertirse primero en un líquido. substance (p. 5) Matter that has a definite composition; also sustancia (pág. 5) Materia con una composición definida; known as a chemical. también se conoce como sustancia química. substituent groups (p. 753) The side branches that extend grupos sustituyentes (pág. 753) Las ramas laterales que se from the parent chain; they appear to substitute for a extienden desde la cadena principal y parecen sustituir hydrogen atom in the straight chain. un átomo de hidrógeno de la cadena recta. substitution reaction (p. 790) A reaction of organic com- reacción de sustitución (pág. 790) Reacción de compuestos pounds in which one atom or group of atoms in a mol- orgánicos en la cual un átomo o un grupo de átomos en ecule is replaced by another atom or group of atoms. una molécula son sustituidos por otro átomo o grupo de átomos.

Glossary/Glosario 1027 Glossary/Glosario

substrate/sustrato titration/titulación

substrate (p. 830) A reactant in an enzyme-catalyzed reac- sustrato (pág. 830) Reactivo en una reacción catalizada por tion that binds to specific sites on enzyme molecules. enzimas que se enlaza a sitios específicos en las molécu- las de la enzima. supersaturated solution (p. 494) Contains more dissolved solución sobresaturada (pág. 494) Aquella que contiene más solute than a saturated solution at the same temperature. soluto disuelto que una solución saturada a la misma temperatura. surface tension (p. 418) The energy required to increase the tensión superficial (pág. 418) Energía requerida para surface area of a liquid by a given amount; results from aumentar el área superficial de un líquido en una canti- an uneven distribution of attractive forces. dad dada; es producida por una distribución desigual de las fuerzas de atracción. surfactant (p. 419) A compound, such as soap, that low- surfactante (pág. 419) Compuesto, como el jabón, que ers the surface tension of water by disrupting hydrogen reduce la tensión superficial del agua al romper los bonds between water molecules; also called a surface enlaces de hidrógeno entre las moléculas de agua; lla- active agent. mado también agente tensioactivo. surroundings (p. 526) In thermochemistry, includes every- alrededores (pág. 526) En termoquímica, incluye todo el thing in the universe except the system. universo a excepción del sistema. suspension (p. 476) A type of heterogeneous mixture whose suspensión (pág. 476) Tipo de mezcla heterogénea cuyas particles settle out over time and can be separated from partículas se asientan con el tiempo y pueden separarse the mixture by filtration. de la mezcla por filtración. synthesis reaction (p. 289) A chemical reaction in which reacción de síntesis (pág. 289) Reacción química en la que two or more substances react to yield a single product. dos o más sustancias reaccionan para generar un solo producto. system (p. 526) In thermochemistry, the specific part of sistema (pág. 526) En termoquímica, se refiere a la parte the universe containing the reaction or process being específica del universo que contiene la reacción o el pro- studied. ceso en estudio. T

technology (p. 9) The practical use of scientific information. tecnología (pág. 9) Uso práctico de la información científica. temperature (p. 403) A measure of the average kinetic temperatura (pág. 403) Medida de la energía cinética pro- energy of the particles in a sample of matter. medio de las partículas en una muestra de materia. theoretical yield (p. 385) In a chemical reaction, the maxi- rendimiento teórico (pág. 385) La cantidad máxima de mum amount of product that can be produced from a producto que se puede producir a partir de una cantidad given amount of reactant. dada de reactivo, durante una reacción química. theory (p. 16) An explanation supported by many experi- teoría (pág. 16) Explicación respaldada por muchos experi- ments; is still subject to new experimental data, can be mentos; está sujeta a los resultados obtenidos en nuevos modified, and is considered valid it if can be used to experimentos, se puede modificar y se considera válida si make predictions that are proven true. permite hacer predicciones verdaderas. thermochemical equation (p. 529) A balanced chemical ecuación termoquímica (pág. 529) Ecuación química equili- equation that includes the physical states of all the reac- brada que incluye el estado físico de todos los reactivos y tants and the energy change, usually expressed as the the el cambio de energía, este último usualmente expresado change in enthalpy. como el cambio en entalpía. thermochemistry (p. 525) The study of heat changes that termoquímica (pág. 525) El estudio de los cambios de calor accompany chemical reactions and phase changes. que acompañan a las reacciones químicas y a los cambios de fase. thermonuclear reaction (p. 883) A nuclear fusion reaction. reacción termonuclear (pág. 883) Reacción de fusión nuclear. thermoplastic (p. 813) A type of polymer that can be melted termoplástico (pág. 813) Tipo de polímero que se puede and molded repeatedly into shapes that are retained fundir y moldear repetidas veces en formas que el when it is cooled. plástico mantiene al enfriarse. thermosetting (p. 813) A type of polymer that can be fraguado (pág. 813) Tipo de polímero que se puede mol- molded when it is first prepared but when cool cannot be dear la primera vez que es producido, pero que no puede remelted. fundirse de nuevo una vez que se ha enfriado. titrant (p. 661) A solution of known concentration used to solución tituladora (pág. 661) Solución de concentración titrate a solution of unknown concentration; also called conocida que se usa para titular una solución de concen- the standard solution. tración desconocida; también conocida como solución estándar. titration (p. 660) The process in which an acid-base neu- titulación (pág. 660) Proceso en el que se usa una reacción tralization reaction is used to determine the concentra- de neutralización ácido-base para determinar la concen- tion of a solution of unknown concentration. tración de una solución de concentración desconocida.

1028 Glossary/Glosario Glossary/Glosario transition elements/elementos de transición viscosity/viscosidad transition elements (p. 177) Elements in groups 3–12 of the elementos de transición (pág. 177) Elementos de los grupos modern periodic table and are further divided into tran- 3 al 12 de la tabla periódica moderna; se subdividen en sition metals and inner transition metals. metales de transición y metales de transición interna. transition metal (p. 180) The elements in groups 3–12 that metal de transición (pág. 180) Elementos de los grupos 3 al are contained in the d-block of the periodic table and, 12 del bloque d de la tabla periódica; con algunas excep- with some exceptions, is characterized by a filled out- ciones, se caracterizan por tener lleno el orbital externo ermost s orbital of energy level n, and filled or partially s del nivel de energía n y por tener orbitales d llenos o filled d orbitals of energy level n −1. parcialmente llenos en el nivel de energía n −1. transition state (p. 564) Term used to describe an activated estado de transición (pág. 564) Término que se usa para complex because the activated complex is as likely to describir un complejo activado por su probabilidad de form reactants as it is to form products. formar tanto reactivos como productos. transmutation (p. 865) The conversion of an atom of one transmutación (pág. 865) Conversión de un átomo de un element to an atom of another element. elemento a un átomo de otro elemento. transuranium element (p. 876) An element with an atomic elemento transuránico (pág. 876) Elementos de la tabla number of 93 or greater in the periodic table. periódica con un número atómico igual o mayor que 93. triglyceride (p. 836) Forms when three fatty acids are triglicérido (pág. 836) Se forma cuando tres ácidos grasos bonded to a glycerol backbone through ester bonds; can se enlazan a un cadena principal de glicerol por enlaces be either solid or liquid at room temperature. éster; puede ser sólido o líquido a temperatura ambiente. triple point (p. 429) The point on a phase diagram repre- punto triple (pág. 429) El punto en un diagrama de fase que senting the temperature and pressure at which the three representa la temperatura y la presión en la que coexisten phases of a substance (solid, liquid, and gas) can coexist. las tres fases de una sustancia (sólido, líquido y gas). Tyndall effect (TIHN duhl • EE fekt) (p. 478) The scat- efecto Tyndall (pág. 478) Dispersión de la luz causada por tering of light by colloidal particles. las partículas coloidales. U unit cell (p. 421) The smallest arrangement of atoms in a celda unitaria (pág. 421) El conjunto más pequeño de áto- crystal lattice that has the symmetry as the whole crystal; mos en una red cristalina que posee la simetría de todo el a small representative part of a larger whole. cristal; pequeña parte representativa de un entero mayor. universe (p. 526) In thermochemistry, is the system plus the universo (pág. 526) En termoquímica, se refiere el sistema surroundings. más los alrededores. unsaturated hydrocarbon (p. 746) A hydrocarbon that con- hidrocarburo no saturado (pág. 746) Hidrocarburo que tains at least one double or triple bond between carbon contiene por lo menos un enlace doble o triple entre sus atoms. átomos de carbono. unsaturated solution (p. 493) Contains less dissolved solute solución no saturada (pág. 493) Aquella que contiene menos for a given temperature and pressure than a saturated soluto disuelto a una temperatura y presión dadas que solution; has further capacity to hold more solute. una solución saturada; puede contener cantidades adi- cionales del soluto. V valence electrons (p. 161) The electrons in an atom’s outer- electrones de valencia (pág. 161) Los electrones en el orbital most orbitals; determine the chemical properties of an más externo de un átomo; determinan las propiedades element. químicas de un elemento. vapor (p. 72) Gaseous state of a substance that is a liquid or vapor (pág. 72) Estado gaseoso de una sustancia que es a solid at room temperature. líquida o sólida a temperatura ambiente. vaporization (p. 426) The energy-requiring process by vaporización (pág. 426) Proceso que requiere energía en el which a liquid changes to a gas or vapor. que un líquido se convierte en gas o vapor. vapor pressure (p. 427) The pressure exerted by a vapor presión de vapor (pág. 427) Presión que ejerce un vapor over a liquid. sobre un líquido. vapor pressure lowering (p. 499) The lowering of vapor disminución de la presión de vapor (pág. 499) Reducción de pressure of a solvent by the addition of a nonvolatile sol- la presión de vapor de un disolvente por la adición de un ute to the solvent. soluto no volátil al disolvente. viscosity (p. 417) A measure of the resistance of a liquid to viscosidad (pág. 417) Medida de la resistencia de un líquido flow, which is affected by the size and shape of particles, a fluir; es afectada por el tamaño y la forma de las partícu- and generally increases as the temperature decreases and las y en general aumenta cuando disminuye temperatura as intermolecular forces increase. y cuando aumentan las fuerzas intermoleculares.

Glossary/Glosario 1029 Glossary/Glosario

voltaic cell/pila voltaica X ray/rayos X

voltaic cell (p. 709) A type of electrochemical cell that con- pila voltaica (pág. 709) Tipo de celda electroquímica verts chemical energy into electrical energy by a sponta- que convierte la energía química en energía eléctrica neous redox reaction. mediante una reacción redox espontánea. VSEPR model (p. 261) Valence Shell Electron Pair Repulsion modelo RPCEV (pág. 261) Modelo de Repulsión de los model, which is based on an arrangement that minimizes Pares Electrónicos de la Capa de Valencia; se basa en un the repulsion of shared and unshared pairs of electrons ordenamiento que minimiza la repulsión de los pares de around the central atom. electrones compartidos y no compartidos alrededor del átomo central. W

wavelength (p. 137) The shortest distance between equiva- longitud de onda (pág. 137) La distancia más corta entre lent points on a continuous wave; is usually expressed in puntos equivalentes en una onda continua; se expresa meters, centimeters, or nanometers. generalmente en metros, centímetros o nanómetros. wax (p. 838) A type of lipid that is formed by combining cera (pág. 838) Tipo de lípido que se forma al combinarse a fatty acid with a long-chain alcohol; is made by both un ácido graso con un alcohol de cadena larga; son ela- plants and animals. borados por plantas y animales. weak acid (p. 645) An acid that ionizes only partially in ácido débil (pág. 645) Ácido que se ioniza parcialmente en dilute aqueous solution. una solución acuosa diluida. weak base (p. 648) A base that ionizes only partially in base débil (pág. 648) Base que se ioniza parcialmente en dilute aqueous solution to form the conjugate acid of the una solución acuosa diluida para formar el ácido conju- base and hydroxide ion. gado de la base y el ion hidróxido. weight (p. 9) A measure of an amount of matter and also peso (pág. 9) Medida de la cantidad de materia y también the effect of Earth’s gravitational pull on that matter. del efecto de la fuerza gravitatoria de la Tierra sobre esa materia. X

X ray (p. 864) A form of high-energy, penetrating electro- rayos X (pág. 864) Forma de radiación electromagnética magnetic radiation emitted from some materials that are penetrante de alta energía que emiten algunos materiales in an excited electron state. que se encuentran en un estado electrónico excitado.

1030 Glossary/Glosario Absolute zero Anions Index Key Italic numbers = illustration/photo Bold numbers = vocabulary term act. = activity prob. = problem

properties, 634–635; polyprotic, 640– prob.; hydrogenation reactions, 805; A 641, 641 table; strength of, 644–647, naming, 751, 752–753, 754–755 Absolute zero, 445 648 act.; strong, 644; titration of. See prob.; nonpolarity of, 757, 758; physi- Absorption spectrum, 145, 164 act. Titration; weak, 645 cal properties, 758; solubility, 758; straight-chain, 750–751 Accelerants, 91 Actinide series, 180, 185, 921 Alkenes, 759; addition reactions involv- Accuracy, 47–48 Activated complex, 564 ing, 804; naming, 760, 761 prob.; prop- Acetaldehyde, 796 Activation energy (E a ), 564–566, erties, 762; stereoisomers, 766; uses, 762 Acetaminophen, 800 571–572 Alkyl groups, 752, 753 table Acetic acid, 634, 798, 800 Active site, 830 Alkyl halides, 787; dehydrogenation Acetone, 432 act., 797 Activities. See CHEMLABs; Data reactions, 803; naming, 788; parent Acetylene. See Ethyne Analysis Labs; Launch Labs; alkanes v., 789 table; substitution Acid anhydrides, 643 MiniLabs; Problem-Solving Labs reactions, 791 Acid-base chemistry, 633 act., 634–668; Activity series, 293–294, 310 act. Alkynes, 763–764; ethyne, synthesize acid-base titration, 660–663, 664 prob., Actual yield, 385 and observe, 762 act.; examples, 763 670 act.; acids, strength of, 644–647, Addition: scientific notation and, 42, table; hydrogenation reactions, 805; 648 act.; Arrhenius model, 637, 642 948; significant figures and, 53, 53 naming, 763; properties, 764; uses, 764 table; bases, strength of, 648–649; prob., 952, 953 prob. Allotropes, 938 Brønsted-Lowry model, 638–640, Addition polymerization, 811 Alloys, 81, 227–228; commercially 642 table; buffers, 666–667, 668 act.; Addition reactions, 804 table, 804–805 important, 228 table; interstitial, 228; chemical properties of acids and bases, Adenine (A), 841 magnesium, 913; substitutional, 228; 635; and hydroxide ions, Adenosine diphosphate (ADP), 845 transition metal, 916 636; ion-product of water and, 650 Adenosine triphosphate (ATP), 532, 845 Alnico, 228 table prob., 650–651; Lewis model, 641–643, Adhesion, 419 Alpha decay, 867, 868 table 642 table; litmus paper and, 633 act., Adipic acid, 798 Alpha particles, 123, 861 table, 862, 864, 635, 658; milestones in understanding, ADP (adenosine diphosphate), 845 888 table 636–637; molarity and pH, 656; mono- Age of Polymers. See Polymers Alpha radiation, 123, 124 table, 861, 861 protic and polyprotic acids, 640–641, Agitation, 492 table, 862, 888 table 641 table; neutralization reactions, AIDS, 389 Alternative energy specialist, 729 659–660; pH and, 633 act., 652, 653, Air masses, density of and weather, 37 Aluminum, 159 table, 226 table, 730– 653 prob., 654 prob.; physical proper- Air pressure, 406; deep sea diving and, 731, 922, 923, 924 ties of acids and bases, 634–635; pOH 408 act.; measurement of, 406–407; Aluminum oxide, 212 and, 652, 653; salt hydrolysis, 665 units of, 407 Amide functional group, 787 table Acid-base indicators, 658, 663, 664 Alcoholic fermentation, 847 Amides, 787 table, 800, 800 table Acid-base titration. See Titration Alcohols, 792–793; denatured, 793; Amines, 787 table, 795, 795 table Acid hydrolysis, 665 elimination reactions, 803; evapora- Amino acids, 826–827, 827 table Acidic solutions, 636 tion of, 432 act., 816 act.; functional Amino functional group, 787 table, 826 Acid ionization constant ( K ), 647, 647 groups, 787 table; layering of in grad- a Ammonia: as Brønsted-Lowry base, table, 970 table; calculate from pH, uated cylinder, 31 act.; naming, 793; 639; evaporation of, 432 act.; Lewis 656, 657 prob. properties, 792–793, 816 act. structure, 243, 255 prob.; polarity of, Acid mine waste, biotreatment of, 920 Aldehydes, 787 table, 796 table, 796–797 268; production of, 290, 462, 594, 596, Acidosis, 666 Algal blooms, 250 597; sigma bonds in, 244, 245 Acid rain, 637 Algebraic equations, 954–955, 955 prob. Aliphatic compounds, 771. See also Ammoniated cattle feed, 601 Acids. See also Acid-base chemistry; Alkanes; Alkenes; Alkynes Ammonium, 221 table acid ionization constant (K ), 647, a Alkali metals (Group 1A), 177, 906–909 Amorphous solids, 424 647 table, 656, 657 prob.; anhydrides, Alkaline batteries, 719 Amphoteric, 639 643; Arrhenius, 637; Brønsted-Lowry, Alkaline earth metals (Group 2A), 177, Amplitude, 137 638–639, 646; chemical properties, 910–915 Anabolism, 844–845 635; conjugate, 638; electrical conduc- Alkanes, 750–758; alkyl halides and, Analytical balance, 77, 79 tivity, 635; in household items, 633 789; branched-chain, 752–753, Analytical chemistry, 11 table, 79, 341 act.; ionization equations, 645, 645 754–755 prob.; burner gas analysis, Anhydrides, 643 table; molarity and pH of strong, 656; 776 act.; chemical properties, 758; Anhydrous calcium chloride, 354 monoprotic, 640, 640 table; naming, condensed structural formulas, 751; Aniline, 795 250–251, 252; pH of. See pH; physical cycloalkanes, 755–756, 756–757 Anions, 209

Index 1031 Index

Anodes Blood

Anodes, 107, 710 Atomic solids, 422, 422 table Base ionization constant (K b ), 649, 649 Antacids, 659 Atomic structure: Bohr model of, table, 970 table Antarctica, ozone hole over, 7, 20–21 146–148, 150 act.; Dalton’s model Bases. See also Acid-base chemistry; Anthracene, 772 of, 104 table, 104–105; Democritus’ antacids, 659; Arrhenius, 637; base Antilogarithms, 966–967 early idea of, 103; Greek philosophers’ ionization constant ( Kb ), 649, 649 Antimony, 932, 933, 935 views of, 102–103, 103 table; mile- table; Brønsted-Lowry, 638–639; Applied research, 17 stones in understanding, 110–111; chemical properties, 635; conjugate, Aqueous solutions, 299–308. See also nuclear atomic model, 112–114, 136; 638; in household items, 633 act.; Solutions; electrolytes in and colliga- plum pudding model, 110; quantum molarity and pH of strong, 656; phys- tive properties, 498–499; ionic com- mechanical model, 149–152; try to ical properties, 634–635; strength of, pounds in, 300; ionic equations and, determine, 135 act. 648–649; strong, 649; titration of. See 301, 302 prob.; molecular compounds Atomic weapons, 111 Titration; weak, 649 in, 299; nonelectrolytes in and colliga- Atoms, 10, 106–107; atom-to-mass Base units, 33, 35–37 tive properties, 499; overall equations conversions, 331 prob.; determining Basic solutions, 636 for reactions in, 307; reactions produc- structure of. See Atomic structure; Batteries, 717, 718–723; dry cells, 718– ing water in, 303, 304 prob.; reactions excited state, 146, 147; ground state, 720; fuel cells, 722–723; lead-acid, that form gases, 281 act., 304–305, 306 146; mass-to-atom conversions, 720–721, 930; lemon battery, 707 act.; prob.; reactions that form precipitates 329–330, 330 prob.; size of, 106, 112; lithium, 721–722 in, 300, 301 act., 302 prob.; solvation of stability of, 240; subatomic particles, Becquerel, Henri, 860–861, 885 ionic compounds in, 490; solvation of 113–114, 114 table; viewing, 107 Beetles, bioluminescent, 309 molecular compounds in, 491 ATP (adenosine triphosphate), 845 Bent molecular shape, 263 table Aragonite, 214 Aufbau diagram, 156–157, 157 table, Benzaldehyde, 796 table, 797 Archaeologist, 891 160 Benzene, 770–771; carcinogenic nature Argon, 159 table, 185 table, 944, 945 Aufbau principle, 156, 157 table of, 774; naming of substituted, Aristotle, 103, 103 table, 416 Automobile air safety bags, 292 772–773 Aromatic compounds, 771–774; ben- Average rate of reaction, 560–562, 562 Benzopyrene, 774 zene, 770–771; carcinogenic, 774; prob. Bernoulli, Daniel, 416 fused-ring systems, 772; naming, 772–773, 773 prob. Avogadro’s number, 321, 326 act., 969 Beryl, 214 Arrhenius model of acid-base chemis- table Beryllium, 158 table, 161 table, 910– try, 637, 642 table Avogadro’s principle, 452 911, 912 Arrhenius, Svante, 636, 637 Beryls, 912 Arsenic, 932, 933 Best-fit line, 56–57 Arson investigator, 91 B Beta decay, 867, 868 table Art restorer, 23 Bacteria, nitrogen-fixing, 934 Beta particles, 123, 861 table, 863, 864, Aryl halides, 788 Bakelite, 809, 810, 813 888 table Aspirin, 810 Baker, 847 Beta radiation, 123, 124 table, 861, 861 Astatine, 940, 941 Baking, acid-base chemistry and, 669 table, 862, 863, 888 table Asymmetric carbon, 768 Baking powder, 669 Binary acids, 250, 252 Atmosphere (atm), 407, 407 table Baking soda, 378 act., 669 Binary ionic compounds, 210, 219 Atmosphere, Earth’s: cycling of carbon Balanced chemical equations: conserva- Binary molecular compounds, 248–250, dioxide in, 505; elements in, 901; tion of mass and, 285, 288; deriving, 249 prob., 252 layers of, 5; ozone layer and, 5–8 285–286, 286 table, 287 prob., 288, Binding energy, 877, 878 Atomic bomb, 879 288. See also Stoichiometry; mole Biochemist, 308 Atomic distances, 113 act. ratios and, 371–372; particle and mole Biochemistry, 11 table Atomic emission spectrum, 144–145, relationships in, 368–369; relation- Biofuel cells, 724 act. 164 act. ships derived from, 369 table Biofuels, 774 act., 775 Atomic Force Microscope, 291 Balanced forces, 597 Biogas, 775 Atomic mass, 119–120, 121 prob., 126 Ball-and-stick molecular models, 253, 746 Biological metabolism. See Metabolism act. Balmer (visible) series, 147, 148, 150 act. Bioluminescence, 309, 693 Band of stability, 866 Atomic mass unit (amu), 119, 325, 969 Biomolecules: carbohydrates, 825 act., Bar graphs, 56 table 832–834; lipids, 835–839; nucleic Barite, 214 Atomic nucleus, 112; discovery of, 112; acids, 840–843; proteins, 826–831 Barium, 226 table, 910–911, 913, 914 nuclear model of mass and, 326 act. Bioremediation, 920 Barium carbonate, 302, 302 prob. Atomic number, 115, 116 prob., 118 Bismuth, 932, 933, 935 Barium chloride, 913 prob. Bismuth subsalicylate, 935 Barium sulfate, 621 Atomic orbitals, 152, 154, 262 Blocks, periodic table, 183–185. See also Barometers, 407, 416 Atomic radii, trends in, 187, 188, 189 Specific blocks Base hydrolysis, 665 prob. Blood, pH of, 666, 668 act.

1032 Index Index

Bloodstains Chemical equilibrium

Bloodstains, detecting, 697 Calcium chloride, 913 887; research chemist, 185; science Body temperature, reaction rate and, 583 Calcium hydroxide, 287 writer, 604; spectroscopist, 139 Bohr atomic model, 146–148, 150 act. Calibration technician, 56 Cast iron, 228 table Bohr, Niels, 110, 146 Calorie (cal), 518 Catabolism, 844–845 Boiling, 427 Calorimeter, 523–524, 525 prob., 532 prob. Catalysts, 571–573. See also Enzymes; Boiling point, 77, 427; of alkanes, 758; Calx of mercury, 79 chemical equilibrium and, 611; of covalent compounds, 270; of halo- Cancer, 163, 887 hydrogenation reactions and, 805; carbons, 789; as physical property, 73 Canola oil, hydrogenation of, 805 act. temperature and, 850 act. Boiling point elevation, 500–501, 503 Capillary action, 419 Catalytic converters, 573 prob. Caramide, 800 Cathode rays, 108 Boltzmann, Ludwig, 402 Carbohydrates, 832–834; disaccharides, Cathode-ray tubes, 107–108 Bond angles, 261 833; functions of, 832; monosaccha- Cathodes, 107, 710 Bond character, 266 rides, 832–833; polysaccharides, 833– Cations, 207–208 Bond dissociation energies, 247 834; test for simple sugars, 825 act. Cattle feed, 601 Bonding pairs, 242 Carbolic acid, 636 Cave formation, 643 Bonds. See Chemical bonds Carbon. See also Organic compounds; CDs, 924 Book preservation, 661 abundance of, 84; analytical tests for, Cell membrane, 838 Borates, 214 926–927; atomic properties, 158 table, Cell notation, 713 Boron, 158 table, 161 table, 184, 922, 161 table, 926–927; common reactions Cell potential: applications of, 716; 923, 924 involving, 926–927; in human body, calculate, 713–714, 715 prob., 717; Boron group (Group 13), 922–925 195; organic compounds and, 745; measure, 734 act. Bose-Einstein condensate, 417 physical properties, 926; uses of, 928 Cellular respiration, 846 Bose, Satyendra Nath, 417 Carbonated beverages, 495 Celluloid, 490 Boyle, Robert, 442 Carbonates, 214 Cellulose, 834 Boyle’s law, 442–443, 443 prob., 444 act., Carbon dating, 873–874, 883 Celsius scale, 34 451 table Carbon dioxide, 256 prob., 430, 505 Centrifuge, 490 Branched-chain alkanes, 752–753; Carbon group (Group 4A), 926–931, CERN, 111 alkyl groups, 752; naming, 752–753, 932–935 Cesium, 194, 906, 907, 909 754–755 prob., 760, 761 prob. Carbonic acid, 634 Cesium clock, 909 Brass, 228 table Carbon tetrachloride, 20, 267–268 CFCs. See Chlorofluorocarbons (CFCs) Breathing, Boyle’s law and, 444 act. Carbonyl compounds, 796–801; alde- Chadwick, James, 110, 113 Breeder reactors, 882 hydes, 796–797; carboxylic acids, 798; Chain reactions, 859 act., 879, 880 Brine, electrolysis of, 730 ketones, 797 Chance, scientific discoveries and, 18 Bromate, 221 table Carbonyl group, 787 table, 796 Charles, Jacques, 444 Bromine, 120, 180, 940, 941, 942 Carboxyl group, 787 table, 798, 798 Charles’s law, 441 act., 444–445, 446 Brønsted, Johannes, 638 table, 826 prob., 451 table Brønsted-Lowry model, 638–640, 642 Carboxylic acids, 798, 798 table; con- Chelation therapy, 229 table, 646 densation reactions, 801; functional Chemical bonds, 206; character of, 266; Bronze, 228 table groups, 787 table; naming, 798; covalent. See Covalent bonds; elec- Brownian motion, 477 organic compounds derived from, tron affinity and, 265; ionic. See Ionic Brown, Robert, 477 799–800, 800 act.; properties, 798 bonds; melting point and, 242 act.; Buckminsterfullerene, 928 Carcinogens, 774 metallic. See Metallic bonds; valence Buckyballs, 928 Cardiac scans, 925 electrons and, 207 Buffer capacity, 667 Careers. See Careers in Chemistry; In Chemical changes, 69 act., 77, 92 act., Buffers, 666–667, 668 act. the Field 281 act. See also Chemical reactions Buffer systems, 666–667, 668 act. Careers in Chemistry: alternative energy Chemical engineer, 580 Bufotoxin, 839 specialist, 729; baker, 847; biochemist, Chemical equations, 285. See also Burner gas analysis, 776 act. 308; calibration technician, 56; chemi- Ionic equations; Nuclear equations; Butane, 750, 751, 751 table cal engineer, 580; chemistry teacher, Redox equations; Stoichiometry; 1-Butene, 759 table 2-Butene, 759 table 123; environmental chemist, 7; flavor Thermochemical equations; balanc- Butyl group, 753 table chemist, 267; food scientist, 219; heat- ing, 285–286, 286 table, 287 prob., ing and cooling specialist, 527; materi- 288; coefficients in, 369; interpreta- als scientist, 81; medicinal chemist, tion, 370 prob.; mole ratios and, C 342; metallurgist, 423; meteorologist, 371–372; products, 283; reactants, 447; nursery worker, 646; petroleum 283; relationships derived from, 369; Cadaverine, 795 Cadmium, 920 technician, 748; pharmacist, 381; phar- symbols used in, 283, 283 table Calcium, 177, 195, 910–911, 913, 914 macy technician, 483; polymer chem- Chemical equilibrium, 596; addition ist, 813; potter, 682; radiation therapist, of products and, 608; addition of

Index 1033 Index

Chemical formulas Concentration

reactants and, 607; catalysts and, 611; 92 act.; products of, predict, 298, 298 Chloromethane, 787 changes affecting, 593 act.; charac- table, 807–808; rates of. See Reaction Chlorophyll, 912 teristics of, 604; common ion effect rates; redox. See Redox reactions; Chocolate, 431 and, 620–621; concentration and, 607; replacement, 293–294, 295 prob., Chromatograms, polarity and, 269 act. determine point of, 593 act.; dynamic 296–297; spontaneity of, 542–545, Chromatography, 82 act., 83, 269 act. nature of, 597–598; equilibrium con- 546–547, 548 prob., 566–567; stoi- Chrome, 328 stant ( Keq ), 599–600, 604, 605 prob.; chiometry in. See Stoichiometry; Chromium, 160, 328, 918, 919 equilibrium expressions, 600, 601 substitution, 790–791; synthesis, 289; Cinnameldehyde, 796 table, 797 prob., 602, 603 prob.; hemoglobin- theoretical yield from, 385 Circle graphs, 55 oxygen equilibrium in body, 623; law Chemical symbols, 84 cis- isomers, 766 of, 599–600; Le Châtelier’s principle Chemistry, 4, 11; benefits of studying, Clay, 476 and, 606–611; moles of reactant v. 22; branches of, 11, 11 table; symbols Clay roofing tiles, 302 moles of product and, 609; removal and abbreviations used in, 968 table Clouds, 428 of products and, 608; reversible reac- Chemistry & Health: elements of the Cloud seeding, 495 tions and, 595–596; temperature and, body, 195; evolution and HIV, 389; Cobalt, 918, 919 609–610, 611 act.; volume and pres- hemoglobin-oxygen equilibrium, 623; Coefficients, 285; balancing equations sure and, 608–609 hyperbaric oxygen therapy, 465; laser and, 285; scientific notation and, 40–41 Chemical formulas, 85; for binary ionic scissors, 163; PA-457 anti-HIV drug, Cohesion, 419 389; rate of reaction and body tem- compounds, 219, 220 prob.; empirical. Cold-packs, 515 act., 528 perature, 583; toxicology, 59 See Empirical formula; for hydrates, Collagen, 831 Chemistry teacher, 123 351 table, 352, 353 prob., 356 act.; Colligative properties, 498–504; boiling CHEMLABs, 228. See also Data Analysis for ionic compounds, 218–219, 220 point elevation, 500–501; electrolytes Labs; Launch Labs; MiniLabs; absorp- prob., 221, 222 prob.; molecular. See and, 498–499; freezing point depres- tion and emission spectra, 164 act.; Molecular formulas; mole relation- sion, 501–502, 502 act., 503 prob.; alcohols, properties of, 816 act.; atomic ship to, 333–334, 334–335 prob.; for osmotic pressure, 504; vapor pressure mass of unknown element, 126 act.; monatomic ions, 218–219; name of burner gas analysis, 776 act.; calorim- lowering, 499–500 molecular compound from, 251; per- etry, 550 act.; density, dating coins Collision theory, 563–564, 564 table cent composition from, 342, 343 prob.; by, 60 act.; descriptive chemistry, 196 Colloids, 477, 477 table, 478 for polyatomic ionic compounds, 221, act.; enzyme action and temperature, Color: change in as evidence of chemical 222 prob.; structural. See Structural 850 act.; evaporation, compare rates reaction, 283; as physical property, 73 formulas of, 432 act.; gas, identify an unknown, Combined gas law, 449, 450 prob., 451 Chemical potential energy, 517 466 act.; hydrate, determine formula table, 454 Chemical properties, 74 for, 356 act.; hydrocarbon burner gas Combustion engines, 290 Chemical reaction rates. See Reaction analysis, 776 act.; ionic compounds, Combustion reactions, 290–291, 532 rates formation of, 230 act.; metals, reactiv- prob., 533 Chemical reactions, 77, 282–288; actual ity of, 310 act.; molar solubility, calcu- Common ion, 620 yield from, 385; addition, 804–805; late and compare, 624 act.; molecular Common ion effect, 620–621 in aqueous solutions, 299–301, 302 shape, 272 act.; mole ratios, determine, Complementary base pairs, 841, 842 prob., 303–305, 306 prob., 307–308; 390 act.; products of chemical reaction, Complete ionic equations, 301, 302 classification of, 291 prob.; com- identify, 92 act.; reaction rate, affect of prob., 304 prob. bustion, 290–291, 532 prob., 533; concentration on, 584 act.; redox and Complex carbohydrates. See condensation, 801; conservation of the damaging dumper, 698 act.; solu- Polysaccharides mass and, 77, 78 prob., 79, 285, 288; bility rate, factors affecting, 506 act.; Complex reactions, 580 decomposition, 292, 292 prob.; dehy- vapor pressure and popcorn popping, Compounds, 85–87; compare melt- dration, 803; dehydrogenation, 803; 466 act.; voltaic cell potentials, mea- ing points of, 242 act.; formulas for. elimination, 802; endothermic, 216, sure, 734 act.; water analysis, 24 act. See Formulas; ionic. See Ionic com- 247; equations for, 283 table, 283–285; Chernobyl, 880, 883, 889 act. pounds; law of definite proportions evidence of, 69 act., 77, 282–283, 367 Chewing gum, percent composition, and, 87–88; law of multiple propor- act.; excess reactants in, 379, 384; 342 act. tions and, 89–90; mass-to-mole exothermic, 216, 247; heat from. See Chimney soot, 774 conversions, 337, 337 prob.; molar Thermochemistry; limiting reactants, Chirality, 767, 768 mass of, 335, 335 prob.; mole-to-mass 379–381, 382–383 prob.; milestones in Chlorate, 221 table conversions, 336, 336 prob.; percent understanding, 290–291; neutraliza- Chlorine, 89–90, 119–120, 159 table, composition and. See Percent com- tion, 659–660; nuclear reactions v., 180, 940, 941, 942 position; properties of, 86; separating 860 table; organic. See Organic reac- Chlorine bleach, 942 components of, 86; stability of, 240 tions; oxidation reduction reactions, Chlorite, 221 table Computer chips, 181, 929 806–807; percent yield from, 386, Chlorofluorocarbons (CFCs), 7–8, 17, Concentration, 475 act., 480–488. See 386 prob., 388; products of, identify, 20, 291, 788 Solution concentration; calculate from

1034 Index Index

Concentration ratios Dissociation equations

equilibrium constant expression, 612, Lewis structures for, 253–260, 255 prob., tion of canola oil, 805 act.; microbes, 613 prob.; chemical equilibrium and, 256 prob., 257 prob., 258 prob., 260 electric current from, 724 act.; oxida- 607; qualitative descriptions of, 480; prob.; melting points of, 242 act., 270; tion rate of dichloroethene isomers, ratios of. See Concentration ratios; naming, 248–251, 249 prob., 252; polar- 768 act.; oxygen in moon rocks, 387 reaction rate and, 569, 574–576, 584 ity of and chromatograms, 269 act.; act.; ozone levels in Antarctica, 21 act. properties of, 270; shape of (VSEPR act.; polarity and chromatograms, 269 Concentration ratios: molality, 480 model), 261–262, 263 table, 264 prob. act.; redox reactions and space shuttle table, 487, 487 prob.; molarity, 480 Covalent gases, 270 launch, 691 act.; turbidity and Tyndall table, 482, 483 prob.; mole fraction, Covalent molecular solids, 270 effect, 478 act. 480 table, 488; percent by mass, 480 Covalent network solids, 270, 422, 422 d-block elements, 185, 916 table, 481, 481 prob.; percent by vol- table, 423 de Broglie equation, 150 ume, 480 table, 482 Cracking, 748 de Broglie, Louis, 149 Conclusions, 15 CRC Handbook of Chemistry and Decane, 751 table Condensation, 76, 428 Physics, 75, 77 Decomposition reactions, 292, 292 Condensation polymerization, 811 Crick, Francis, 637, 841–842 prob., 566 act. Condensation reactions, 801 Crime-scene investigator, 697 Deep sea diving, gas pressure and, 408 Condensed structural formulas, 751 Critical mass, 880 act. Conductivity: among types of elements Critical point, 429 Dehydration reactions, 803 177–181; as physical property, 73; Crookes, Sir William, 108 Delocalized electrons, 225 explanation of, 226; of ionic com- Crude oil. See Petroleum Democritus, 103, 103 table, 416 pounds in solution, 215, 498–499 Crust, Earth’s, 901 Denaturation, 829 Conjugate acid-base pair, 638 Cryosurgery, 934 Denatured alcohol, 793 Conjugate acids, 638, 641 table Cryotherapy, 934 Density, 36–37; calculate, 37; date coins Conjugate bases, 638, 641 table Crystal lattices, 214, 270, 420–421, 422 by, 60 act.; of gases, 403, 456, 457 act.; Conservation of energy. See Law of con- act. identification of unknowns by, 37, 38 servation of energy Crystalline solids, 420–421, 422 table; prob., 39 act.; of liquids, 31 act., 415; Conservation of mass. See Law of con- categories, 422 table, 422–423; crystal as physical property, 73; of solids, 420; servation of mass unit cells, 421, 422 act. units of, 36 Constant, 14 Crystallization, 83 Dental amalgams, 228 table Controls, 14 Cube root, 949 Deoxyribonucleic acid. See DNA Conversion factors, 44–46, 46 prob., Cubic unit cells, 421 table (deoxyribonucleic acid) 319 act. Curie, Marie, 861, 882, 915 Deoxyribose sugar, 841 Coordinate covalent bonds, 259 Curie, Pierre, 861, 882 Dependent variables, 14, 56 Copper: acid mine waste, 920; electron Cyanide, 221 table Deposition, 429 configuration, 160; in fireworks, 913; Cyclic hydrocarbons, 755 Derived units, 35–36, 44 flame test for, 92 act.; law of multiple Cycloalkanes, 755–756, 756–757 prob. Desalination, 730 proportions and, 89–90; melting and Cyclohexane, 755 Descriptive chemistry, 196 act. boiling point, 226 table; in microchip Cyclohexanol, 793 Dessicants, 354 wiring, 919; as paint pigment, 919; Cyclohyexylamine, 795 Detergents, 13 act., 419, 924 properties of, 74 table; purification of, Cysteine, 827 table Deuterium, 904 731–732 Cytosine (C), 841 Diamonds, 423, 928 Core, iron in Earth’s, 919 Diatomic molecules, 241 Corn oil, 31 act. Dichloroethene, 768 act. Corrosion, 724–727, 726 act. D Dietary salt, 908 Counting units, 320 Dalton, John, 417 Diffusion, 404, 405 Covalent bonds, 241–247; bond angle, Dalton’s atomic theory, 104 table, Dilute solutions, 485, 486 prob. 261, 263 table; coordinate, 259; double, 104–105, 109 Dimensional analysis, 44–46, 46 prob., 245; electron affinity and, 265; electro- Dalton’s law of partial pressures, 408, 956, 956 prob. negativity and, 266; energy in, 247; for- 409 prob., 410 Dinitrogen pentoxide, 565 act. mation of, 241; hybridization and, 262; Data, 13 Dipeptides, 828 length of, 246; nonpolar, 266; pi bonds Data Analysis Labs. See also Dipole-dipole forces, 269, 411, 412–413 and, 245; polar, 266, 267–268; sigma CHEMLABs; Launch Labs; MiniLabs; Direct relationships, 961 bonds and, 244, 245; single, 242–244; Problem-Solving Labs; antimicrobial Disaccharides, 833 strength of, 246–247; super ball prop- properties of polymers, 216 act.; Dispersion forces, 269, 411, 412 erties, 239 act.; triple, 245 atomic distances in highly ordered Dispersion medium, 477 table Covalent compounds: boiling points pyrolytic graphite (HOPG), 113 act.; Dissociation energy, 247 of, 270; formulas from names of, 251; biofuel cells, 724 act.; gas pressure and Dissociation equations, strong bases, intermolecular forces in, 269–270; deep sea diving, 408 act.; hydrogena- 648, 648 table

Index 1035 Index

Distillation Entropy

Distillation, 82 Electrochemistry: batteries, 717, 718– photoelectric effect and, 142; proper- Distilled water: electrical conductivity 723; biofuel cells, 724 act.; corrosion, ties of, 114 table; quantum mechanical of, 205 act.; evaporation of, 432 act. 724–727; electrochemical cell poten- model of atom and, 150–152; valence, Diving, gas pressure and, 408 act. tials, 711–714, 715 prob., 716–717; 161 Division operations, 54 electrochemical cells, 707 act., 709; Electron sea model, 225 DNA (deoxyribonucleic acid), 841–842, electrolysis, 728–732; lemon battery, Electroplating, 732 842 act., 843 707 act.; redox reactions in, 708–709; Electrostatic force, 865 Dobson, G. M. B., 6 voltaic cell chemistry, 710–711 Elements, 10, 84–85, 87; abundance Dobson units (DU), 6 Electrolysis, 86, 728–732; aluminum of various, 84; in atmosphere, 901; d orbitals, 154 production, 730–731; desalination by, atomic number of, 115, 116 prob., 118 Dose of radiation, 889–890 730; electroplating and, 732; of mol- prob.; chemical symbols for, 84; color Dose-response curve, 59 ten NaCl, 729; ore purification and, key, 968 table; in Earth’s atmosphere, Double covalent bonds, 245, 246 731–732 901; in Earth’s core, 919; in Earth’s Double helix, DNA, 841 Electrolytes, 215; colligative properties crust, 84, 901; in Earth’s oceans, 901; Double-replacement reactions, 296– of aqueous solutions and, 498–499; emission spectra of, 164 act.; in the 297, 297 prob., 297 table strong, 498; weak, 498 human body, 195; isotopes, 117; law Down’s cells, 729 Electrolytic cells, 728; aluminum pro- of definite proportions, 87–88; law of Drake, Edwin, 749 duction and, 730–731; electrolysis of multiple proportions, 89–90; periodic Dry cells, 718–720; alkaline batteries, brine and, 730; electrolysis of molten table of. See Periodic table; physical 719; primary batteries, 720; second- NaCl and, 729; electroplating and, states of, 84; properties of, 180 act., ary batteries, 720; silver batteries, 719; 732; purification of ores and, 731–732 196 act., 971–974 table; representa- zinc-carbon, 718–719 Electromagnetic radiation, 137–139, tive, 177, 196 act. Dry ice, 428 140 prob., 861 table, 863–864 Elimination reactions, 802 Drywall, 914 Electromagnetic (EM) spectrum, Emeralds, 912 Ductility, 226 138–139 Emission spectra, 164 act. DVDs, 924 Electromagnetic wave relationship, 137, Empirical formulas, 344; from mass 150 data, 349–350 prob.; from percent Electromotive force (emf), 710 composition, 344, 345 prob., 347 E Electron affinity, 265 Endothermic reactions, 216, 247, 528, Earth: atmosphere of, 5, 901; elements Electron capture, 868, 868 table 528 table in core of, 919; elements in crust of, Electron configuration notation, 158– End point (titration), 663 84, 901; elements in oceans of, 901; 159; first period elements, 158 table; Energy, 516–522; bond dissociation, 247; entropy and geologic changes on, 545 second period elements, 158 table; change during solution formation, Effusion, 404–405, 405 prob. third period elements, 159 table 475 act., 492; changes of state and, Egyptian cubits, 46 prob. Electron configurations, 156–162; 530–530, 531 act., 532 prob.; chemi- Einstein, Albert, 143, 417, 877 aufbau principle and, 156–157, 157 cal cold pack and, 515 act.; chemical Elastic collisions, 403 table; electron configuration notation, potential, 517; flow of as heat, 518. See Electrical conductivity: of acids and 158–159; electron-dot structures, 161, also Heat; kinetic, 402, 403, 516–517, bases, 635; of ionic compounds, 214– 162 prob.; exceptions to predicted, 710; lattice, 216–217; law of conserva- 215; of metals, 180, 226; of strong 160; ground state, 156; Hund’s rule tion of, 517; potential, 516–517; quan- acids, 645; of various compounds, 205 and, 157; Noble-gas notation, 159; tized, 141–143, 146; solar, 522; units of, act.; of weak acids, 645, 648 table orbital diagrams of, 158; Pauli exclu- 518, 518 prob., 518 table; uses of, 516; Electric charge, observe, 101 act. sion principle and, 157; periodic table voltaic cells and, 710–711 Electrochemical cell potentials, 711– trends, 182–185, 186 prob.; valence Energy levels, 153 717, 734 act.; calculate, 713–714, 715 electrons, 161 Energy sublevels, 153–154 prob., 717; cell notation, 713; half-cell Electron-dot structures, 161, 161 table, English units, 32 potentials, 712, 712 table; of standard 162 prob., 207. See also Lewis struc- Enthalpy (H), 527; calculate changes hydrogen electrode, 711 tures in (Hess’s law), 534–536, 536 prob.; Electrochemical cells, 707 act., 709, Electronegativity, 194, 265; bond calorimetry measurement of, 550 act.; 709–711; alkaline batteries, 719; character and, 266, 266 table; bond changes of state and, 530–533, 531 chemistry of, 710–711; dry cells, polarity and, 266, 267; periodic table act., 532 prob.; thermochemical equa- 718–720; electrochemical cell poten- trends, 194, 265; redox and, 684 tions and, 529 tials, 711–714, 715 prob., 716–717; Electronegativity scale, 194, 212, 265 Enthalpy (heat) of combustion electrolysis and, 728–732; half-cells, Electron mediator, 724 act. (∆ Hcomb ), 529, 529 table 710; lead-acid batteries, 720–721; Electrons, 108; charge of, 108–109; dis- Enthalpy (heat) of reaction (∆ Hrxn ), lithium batteries, 721–722; primary covery of, 107–109; energy levels and, 527–528 and secondary batteries, 720; silver 146–148; location of around nucleus, Entropy (S), 543; Earth’s geologic pro- batteries, 719 152; mass of, 108–109, 119, 969 table; cesses and, 545; predict changes in,

1036 Index Index

Environmental chemist Example Problems

544–545; reaction spontaneity and, Equivalence point, 661 equilibrium, 601 prob.; equilibrium 546–547, 548 prob.; second law of Error, 48 constants, value of, 605 prob.; formula thermodynamics and, 543 Essential elements, 383 for polyatomic compound, 222 prob.; Environmental chemist, 7 Essential oils, 770 formulas for ionic compound, 220 Environmental chemistry, 11 table Esterification, 806 table prob.; freezing point depression, 503 Enzymes, 826, 829–830. See also Esters, 787 table, 799, 799 table, 800 act. prob.; gas stoichiometry, 461 prob.; Catalysts; Proteins; affect on reaction Ethanal, 796 Gay-Lussac’s law, 448 prob.; Graham’s rate, 571; chirality and, 767, 768; tem- Ethanamide, 800 law of effusion, 405 prob.; half-reac- perature and, 850 act. Ethane, 750, 751 table, 793 tion method, 695 prob.; heat absorbed, Enzyme-substrate complex, 830 Ethanol, 432 act., 792–793, 816 act. calculate, 521 prob.; hydrates, deter- Equations: algebraic, 954–955, 955 prob.; Ethene, 759 table, 762, 803 mine formula for, 353 prob.; ideal gas atomic number, 115; average rate of Ether functional group, 787 table law, 455 prob.; induced transmutation reaction, 562; boiling point elevation, Ethers, 787 table, 794, 794 table equations, 876 prob.; instantaneous 500; Boyle’s law, 443; cell potential, Ethylamine, 795 reaction rates, 579 prob.; ionic equa- 714; Charles’s law, 445; chemical. See Ethyl group, 753 table tions and precipitation reactions, 302 Chemical equations; Dalton’s law of Ethyne (acetylene), 762 act., 763, 763, prob.; ionic equations for aqueous partial pressures, 409; density, 37; dilu- 764 solutions forming gases, 306 prob.; 2 tion, 485; Einstein’s (E=mc ), 877; Evaporation, 426–427, 432 act., 816 act. ionic equations for aqueous solutions electromagnetic wave relationship, 137, Everyday Chemistry: baking soda and forming water, 304 prob.; ion product 150; energy of a photon, 143; energy of baking powder and cooking, 669; constant, 651 prob.; ion product con- a quantum, 142; error, 48; Gay-Lussac’s chocolate, manufacture of, 431; garlic stant Q sp , 619 prob.; Lewis structure law, 447; general rate law, 575; Gibbs and pain receptors, 815; history in a for covalent compound with multiple free energy, 515 act., 546; Graham’s glass of water, 355; killer fashion, 229 bonds, 256 prob.; Lewis structure for law of effusion, 404; Henry’s law, 496; Example Problems: algebraic equations, covalent compound with single bond, ideal gas law, 454; induced transmuta- 955 prob.; alkanes, naming, 754–755 255 prob.; Lewis structures, 244 prob.; tion, 876 prob.; ionic, 301; ion-product prob.; alkenes, naming, 761 prob.; limiting reactant, determine, 382–383 of water, 650; law of conservation of aromatic compounds, naming, 773 prob.; mass number, 118 prob.; mass- mass, 77; mass number, 117; molality, prob.; atomic mass, 121 prob.; atomic to-atom conversions, 330 prob.; mass- 487; molarity, 482; mole fraction, 488; number, 116 prob., 118 prob.; atomic to-mass stoichiometric conversion, 377 neutralization, 659–660; nuclear, 123, radii trends, 189 prob.; atom-to-mass prob.; mass-to-mole conversions, 329 869, 869 prob.; overall, 307; percent by mass, 87, 481; percent by mass from conversions, 330 prob.; average rate of prob.; mass-to-mole conversions for the chemical formula, 342; percent by reaction, 562 prob.; balancing equa- compounds, 337 prob.; mass to moles volume, 482; percent error, 48; percent tions, 287 prob.; boiling point eleva- to particles conversions, 338–339 yield, 386; pH, 652; pH and pOH, tion, 503 prob.; Boyle’s law, 443 prob.; prob.; molality, 487 prob.; molarity, 483 relationship between, 652; pOH, 652; branched-chain alkanes, naming, prob.; molarity from titration data, 664 quantum, energy of, 142; radiation, 754–755 prob.; cell potential, calculate, prob.; molar solubility, 616 prob.; molar intensity and distance of, 890; radioac- 715 prob.; Charles’s law (gas tempera- volume, 453 prob.; molecular formula tive element, remaining amount of, ture and volume relationship), 446 from percent composition, 348–349 871; rate law, 574; skeleton, 284; slope prob.; chemical equations, interpret, prob.; molecular shape, 264 prob.; mole of a line, 57, 962; specific heat, 520; 370 prob.; combined gas law, 450 prob.; relationship from a chemical formula, summation, 540; symbols used in, 283 combustion reactions, energy released 334 prob.; mole-to-mass conversion, table; thermochemical, 529–533; word, by, 532 prob.; concentration from equi- 328 prob.; mole-to-mass conversions 284 librium constant expression, 613 prob.; for compounds, 336 prob.; mole-to- Equilibrium. See Chemical equilibrium; conservation of mass, 78 prob.; conver- mass stoichiometric conversion, 376 Solubility equilibrium sion factors, 46 prob.; cycloalkanes, prob.; mole-to-mole stoichiometric Equilibrium concentrations, calculate, naming, 756–757 prob.; density and conversion, 375 prob.; net ionic redox 612, 613 prob. volume to find mass, 38 prob.; dimen- equation, balance, 692; nuclear equa- Equilibrium constant (K eq ), 599–600, sional analysis, 956 prob.; electron tions, balancing, 869 prob.; oxidation 604, 605 prob. configuration and the periodic table, number, determine, 687 prob.; oxi- Equilibrium constant expressions, 186 prob.; electron-dot structure, 162 dation-number method, 690 prob.; 599–600; calculate concentrations prob.; empirical formula from mass particles, convert to moles, 324 prob.; from, 612, 613 prob.; for heteroge- data, 349–350 prob.; empirical formula percent by mass, 481; percent error, neous equilibrium, 602, 603 prob.; for from percent composition, 345 prob.; 49 prob.; percent yield, 386 prob.; pH, homogeneous equilibrium, 600, 601 energy of a photon, 143 prob.; energy calculate, 653 prob., 654 prob.; pOH, prob.; Le Châtelier’s principle and, units, convert, 518 prob.; equilibrium calculate, 654 prob.; radioactive ele- 606–611; solubility product constant constant expression for heterogeneous ment, remaining amount of, 872 prob.; expressions. See Solubility product equilibrium, 603 prob.; equilibrium reaction spontaneity, 548 prob.; redox constant expressions constant expression for homogeneous reactions, identify, 685 prob.; scientific

Index 1037 Index

Excess reactants Gas laws

notation, 41 prob., 43 prob.; significant Fluorine: analytical tests for, 941; Free energy ( G system ), 546–547; calcu- figures, 51 prob., 53 prob., 54 prob.; atomic properties, 941; common reac- late, 547, 548 prob.; sign of, 547, 547 significant figures and, 951 prob., 953 tions involving, 940; electron configu- table prob.; single-replacement reactions, ration and orbital diagram, 158 table; Freezing, 428 295 prob.; standard enthalpy (heat) of electron-dot structure, 161 table; elec- Freezing point, 428 formation, 540 prob.; unit conversion, tronegativity of, 194, 265; isotopes, Freezing point depression, 501–502, 502 958 prob.; wavelength of EM wave, 140 120; physical properties, 940 act., 503 prob. prob. Fluoroapatite, 622 act. Frequency, 137 Excess reactants, 379, 384 Fog, 428 Fructose, 832, 833 Exothermic reactions, 216, 247; activa- Foldables: acid-base chemistry, 633 act.; Fuel cells, 722–723, 905 tion energy and, 565; enthalpy and, atoms, 101 act.; biomolecules, 825 Fuel rods, nuclear reactor, 880–882 527, 528 table act.; bond character, 239 act.; chemi- Functional groups, 785 act., 786, 787 Expanded octets, 259 cal reactions, 281 act.; concentration table; amide group, 800; carbonyl Experimental data, percent composition of solutions, 475 act.; electrochemical group, 796; carboxyl group, 798; from, 341–342, 342 act. cells, 707 act.; electron configura- hydroxyl group, 792 Experiments, 14. See also CHEMLABs; tion, 135 act.; equilibrium, changes Fused-ring systems, 772 MiniLabs; Problem-Solving Labs; affecting, 593 act.; functional groups, Fusion, molar enthalpy (heat) of laboratory safety and, 18, 19 table 785 act.; gas laws, 441 act.; Gibbs free (∆ H fus ), 530 Exponents, 40–41 energy equation, 515 act.; hydrocar- Fusion nuclear reactions, 883–884 Extensive properties, 73 bon compounds, 743 act.; hydrocar- Fusion (phase change), 425–426, See Extrapolation, 57, 963 bons, 743 act.; ionic compounds, 205 also Melting act.; mole conversion factors, 319 act.; periodic trends, 173 act.; properties F and changes, 69 act.; reaction rates, G Fahrenheit scale, 34 559 act.; redox equations, balance, 679 Gadolinium, 921 Families, periodic table. See Groups act.; scientific method, 3 act.; states of Galactose, 832, 833 Faraday, Michael, 770 matter, 401 act.; stoichiometric calcu- Gallium, 922, 923, 924 Fasteners, arrange, 173 act. lations, 367 act.; types of graphs, 31 Galvanization, 727 Fats. See Lipids act.; types of radiation, 859 act. Gamma radiation, 124, 861, 861 table, Fatty acids, 767, 835–836, 837 Food: from fermentation, 847; homog- 862, 863, 888 table f-Block elements, 185, 916 enization, 490; measure calories in, Gamma rays, 124, 863, 864 Femtochemistry, 581 550 act.; preservation of, 571; test for Garlic, 815 Fermentation, 847–848; alcoholic, 847; simple sugars in, 825 act. Gases, 72, 402–410; compression and lactic acid, 848 Food scientist, 219 expansion of, 72 act., 404; Dalton’s Fermi, Enrico, 882 f orbitals, 154 law of partial pressures and, 408, 409 Fermionic condensate, 417 Forces: balanced, 597; dipole-dipole, prob., 410; density of, 403; diffusion Ferromagnetism, 916 269, 411, 412–413; dispersion, 269, and effusion of, 404–405; formation Fertilizers, 250, 388, 462 411, 412; intermolecular, 411–414 of in aqueous solutions, 281 act., Fiber-optic cable, 930 Forensic accelerant detection, 91 304–305, 306 prob.; gas laws. See Gas Filtration, 82 Forensics CHEMLABs: density, dating laws; identify an unknown, 466 act.; Fire extinguishers, ideal gas law and, coins by, 60 act.; hydrocarbon burner kinetic-molecular theory and, 402– 456, 457 act. gases, identify, 776 act.; identify the 403; molar volume of, 452, 453 prob.; Firefly, bioluminescence, 309 damaging dumper, 698 act.; water pressure and volume relationship Fireworks, 913 source, determine, 24 act. (Boyle’s law), 442–443, 443 prob., 444 First period elements: electron con- Forensics, luminol and, 697 act.; real v. ideal, 457–459; solubility figuration notation, 158 table; orbital , 796, 797 of, 495–496, 497 prob.; temperature diagrams, 158 table Formic acid, 634 and volume relationship, 441 act. Fission, 111 Formulas. See Chemical formulas; Gas grills, 375, 461 Flame retardant fabric, 935 Structural formulas Gas laws, 442–451; Boyle’s law (pressure Flame tests, 92 act., 144 act., 907, 923 Formula unit, 218 and volume relationship), 442–443, Flat-screen televisions, 925 Fossil fuels: natural gas, 416, 745, 747; 443 prob., 444 act.; Charles’s law Flavor chemist, 267 petroleum, 747–748 (temperature and volume), 441 act., Fleming, Alexander, 18 Fractional distillation, 747–748 444–445, 446 prob.; combined gas law, Flexible-fuel vehicles (FFV), 549 Fractionation, 747–748 449, 450 prob., 454; Gay-Lussac’s law Fluidity, 416 Fractions, 964, 965–966 (temperature and pressure relation- Fluids, 416 Francium, 84, 180 act., 194, 265, 906, ship), 447, 448 prob.; ideal gas law, Fluoridation, 622 act., 942 907 454, 455 prob., 456; summary of, 451 Fluoride, 180 Franklin, Rosalind, 637 table; temperature scales and, 451

1038 Index Index

Gasoline octane rating system Heterogeneous mixtures

Gasoline octane rating system, 748–749 Green fluorescent protein (GFP), 309 Halocarbons, 787 table, 787–789; alkyl Gas particles, 403; kinetic energy of, Ground state, 146 halides, 787; aryl halides, 788; func- 403; motion of, 403; size of, 403 Ground-state electron configuration, tional group, 787, 787 table; naming, Gas pressure, 406–410; air pressure and, 143 prob. 788; properties of, 789; substitution 406–407; Boyle’s law (pressure and Ground-state electron configurations, reactions forming, 790; uses of, 789 volume relationship), 442–443, 443 156–160; aufbau principle and, Halogenated hydrocarbons, 940 prob., 444 act.; Charles’s law (tempera- 156–157, 157 table; electron configu- Halogenation, 790 ture and volume), 441 act., 444–445, ration notation, 158–159; exceptions Halogen functional group, 787 table, 446 prob.; combined gas law, 449, 450 to predicted, 160; Hund’s rule and, 787–788 prob., 454; Dalton’s law of partial pres- 157; noble-gas notation, 159; orbital Halogen light bulbs, 942 sures and, 408, 409 prob., 410; deep diagrams of, 158; Pauli exclusion Halogens, 180 sea diving and, 408 act.; Gay-Lussac’s principle and, 157; problem-solving Halogens (Group 17 elements), 184, 207 law (temperature and pressure rela- strategy, 160 table, 209, 209 table, 218 table, 243, tionship), 447, 448 prob.; ideal gas Group 1 elements (Alkali metals), 182 940–943 law, 454, 455 prob., 456 table, 182–184, 192, 207 table, 208, Halogens, 940–943; analytical tests for, Gas stoichiometry, 460–464; industrial 208 table, 906, 906–909; (representa- 941; applications of, 942–943; atomic applications of, 464; volume-mass tive elements), 177 properties, 941; common reactions problems, 462, 462–463 prob.; volume- Group 2 elements (Alkaline earth involving, 940; covalent bonding in, volume problems, 460–461, 461 prob. metals), 182, 183, 184, 207 table, 243; physical properties of, 940; predict Gay-Lussac’s law, 447, 448 prob., 451 208, 208 table, 218 table, 219 table, reactivity of, 294 act.; single-replace- table 910–915 ment reactions involving, 294, 294 act. Geckos, grip of, 271 Group 13 elements (Boron group), 184, Halothane, 790, 791 Geiger counters, 885 207 table, 208, 208 table, 219 table, Hardness, as physical property, 73 Gemstones, 912 922–925 Hard water, 24 act. Geometric isomers, 766 Group 14 elements (Carbon group), HD DVDs, 924 Germanium, 181, 926–927, 930 184, 207 table, 219 table, 243, 926–931 Heart stress test, 925 Germanium tetrachloride, 930 Group 15 elements (Nitrogen group), Heat (q), 518. See also GFP (green fluorescent protein), 309 184, 207 table, 209, 209 table, 218 Thermochemistry; absorption of by Gibbs free energy (G system ), 515 act., table, 243, 932–935 chemical reactions. See Endothermic 546–547, 548 prob. Group 16 elements (Oxygen group), reactions; calorimetry and, 523–524, Gibbs, J. Willard, 546 184, 207 table, 209 table, 218 table, 525 prob., 550 act.; release of by Glass, 929 243, 936–939 chemical reactions. See Exothermic Glucose, 532, 532 prob., 832, 833 Group 17 elements (Halogens), 184, 207 reactions; specific heat, 519–520, 521 Glutamic acid, 827 table table, 209, 209 table, 218 table, 243, prob., 522, 526 act.; thermochemical Glutamine, 827 table 940–943 systems and, 523–524; units of, 518, Glycerol, 31 act., 793 Group 18 elements (Noble gases), 180, 518 prob. Glycine, 827 table, 828 184, 185 table, 192, 207 table, 944–945 Heating and cooling specialist, 527 Glycogen, 834. See also Polysaccharides Groups (families), periodic table, 177; Heating curves, 531 act. Goiter, 943 atomic radii trends, 188, 189 prob.; Heat of combustion (∆H comb ), 529, Gold, 228 table, 920 electron configuration and position 529 table Gold foil experiment, Rutherford’s, 110, on periodic table, 183; ionic radii Heat of reaction (∆ Hrxn ), 527–528 111–112, 113, 862 trends, 191 Heat of solution, 475 act., 492 Gold leaf, 920 Grove, William, 722 Heat-pack reaction, 527, 542 Graduated cylinder, layers of liquids in, Guanine (G), 841 Heat-treated steel, 227 act. 31 act. Gypsum, 490, 491, 914 Heavy hydrogen (deuterium), 904 Graham’s law of effusion, 404–405, 405 Heisenberg uncertainty principle, 151 prob. Helium, 158 table, 159, 183, 185 table, Graham, Thomas, 404 H 192, 944, 945 Grams (g), 34 Haber-Bosch process, 290 Hemoglobin, 623, 830 Graphite, 423 Hahn, Otto, 111 Henry’s law, 495–496, 497 prob. Graphite golf shafts, 928 Half-cells, 710 Heptane, 751, 751 table Graphs, 55–58; bar, 56; circle, 55; inter- Half-life, 870–871, 871 table Héroult, Paul L. T., 730 preting, 57–58; line, 56–57, 959–963 Half-reaction method, 693–694, 694 Hertz (Hz), 137 Gravimetric analysis, 341 table, 695 prob. Hess’s law, 534–536, 536 prob. Gravitation, law of universal, 16 Half-reactions, 693 Heterogeneous catalysts, 573 Great Smog (London), 291 Halides, 214 Heterogeneous equilibrium, 602, 603 Greek philosophers, ideas on structure Hall, Charles Martin, 730 prob. of matter, 102–103, 103 table Hall-Héroult process, 730–731 Heterogeneous mixtures, 81, 87,

Index 1039 Index

Hexagonal unit cells Ionization energy

476–478; colloids, 477, 477 table; Hydrogenation reactions, 804 table, Intermediates, 580 separating components of, 82–83; 804–805, 805 act. Intermolecular forces, 411–414; cova- suspensions, 476 Hydrogen bonds, 411, 413–414 lent compounds and, 269–270; Hexagonal unit cells, 421 table, 422 act. Hydrogen carbonate, 221 table dipole-dipole, 411, 412–413; disper- Hexane, 751 table Hydrogen cyanide, 647 sion, 411, 412; evaporation and, 432 HFCs (hydrofluorocarbons), 788 Hydrogen fluoride, 244, 244 prob., 639 act.; grip of a gecko and, 271; hydro- Hill, Julian, 18 Hydrogen fuel cells, 905 gen bonds, 411, 413–414 HIV, 389 Hydrogen peroxide, 89 International Union of Pure and Homogeneous catalysts, 573 Hydrometers, 37 Applied Chemistry (IUPAC), naming Homogeneous equilibrium, 600, 601 Hydronium ions, 636, 652; calculate conventions. See Naming conventions prob. concentration of from pH, 655 prob.; Interpolation, 57, 963 Homogeneous mixtures, 81, 82–83, 87, calculate concentrations from, 651, Interstitial alloys, 228 478–479 651 prob.; calculate pH from concen- In the Field: archaeologist, 891; arson Homogenization, 490 tration of, 653 prob., 654 prob. investigator, 91; art restorer, 23; Homologous series, 751 Hydroxide ions, 221 table, 636, 652; crime-scene investigator, 697; envi- Hope Diamond, 40 calculate concentration of from pH, ronmental chemist, 505; molecular HOPG, atomic distances in, 113 act. 655 prob.; calculate concentrations paleontologist, 849 Hormones, 831, 839 from, 651, 651 prob.; calculate pOH Intramolecular forces, comparison of, Household items, acidity of, 633 act. from concentration of, 654 prob. 411 table How It Works: bioluminescence, 309; Hydroxyl group, 787 table, 792, 816 act. Inverse relationships, 961 flexible-fuel vehicles (FFV), 549; Hyperbaric oxygen therapy, 465 Iodate, 221 table gecko grip, 271; mass spectrometer, Hyperthermia, 583 Iodine, 86, 940, 941, 943 125; methane digester, 775; pace- Hypochlorite, 221 table Iodine-131, 887 maker, 733 Hypothermia, 583 Iodine deficiency, 943 Hubble Space Telescope, 912 Hypotheses, 13 Ion concentration: from K sp , 617 prob., Human body, elements in, 84, 195 618–619; from pH, 655, 655 prob. Human immunodeficiency virus (HIV), Ionic bonds, 210; electronegativity and, 389 I 266; energy in, 216–217, 217 table Hund’s rule, 157 Ice, 420, 425–426 Ionic compounds, 210–215; in aqueous Hybridization, 262 Ideal gas constant (R), 454, 969 table solutions, 300; binary, 210; formation Hybrid orbitals, 262 Ideal gases, real versus, 457–459 of, 211–212, 212 prob., 216, 230 act.; Hydrates, 351–354; formulas for, 351 Ideal gas law, 454, 455 prob., 456; formulas for, 218–219, 220 prob., 221, table, 352, 353 prob., 356 act.; naming, density and, 456; derive other laws 221 prob., 222 prob.; lattice energies 351; uses for, 354 from, 458; exceptions to, 458–459; of, 216–217, 217 table; melting point Hydration (solvation in water), 489 fire extinguishers and, 457 act.; molar of, 242 act.; milestones in understand- Hydration reactions, 804, 804 table mass and, 456 ing, 212–213; naming, 222, 223–224; Hydrocarbons, 291, 745–749. See also Immiscible, 479 oxidation number of, 219; physical specific types; alkanes. see Alkanes; Independent variables, 14, 56 properties, 212, 214–215, 230 act.; alkenes. See Alkenes; alkynes, 763–764; Indicators, acid-base, 658, 663, 664 physical structure, 212–214; poly- aromatic. See Aromatic compounds; Indium, 922, 923, 925 atomic. See Polyatomic ions; solvation burner gas analysis, 776 act.; chirality Indium-tin oxide, 925 of aqueous solutions of, 490; study of, 767; Foldable, 743 act.; halogenated, Induced fit, 830 organizer, 205 act. 940; isomers of, 765–766, 768–769; Induced transmutation, 875, 882; equa- Ionic crystals, 215 models of, 743 act., 746; refinement of tions representing, 876 prob.; trans- Ionic equations, 301, 302 prob., 304 uranium elements, 876 petroleum, 747–748; saturated, 746; prob.; complete, 301; for reactions Industrial chemistry, 11 table, 341, 464 substituted. See Substituted hydrocar- forming gases, 304–305, 306 prob.; Infrared (Paschen) series, 147, 148, 150 bons; unsaturated, 746 for reactions forming water, 303, 304 act. Hydrofluorocarbons (HFCs), 788 prob.; net, 301 Inhibitors, 571 Hydrogen, 904–905; abundance of, 84; Ionic liquids, 229 Initial rates, method of, 576, 577 prob. atomic properties, 153–155, 158 table, Ionic radii, periodic table trends, 189– Inner transition metals, 180, 185, 916, 904; Bohr model of, 146–148, 147 191, 189–191 917 table; emission spectrum, 144, 145, Ionic solids, 422, 422 table, 423 Inorganic chemistry, 11 table 147–148, 150 act.; in human body, Ionization constants. See Acid ioniza- Insoluble, 479 195; isotopes of, 904; physical proper- tion constant; base ionization Instantaneous reaction rates, 578–579, ties, 904; single-replacement reactions constant 579 prob. involving, 293; in stars, 905 Ionization energy, 191–194; chemical Insulin, 831 Hydrogenated fats, 805 bonds and, 207; periodic table trends, Intensive properties, 73, 77 Hydrogenation, 767, 836 193

1040 Index Index

Ionizing radiation Lithium batteries

Ionizing radiation, 885, 886; biological expansion of gases and, 404; density of Lead, 229, 926–927, 930; poisoning, 229 effects of, 888–890; medical uses of, gases and, 403; diffusion and effusion Lead-acid storage batteries, 720–721, 886–887 of gases and, 404–405; liquids and, 415 930 Ion product constant (Q sp ), 618–619, Knocking, 748 Lead shot, 228 table 619 prob. Krypton, 185 table, 944, 945 Le Châtelier, Henri-Louis, 607 Ion product constant for water, 650– Kwolek, Stephanie, 491 Le Châtelier’s principle, 607; chemical 651, 651 prob. equilibrium and, 606–611; common Ions, 189; anion formation, 209; cation ion effect and, 620–621; ion-product formation, 207; formula for mona- L of water and, 650, 650 prob.; molar tomic, 218–219; ionic radii periodic Lab activities. See CHEMLABs; solubility and, 624 act. table trends, 189–191; metal, 208; Data Analysis Labs; Launch Labs; Lecithin, 431 monatomic. See Monatomic ions; MiniLabs; Problem-Solving Labs Lemon battery, 707 act. naming, 222–223; oxidation number Laboratory safety, 18, 19 table Length, 33, 33 table of, 219; polyatomic, 221, 222 prob.; Lactic acid fermentation, 848 LEO GER, 681 pseudo-noble gas configuration, 208; Lactose, 833 Lewis, G. N., 161, 212, 641 stability of, 240; transition metal, 208 Lanthanide series, 180, 185, 916 Lewis model, 641–643, 642 table Iron: in acid mine waste, 920; Earth’s Large Hadron Collider, 111 Lewis structures, 242, 244 prob., 253– core and, 919; as paint pigment, 919; Laser scissors, 163 260. See also Electron-dot structures; redox reactions oxidizing, 693 table; Lattice energy, 216–217, 217 table covalent compound with multiple rust formation, 74, 77, 679 act. Launch Labs: arrange items, 173 act.; bond, 256 prob.; covalent compound Iron oxide. See Rusting atomic structure, 135 act.; chemical with single bond, 255 prob.; modeling, Isobutane, 752 change, evidence of, 281 act.; chemi- 272 act.; octet rule exceptions and, Isomers, 765; cis-, 766; geometric, 766; cal change, observe, 69 act.; chemical 258–259, 260 prob.; polyatomic ions, optical, 768–769; stereoisomers, 766; cold pack, 515 act.; chemical reaction, 256, 257 prob.; resonance and, 258 structural, 765; trans-, 766; trans-fatty observe, 367 act.; covalent bond- Light: continuous spectrum of, 138; acid, 767 ing (super ball properties), 239 act.; dual nature of, 143; electromagnetic Isopropyl alcohol, 432 act. electrical conductivity of solutions, spectrum, 138–139; particle nature Isopropyl group, 753 table 205 act.; electric charge, observe, of, 141–143; speed of (c), 137; visible Isotopes, 117, 118 prob.. See also 101 act.; equilibrium point, 593 act.; spectrum of, 139; wave nature of, Radioactivity; abundance of, 117, hydrocarbons, model, 743 act.; lemon 137–139, 140 prob., 143 120; atomic mass and, 117, 118 act., battery, 707 act.; liquids, layering of “Like dissolves like”, 489 119–120, 121 prob., 126 act.; mass of, (density), 31; liquids, properties of, Limestone, 635, 643 117; modeling, 120 act.; notation for, 401 act.; mole conversion factors, Limiting reactants, 379–381; calculat- 117; radioactive. See Radioisotopes 319 act.; nuclear chain reactions, 859 ing product with, 380–381, 382–383 IUPAC naming conventions. See act.; reaction rates, speeding, 559 act.; prob.; determining, 380 rust formation, 679 act.; slime, make, Naming conventions Linear molecular shape, 261, 263 table 785 act.; solution formation, energy Line graphs, 56–57, 58, 959–963 change and, 475 act.; sugars, test for Line, slope of, 57, 962 simple, 825 act.; temperature and gas Line spectra. See Emission spectra J volume (Charles’s Law), 441 act.; vis- Lipid bilayer, 838 James Webb Space Telescope (JWST), 912 cosity of liquids, 401 act.; Where is it? Lipids, 13 act., 830, 835–839; fatty Jin, Deborah S., 417 (conservation of matter), 3 act. acids, 835–836, 837; phospholipids, Joule (J), 142, 518 Lavoisier, Antoine, 79, 174, 174 table, 838; saponification of, 837, 837 act.; 184, 290 steroids, 839; triglycerides, 836–837; Law, 16 waxes, 838 K Law of chemical equilibrium, 599–600 Liquids, 71, 415–419; adhesion and Kekule, Friedrich August, 771 Law of conservation of energy, 517 cohesion of, 419; attractive forces in, Kelvin (K), 35, 451 Law of conservation of mass, 77, 78 417; capillary action, 419; compres- Kelvin scale, 35, 451 prob., 79; balancing equations and, sion of, 415; density of, 31 act., 415; Ketones, 787 table, 797, 797 table 285, 288; Dalton’s experimental evi- evaporation of, 426–427, 432 act.; flu- Kilns, 461 dence of, 105; molar mass and, 335; idity of, 416; properties of, compare, Kilocalorie (kcal), 518 stoichiometry and, 368 401 act.; shape and size of particles in, Kilogram (kg), 34 Law of definite proportions, 87–88 417; surface tension, 418–419; viscos- Kilometer (km), 33 Law of multiple proportions, 89–90 ity of, 401 act., 417, 418 Kinetic energy (KE), 516–517; kinetic- Law of octaves, 175 Liter (L), 35 molecular theory and, 402, 403, 517; Law of universal gravitation, 16 Lithium, 136, 158 table, 161 table, 177, voltaic cells and, 710 Lawrencium, 921 226 table, 906, 907, 913 Kinetic-molecular theory, 402–403; LCD panels, 925 assumptions of, 403; compression and Lithium batteries, 721–722, 908

Index 1041 Index

Litmus paper Molal boiling point elevation constant

Litmus paper, 633 act., 635, 658 77; chemical properties of, 74; Greek Methane, 243, 244, 245, 291, 745, 747, Logarithms, 966–967 philosophers’ theories of, 102–103; 750, 751, 751 table London forces. See Dispersion forces mixtures of. See Mixtures; physical Methane digester, 775 London, Fritz, 412 changes in, 76–77; physical properties Methanol, 793, 816 act. Lowry, Thomas, 638 of, 73; properties of, observe, 74–75; Method of initial rates, 576, 577 prob. LP (liquefied propane) gas, 750 pure substances. See Pure substances; Methylbenzene, 772 Luciferin, 309 states of. See States of matter; study of Methyl chloroform, 20 Luminol, 697 chemistry and, 4 Methyl group, 753 table Lunar missions, oxygen in moon rocks, Maxwell, James, 402 Methyl red, 662 387 act. Measurement, 295; accuracy of, 47–48; Meyer, Lothar, 175, 176 table, 184 Lyman (ultraviolet) series, 147, 148, precision of, 47–48; significant figures Microbes, electric current from, 724 act. 150 act. and, 50–51; units of, 32–37 Microchips, 919 Lysine, 827 table Medicinal chemist, 342 Microwaves, 137, 140 prob. Meitner, Lise, 111 Midgley, Thomas Jr., 7 Melting, 425–426, 530 Milligrams (mg), 34 M Melting point, 77, 426 Millikan, Robert, 109 Milliliters (ml), 33 table, 36 Magnesium, 159 table, 177, 910–911, Melting points: of alkanes, 758; bond Millimeter (mm), 33, 33 table 912, 913 type and, 242 act.; of covalent com- Mineralogists, 214 Magnesium oxide, 210, 217 table pounds, 270; of metals, 226, 226 table; Minerals, 383; classification of, 214; Magnetic resonance imaging, 921 as physical property, 73 crystal lattice structure, 214 Mendeleev, Dmitri, 85, 175, 176 table, Malleability, 226 Mineral supplements, 220 Manganese, 918, 920 184 MiniLabs. See also CHEMLABs; Data Manhattan Project, 882 Mercury, 73 table, 226 Analysis Labs; Problem-Solving Labs; Manometers, 407 Mercury(II) oxide, 79 acid strengths, compare, 648 act.; Mass, 9–10; determine from density Metabolism, 844–848; anabolism, bond type and melting point, 242 and volume, 38 prob.; identify an 844–845; ATP and, 845; catabolism, act.; chemical equilibrium, stress and, unknown by, 50 act.; law of conserva- 844–845; cellular respiration, 846; 611 act.; corrosion, 726 act.; crystal tion of, 77, 78 prob., 79, 105; mass- fermentation, 847–848; photosynthe- unit cells, model, 422 act.; density to-atom conversions, 329–330, 330 sis, 846 of unknown objects, 39 act.; esters, prob.; mass-to-mole conversions, 329 Metal alloys, 227–228 recognize, 800 act.; ethyne, synthesize prob.; mass-to-mole conversions for Metal carbonates, 635 and observe, 762 act.; flame test, 144 compounds, 337, 337 prob.; mass-to- Metal ions: formation of, 208; mona- act.; freezing point depression, 502 moles-to-particles conversions, 338, tomic, 218, 219, 219 table act.; halogens, predict reactivity of, 338–339 prob.; molar. See Molar mass; Metallic bonds, 225 294 act.; heat-treated steel, proper- mole-to-mass conversions, 328 prob.; Metallic hydroxids, 648 ties of, 227 act.; isotopes, model, 120 SI base unit for, 33 table, 34; volume- Metallic solids, 422, 422 table, 423 act.; molar volume and mass (fire mass gas stoichiometry, 462, 462–463 Metalloids, 181, 196 act. extinguisher), 457 act.; observation prob.; weight v., 9–10 Metallurgist, 423 skills, develop, 13 act.; paper chroma- Mass defect, 877 Metals, 177. See also Alkali metals; tography, 82 act.; percent composition Mass number, 117, 118 prob. Alkaline earth metals; Inner transi- of chewing gum, 342 act.; periodic Mass spectrometry, 125, 327 tion metals; Transition metals; acid- trends, model, 193 act.; precipitate- Mass-to-mass stoichiometric conver- base reactions and, 635; activities of, forming reaction, observe, 301 act.; sions, 374, 377, 377 prob. 310 act.; boiling points, 226, 226 table; radioactive decay, model, 873 act.; Material Safety Data Sheets (MSDS), 59 bonding in, 225; ductility of, 177, 226; reaction rate and temperature, 571 Materials scientist. See Careers in durability of, 226; electrical conduc- act.; saponification (soap making), Chemistry; In the Field tivity of, 177, 226; fireworks and, 913; 837 act.; specific heat, 526 act.; stoi- Math Handbook, 946–967; algebraic hardness and strength of, 226; mal- chiometry of baking soda decomposi- equations, 954–955, 955 prob.; anti- leability of, 177, 226; melting points, tion, 378 act.; tarnish removal (redox logarithms, 967; dimensional analysis, 226, 226 table; periodic table position, reaction), 683 act. 956 prob.; fractions, 964, 965–966; 177; properties of, 177, 196 act., 226, Miscible, 479 line graphs, 959–963; logarithms, 226 table; purification of by electroly- Mixtures, 80–83, 87; heterogeneous, 81, 476–478; homogeneous, 81, 478–479; 966–967; percents, 965; ratios, 964; sis, 731–732; reactivity of, 293–294, separate components of, 80, 82 act., scientific notation, 946–948; sig- 310 act.; single-replacement reactions 82–83 nificant figures, 949–950, 951 prob.; involving, 293–294; specific heat of, Mobile phase, chromatography, 83 square and cube roots, 949; unit con- 526 act.; thermal conductivity of, 226 Model, 10, 15 version, 957–958, 958 prob. Meteorologist, 447 Molal boiling point elevation constant Matter: categories of, 87; characteristics Meter (m), 33, 33 table ( K ), 500, 500 table, 976 table of, 9–10; chemical changes in, 69 act., Methanal, 796 b

1042 Index Index

Molal freezing point elevation constant Nylon

Molal freezing point elevation constant Molecules, 241; diatomic, 241; shape Neutron activation analysis, 886, 891 ( Kf ), 502, 502 table, 976 table of, 261–262, 263 table, 264 prob., Neutrons, 113, 114 table, 119, 969 table Molality (m), 480 table, 487, 487 prob. 267–268 Neutron-to-proton ratio, nuclear stabil- Molar calculations, history in a glass of Mole fraction, 480 table, 488, 488 prob. ity and, 865, 866 water and, 355 Mole ratios, 371–372, 390 act. Newlands, John, 175, 176 table Molar enthalpy (heat) of condensation, Mole-to-mass stoichiometric conver- Newton, Sir Isaac, 16 530 sions, 374, 376, 376 prob. NiCad batteries, 720 Molar enthalpy (heat) of fusion, 530 Mole-to-mole stoichiometric conver- Nickel, 919 Molar enthalpy (heat) of vaporization, sions, 373–374, 375 prob. Night-vision lenses, 930 530, 531 act. Monatomic ions, 218; formulas for, Nitrate, 221 table Molarity (M), 480 table, 482, 483 prob.; 218–219; oxidation number of, 219 Nitrite, 221 table from titration, 663, 664 prob., 670 act. Monoclinic unit cells, 421 table, 422 act. Nitrogen, 158 table, 161 table, 195, 932, Molar mass, 326–332; atom-to-mass Monomers, 810 933, 934 conversions, 331 prob.; of compounds, Monoprotic acids, 640, 641 table Nitrogen cryotherapy, 934 335, 335 prob.; effusion rate and, 404, Monosaccharides, 825 act., 832–833 Nitrogen-fixation, 462, 934 405 prob.; ideal gas law and, 456; Montreal Protocol, 20 Nitrogenous bases, 841, 843 mass-to-atom conversions, 329–330, Moon rocks, oxygen in, 387 act. Noble gases (Group 18), 180, 183, 184, 330 prob.; mass-to-mole conversions, Moseley, Henry, 115, 176, 176 table, 184 185 table, 207, 944–945 329 prob.; mole-to-mass conversions, Mothballs, 428 Noble-gas notation, 159 327–328, 328 prob.; nuclear model of Motor oil, viscosity of, 417, 418 Nonane, 751 table mass and, 326 act. Multidrug therapy, 389 Nonmetals, 180; ions of, 209; periodic Molar solubility, 615–617, 616 prob., Multiple covalent bonds, 245–246 table position, 177; properties of, 621, 624 act. Multiplication, 54, 54 prob. 196 act. Molar solutions, preparation of, 484, Nonpolar covalent bonds, 266 485, 486 prob. Nonpolar molecules, 267–268, 269 Molar volume, 452, 453 prob., 969 table N Nuclear atomic model, 112–113, 136 Mole (mol), 321–324; chemical for- Naming conventions: acids, 250–251, Nuclear chain reactions. See Chain mulas and, 333–334, 334–335 prob.; 250–251, 252; alcohols, 793; alde- reactions conversion factors, 319 act.; convert hydes, 796; alkenes, 760, 761 prob.; Nuclear equations, 123, 869, 869 prob. particles to, 323, 323 prob., 324 prob.; alkynes, 764; amides, 800; amines, 795; Nuclear fission, 878–880; chain reac- convert to particles, 322; as count- aromatic compounds, 772–773, 773 tions and, 879–880; nuclear reactors ing unit, 319 act., 320; mass-to-mole prob.; binary molecular compounds, and, 880–882 conversions, 329 prob.; mass-to-mole 248–250, 249 prob., 252; branched- Nuclear fusion, 883–884 conversions for compounds, 337, 337 chain alkanes, 752–753, 754–755 prob.; Nuclear power plants, 878, 880–882 prob.; mass to moles to particles con- carboxylic acids, 798; cycloalkanes, Nuclear reactions, 122; balanced equa- versions, 338, 338–339 prob.; molar 756, 756–757 prob.; esters, 799; halo- tions representing, 863, 869, 869 mass and, 326–332; mole-to-mass carbons, 788; hydrates, 351; ionic prob.; chain reactions, 859 act., 879– conversions, 327–328, 327–328, 328 compounds, 223–224; ions, 222–223; 880; chemical reactions vs., 860 table; prob.; mole-to-mass conversions for ketones, 797; , 222 table, induced transmutation, 875–876, compounds, 336, 336 prob. 222–223; straight-chain alkanes, 751 876 prob.; mass defect and binding Molecular compounds: in aqueous solu- Nanoparticles, 216 act. energy, 877–878; milestones in under- tions, 299; formation of, 241; formulas Nanotechnology, 107 standing, 882–883; nuclear fission, from names of, 251; Lewis structures Nanotubes, 928 878–880; nuclear fusion, 883–884; for, 253–260, 255 prob., 256 prob., Naphthalene, 772 radioactive decay series, 870; thermo- 257 prob., 258 prob., 260 prob.; nam- National Oceanic and Atmospheric nuclear reactions, 883 ing, 248–251, 249 prob., 252; shape of Administration (NOAA), 20, 21 act. Nuclear reactors, 878, 880–882 (VSEPR model), 261–262, 263 table, Natural gas, 416, 745, 747 Nuclear stability, 124, 865–866 264 prob., 272 act.; solvation of aque- Negatively charged ions. See Anions Nuclear waste, storage of, 882 ous solutions of, 491 Neon, 143, 158 table, 161 table, 185 Nucleic acids, 636, 840–843; DNA, Molecular formulas, 253, 346–347; of table, 944, 945 841–842, 842 act.; RNA, 843 organic compounds, 746; from per- Net ionic equations, 301, 302 prob., 304 Nucleons, 865 cent composition, 346–347, 348–349 prob. Nucleotides, 840 prob. Net ionic redox equations, balancing, Nucleus (atomic), 112; discovery of, Molecular manufacturing, 107 691, 692 prob. 112; nuclear model of mass and, 326 Molecular paleontologist, 849 Network solids, 270 act.; size of, 112 Molecular shape, 261–262, 263 table, Neutralization equations, 659–660 Nutritional calories, 518 264 prob., 267–268 Neutralization reactions, 659–660 Nylon, 18, 594, 811 Molecular solids, 422, 422 table Neutral solutions, 636

Index 1043 Index

Observation Phase changes

tests for, 937; atomic properties, 937; Peptides, 828 O common reactions involving, 936– Percent by mass concentration ratio, Observation, 13, 13 act. 937; diatomic, 241; electron configu- 87–88, 480 table Oceans: elements in, 901; sequestration ration and orbital diagram, 158 table; Percent by volume concentration ratio, of carbon dioxide in, 505 electron-dot structure, 161 table; in 480 table, 482, 482 prob. Octahedral molecular shape, 261, 263 human body, 195, 623; photosynthesis Percent composition, 341–342; from table and, 846, 912, 938; physical proper- chemical formula, 342, 343 prob.; Octane, 751, 751 table ties, 73 table, 936 empirical formula from, 344, 345 Octane rating system, 748–749 Oxygen group (group 16), 184, 207 prob.; from experimental data, Octet rule, 193, 240; exceptions to, table, 209 table, 218 table, 243, 341–342, 342 act.; molecular formula 258–259, 260 prob. 936–939 from, 346–347, 348–349 prob. Odor, 73, 283 Ozone, 5, 6, 21 act., 938 Percent error, 48–49, 49 prob. Oil drop experiment, Milikan’s, 109 Ozone depletion, 20–21 Percents, 965; as conversion factors, 44 Oil of wintergreen, 800 act. Ozone hole, 7, 20–21, 21 act. Percent yield, 386, 386 prob., 388 Oleic acid, 835 Ozone layer, 5–8, 938; chlorofluorocar- Perchlorate, 221 table Optical isomers, 768–769 bons (CFCs) and, 7–8, 20; formation of Perfumes, 770 Optical rotation, 769 ozone in, 6; thinning of, 7, 20, 21 act. Periodic law, 176 Orbital diagrams, 158, 158 table, 159 Periodic table of the elements, 85, 173 table act., 174–177, 178–179, 180–181; Orbitals, 152, 154, 262 P atomic radii trends, 187–188, 189 Order of operations, algebraic, 954–955, PA-457 anti-HIV drug, 389 prob.; blocks on, 183–185; boxes on, 955 prob. Pacemakers, 733 177; electron configuration of ele- Ores, 731–732 Pain receptors, temperature and, 815 ments and, 182–185, 186 prob.; elec- Organic chemistry, 11 table, 745 Painting restoration, 23 tronegativity trends, 194, 265; groups Organic compounds, 744–745. See also Paint pigments, 919 (families), 177; history of develop- Hydrocarbons; carbon-carbon bonds Paleontologist, 849 ment of, 174–177, 176 table, 184–185; in, 746; models of, 746; reactions Papain, 829 ionic radii trends, 189–191; ionization forming. See Organic reactions Paper chromatography, 82 act., 83, 269 energy trends, 193; model periodic Organic reactions: addition reactions, act. trends, 193 act.; model trends, 173 804–805; condensation reactions, 801; Paraffin, 270 act.; nonmetals, 180; periods (rows), dehydration reactions, 803; dehydro- Paramagnetism, 916, 917 177, 182; predict element properties genation reaction, 803; elimination Parent chain, 752 from, 180 act. reactions, 802; oxidation reduction Partial pressure, Dalton’s law of, 408, Periods, periodic table, 85, 177; atomic reactions, 806–807; products of, pre- 409 prob., 410 radii trends, 188, 189 prob.; electron dict, 807–808; substitution reactions, Particle accelerators, 875 configuration, 182 table; ionic radii 790–791 Particle model of light, 141–143 trends, 190; ionization energies, 192 Organosilicon oxide, 239 act. Particles: convert moles to, 322, 323 table; valence electrons and, 182 Orthorhombic unit cell, 421 table, 422 prob.; convert to moles, 323, 324 Permaganate, 221 table act. prob.; counting, 320–321; mass-to- Perspiration, 426 Osmosis, 504 moles-to-particles conversions, 338, Petroleum, 747–749, 790 Osmotic pressure, 504 338–339 prob.; representative, 321 Petroleum technician, 748 Overall equations, 307 Pascal (Pa), 407 PET scans, 888 Oxalic acid, 798 Paschen (infrared) series, 147, 148, 150 Pewter, 228 table Oxidation, 681 act. pH, 652, 653; acid ionization constant

Oxidation number, 219, 682; determine, Pasteur, Louis, 767 (K a ) from, 656, 657 prob.; of familiar 686, 686 table, 687 prob.; monatomic Pauli exclusion principle, 157 substances, 652; of household items, ion formulas and, 219; in redox reac- Pauling, Linus, 194, 771 633 act.; ion concentration from, 655, tions, 688; of various elements, 688 Paulings, 194 655 prob.; from ion concentrations, table Pauli, Wolfgang, 157 653 prob., 654 prob.; measurement of, Oxidation-number method, 689, 689 p-Block elements, 184 633 act., 635, 658 table, 690 prob. Penetrating power, 864; of alpha par- Pharmacist, 381 Oxidation reduction reactions, 680. See ticles, 862; of beta particles, 863; of Pharmacy technician, 483 also Redox reactions X rays, 864 Phase changes, 76–77, 425–430; boiling, Oxidizing agent, 683 Penicillin, 18 427; condensation, 428; deposition, , 250–251, 252 Pennies: dating by density, 60 act.; 429; evaporation, 426–427, 432 act.; Oxyanions, 222, 223 model isotopes with, 120 act. freezing, 428; melting, 425–426; phase Oxygen: abundance of, 84; analytical Pentane, 751, 751 table diagrams and, 429–430; six possible Peptide bond, 827–828 transitions, 425; sublimation, 428;

1044 Index Index

Phase diagrams Practice Problems

thermochemical equations for, 530– Polyethylene, 762, 810, 811 dot structures, 162 prob.; empirical 531, 531 act.; vaporization, 426–427 Polyethylene terephthalate (PET), 810, formula from mass data, 350 prob.; Phase diagrams, 429–430 812 table empirical formula from percent com- Phenanthrene, 772 Polymer chemist, 813 position, 346 prob.; energy released Phenolthphalein, 658, 662 Polymer chemistry, 11 table by reaction, 532 prob.; energy units, Phenylalanine, 827 table, 828 Polymerization reactions, 810–811 convert, 519 prob.; equilibrium con- pH meters, 637, 658 Polymers, 809–814; antimicrobial centrations, 613 prob.; equilibrium Phosphate ion structure, 257 prob. properties of, 216 act.; common, 812 constant expressions, 601 prob., 603 Phosphates, 250 table; milestones in understanding, prob.; equilibrium constants, value of, Phospholipases, 838 810–811; properties of, 813; reactions 605 prob.; expanded octets, 260 prob.; Phospholipids, 838 forming, 810–811; recycling of, 814; formulas from names of molecular Phosphoric acid, 634 synthetic, 809 compounds, 251 prob.; freezing and Phosphors, 180, 886 Polymethyl methacrylate, 812 table boiling point depressions, 503 prob.; Phosphorus, 159 table, 932, 933, 934 Polypeptides, 828 gas-forming reactions, 306 prob.; Phosphorus trihydride, 264 prob. Polyphenols, 662 Gay-Lussac’s law, 448 prob.; Graham’s Photocopies, 939 Polypropylene, 812 table law of effusion, 405 prob.; ground- Photoelectric effect, 142–143 Polyprotic acids, 640–641, 641 table state electron configuration, 160 Photoelectrons. See Electrons Polysaccharides, 833–834 prob.; half-cell potentials, 716 prob.; Photons, 143, 143 prob. Polyurethane, 812 table half-reaction method, 695 prob.; halo- Photosynthesis, 846, 912, 938 Polyvinyl chloride (PVC), 812 table carbons, naming, 788 prob.; Henry’s Photovoltaic cells, 142, 522 Polyvinylidene chloride, 812 table law, 497 prob.; Hess’s law, 537 prob.; pH paper, 633 act., 635, 658 Popcorn, 466 act. hydrate, determine formula for, 353 pH scale, 636 p orbitals, 154 prob.; ideal gas law, 455 prob.; induced Physical changes, 76–77 Positive ions. See Cations transmutation, 876 prob.; instanta- Physical chemistry, 11 table Positron, 868 neous reaction rates, 579 prob.; ion Physical constants, 969 table Positron emission, 868, 868 table, 888 concentrations, 617 prob.; ion con- Physical properties, 73; of common Positron emission transaxial tomogra- centrations from pH, 655 prob.; ionic substances, 73 table; extensive, 73; phy (PET), 888 compound formation, 212 prob.; ionic intensive, 73, 77; mineral identifica- Potassium, 86, 117, 136, 906, 907 compounds, formulas for, 221 prob., tion by, 73; observe, 74–75 Potential energy, 516–517 222 prob.; ionic compounds, nam- Pi bond, 245–246 Potter, 682 ing, 223 prob.; ionization constant of Pie charts, 55 Pottery kilns, 461 water, 651 prob.; ionization equations Planck, Max, 141–142 Practice Problems: acid-metal reactions, and base ionization constants, 649 Planck’s constant, 142, 969 table 635 prob.; acids, naming, 251 prob.; prob.; isotopes, amount of remain- Plants: hydrogen cyanide in, 647; nitro- aromatic compounds, naming, 773 ing, 872 prob.; law of conservation of gen-fixation, 462, 934; photosynthe- prob.; atomic mass, 121 prob.; atomic mass, 78 prob.; law of definite pro- sis, 846, 912, 938; waxes, 838 number, 116 prob., 118 prob.; atomic portions, 88 prob.; Lewis structures, Plasma, 71, 417 radii trends, 189 prob.; atoms-to- 244 prob., 255 prob., 256 prob., 257 Plastics, 789, 802, 810–811, 814 mass conversions, 331 prob.; average prob., 258 prob., 260 prob.; limiting Plastic viscosity, 431 reaction rates, 563 prob.; balanced reactant, determine, 383 prob.; mass Platinum, 918 chemical equations, interpret, 371 number, 118 prob.; mass-to-mass Plum pudding model, 110 prob.; binary molecular compounds, stoichiometry, 377 prob.; mass-to- pOH, 652, 653, 654 prob. naming, 249 prob.; Boyle’s law (pres- mole conversions, 329 prob.; mass- Polar covalent bonds, 266, 267–268 sure and volume relationship), to-mole conversions for compounds, Polarized light, 769 443 prob.; branched-chain alkanes, 337 prob.; mass-to-moles-to-particles Polar molecules, 267–268; chromato- naming, 755 prob.; branched-chain conversions, 339 prob.; molality, 487 grams and, 269 act.; ideal gas law and, alkenes, naming, 761 prob.; calorim- prob.; molarity, 483 prob.; molarity 459; shape of, 267–268; solubility of, etry data, 525 prob.; Charles’s law, from titration data, 664 prob.; molar 268 446 prob.; chemical equations, write, mass and, 335 prob.; molar solubility, Polonium, 882, 936, 937 287 prob.; chemical reactions, clas- 616 prob.; molar solutions, 484 prob.; Polyacrylonitrile, 812 table sify, 291 prob.; combined gas law, molar volume, 453 prob.; molecular Polyatomic ions, 221, 970 table; 450 prob.; conjugate acid-base pairs, shape, 264 prob.; mole fraction, common, 221 table; formulas for, 221, 640 prob.; cycloalkanes, naming, 757 488 prob.; mole ratios, 372 prob.; 222 prob.; Lewis structures, 256, 257 prob.; decomposition reactions, 292 mole relationships from a chemical prob.; naming, 222–223 prob.; dilute stock solutions, 486 prob.; formula, 335 prob.; moles, convert Polycarbonate, 809 double-replacement reactions, 297 to particles, 323 prob.; mole-to-mass Polycyclic aromatic hydrocarbons prob.; electron configuration and the conversions, 328 prob.; mole-to-mass (PAHs), 807 periodic table, 186 prob.; electron- conversions for compounds, 336

Index 1045 Index

Precipitates Rate constant

prob.; mole-to-mass stoichiometry, act.; gas, release of compressed, 72 376 prob.; mole-to-mole stoichiom- act.; identify an unknown by mass Q etry, 375 prob.; nuclear equations, bal- and volume, 50 act.; molar enthalpy Qualitative data, 13 ancing, 869 prob.; oxidation number, (heat) of vaporization, 531 act.; molar Quantitative data, 13 687 prob.; oxidation-number method, mass, Avogadro’s number, and atomic Quantized energy, 141–143, 146 690 prob., 692 prob.; oxidation-reduc- nucleus, 326 act.; pH of blood, 668 Quantum, 141–142 tion reactions, 685 prob.; partial act.; radiation exposure, distance and, Quantum mechanical model of atom, pressure of a gas, 409 prob.; particles, 890 act.; rate of decomposition of 149–152 convert to moles, 324 prob.; percent dinitrogen pentoxide, 566 act. Quantum number (n), 147 by mass, 481 prob.; percent by vol- Problem-Solving Strategies: ground- Quarks, 111, 114 ume, 482 prob.; percent composition, state electron configuration, 160; 344 prob.; percent yield, 387 prob.; halogens, predict reactivity of, 294 pH, acid dissociation constant from, act.; ideal gas law, derive other laws R + 657 prob.; pH from [ H ], 653 prob.; from, 458; ionic compound naming Rad, 889 photon, energy of, 143 prob.; pOH flowchart, 224; Lewis structures, 254; Radiation, 122; alpha, 123, 124 table, - and pH from [O H ], 654 prob.; pre- mass defect and binding energy, 878; 861, 861 table, 862, 888 table; average cipitate-forming reactions, 302 prob.; molarity from titration, 663; molar annual exposure to, 890 table; beta, precipitates, predicting, 619 prob.; rate solubility, streamlining calculation 123, 124 table, 861, 861 table, 862, laws, 577 prob.; reaction spontane- of, 621; potential of voltaic cell, 717; 863, 888 table; biological effects of, ity, 545 prob., 548 prob.; resonance redox equations, balance, 696; round- 888–890, 889 table; detection of, 885– structures, 258 prob.; salt hydrolysis, ing numbers, 52; significant figures, 886; discovery of, 860–861; distance 665 prob.; single-replacement reac- recognizing, 51; stoichiometry, 374 and, 889 act., 890; dose of, 889–890; tions, 295 prob.; skeleton equations, Products, 77, 283; addition of and gamma, 124, 861, 861 table, 862, 863, 284 prob.; specific heat, 521 prob.; chemical equilibrium, 608; calculating 888 table; intensity of and distance, standard enthalpies of formation, 541 when reactant is limiting, 380–381, 889 act., 890; ionizing, 885; medical prob.; volume-mass gas stoichiometry, 382–383 prob.; identifying, 92 act.; uses of, 886–887; neutron activation 463 prob.; volume-volume problems, predicting, 298, 298 table; removal of analysis, 891; scientific uses of, 886; 461 prob.; water-forming reactions, and chemical equilibrium, 608 types of, 123–124, 859 act., 861 table, 304 prob.; wavelength, 140 prob. Propane, 750, 751, 751 table; chemical 861–864

Precipitates, 296; determine with K sp , equation for, 370 prob.; gas grills and, Radiation-detection tools, 885–886 618, 619 prob.; reactions in aqueous 375 Radiation therapist, 887 solutions forming, 300, 301 act., 302 Propanol, 816 act. Radiation therapy, 887 prob. Propene, 759 table Radioactive decay, 122, 861; model, 873 Precipitation, 428 Propyl group, 753 table act.; nuclear stability and, 865–866; Precision, 47–48, 50 Proteins, 826–831; amino acid build- radiochemical dating and, 873–874; Pressure, 406; chemical equilibrium ing blocks, 826–827; denaturation of, rate of, 870–871, 872 prob., 873–874; and, 608–609; combined gas law and, 829; enzymes, 826, 829–830; peptide transmutation, 865; types of, 866–868, 449, 450 prob.; extreme and ideal gas bonds in, 827–828; polypeptides, 828; 868 table law, 458, 466 act.; gas temperature and protein hormones, 831; structural Radioactive decay series, 870 (Gay-Lussac’s law), 447, 448 prob.; gas proteins, 831; three-dimensional Radioactivity, 122. See also Radiation; volume and (Boyle’s law), 442–443, structure, 829; transport proteins, 830 detection of, 885–886; discovery of, 443 prob., 444 act.; partial pressure Protium, 904 860–861, 915 of a gas, 408, 409 prob., 410; popcorn Protons, 113, 114 table, 119, 969 table Radiocarbon dating. See Carbon dating popping and, 466 act.; solubility of Prussian blue, 916 Radiochemical dating, 873–874 gases and (Henry’s law), 495–496, 497 Pseudo-noble gas configurations, 208 Radioisotopes, 861; half-life of, prob.; units of, 407, 407 table PTFE (nonstick coating), 811 870–871, 871 table; medical uses of, Primary batteries, 720 Pure covalent bond, 266 887–888; radioactive decay of. See Principle energy levels, 153, 154 Pure research, 17 Radioactive decay; radiochemical dat- Principle quantum numbers (n), 153 Pure substances, 70, 87. See also ing and, 873–874 Problem-Solving Labs: Bohr model of Substances; compounds. See Radiotracers, 887 the atom, 150 act.; Boyle’s law and Compounds; elements. See Elements; Radium, 882, 910–911, 915 breathing, 444 act.; decomposition mixtures of. See Mixtures; physical Radium-226, 862 rate, variation in, 566 act.; DNA properties of, 73 Radon, 944 replication, 842 act.; elements, pre- Putrescine, 795 Radon gas, 915 dict properties of by periodic table Rainbows, 138 position, 180 act.; fluoride ions and Rare Earth elements. See f-Block prevention of tooth decay, 622 act.; elements francium, predict properties of, 180 Rate constant (k), 574

1046 Index Index

Rate-determining steps Sigma bonds

Rate-determining steps, 581–582 UV radiation, 5; trans-fatty acids, 767; Rate laws, 574–576 zinc-plating, 295 S Rates, reaction. See Reaction rates Reaumur scale, 451 Saccharin, 810 Ratios, 964 Recycling, 814 Sacrificial anodes, 726 Reactants, 77, 283; addition of and Redox equations, balancing, 679 act., Safety, lab, 18, 19 table chemical equilibrium, 607; calculate 689–696; half-reaction method, Safety matches, 934 product when limited, 380–381, 693–693, 695 prob.; net ionic redox Salicylaldehyde, 796 table, 797 382–383 prob. equations, 691, 692 prob.; oxidation- Salt bridges, 709 Reaction mechanisms, 580–582; com- number method, 689, 689 table, 690 Salt hydrolysis, 665 plex reactions, 580; intermediates, prob.; problem-solving flow-chart, 696 Saltwater fish, 503 580; rate-determining steps, 581–582 Redox reactions, 680–688, 806–807; Saponification, 837, 837 act. Reaction order, 575–577; determination bioluminescence, 693; in electro- Saturated fats, 805 of, 576, 577 prob.; first-order reaction chemistry, 707 act., 708–709, 711; Saturated fatty acids, 835–836 rate laws and, 575; other-order reac- electronegativity and, 684; electron Saturated hydrocarbons, 746 tion rate laws and, 575–576 transfer and, 680–682; forensics and, Saturated solutions, 493 Reaction rate laws. See Rate laws 697, 698 act.; identify, 685 prob.; s-Block elements, 184 Reaction rates, 561–567; activation oxidation, 681; oxidation number, Scandium, 185 energy and, 564–566; average rate 219, 682, 686, 686 table, 687 prob., Scanning tunneling microscope (STM), of, 560–562, 562 prob.; catalysts and, 688; oxidizing agents, 683; reducing 107, 213 571–573; collision theory and, 563, agents, 683; reduction, 681; reversal Schrodinger wave equation, 152 564; concentration and, 569, 584 of (electrolysis), 728; rust formation, Science writer, 604 act.; decomposition of dinitrogen 679 act.; space shuttle launch and, 691 Scientific investigations. See also pentoxide, 565 act.; factors affecting, act.; summary of, 683 table; tarnish CHEMLABs; Data Analysis Labs; 559 act.; inhibitors and, 571; instan- removal, 683 act. MiniLabs; Problem-Solving Labs; taneous, 578–579, 579 prob.; rate- Reduction, 681 accidental discoveries and, 18; applied determining steps, 581–582; rate laws, Reduction agent, 683 research, 17; pure research, 17; safety 574–576; reactivity of reactants and, Reduction potential, 711 and, 18; scientific method and, 12–16 566–567; speeding, 559 act.; sponta- Reef aquariums, 287 Scientific law, 16 neity and, 542–545, 566–567; surface Refrigerators, CFCs and, 7–8 Scientific methods, 12–16; conclusion, area and, 569–570; temperature and, Rem, 889 15; experiments, 14–15; hypothesis, 570, 571 act. Replacement reactions, 293–294, 296– 13; observation, 13, 13 act.; scientific Reaction spontaneity (∆G), 542–545; 297; double-replacement, 296–297; law and, 16; theory and, 16 Earth’s geologic processes and, 545; single-replacement, 293–294, 295 entropy and, 544–545, 545 prob.; free prob. Scientific notation, 40–43, 946–948; energy and, 548 prob.; Gibbs free Representative elements, 177, 184, 196 addition and subtraction and, 41 energy and, 546–547; reaction rate act. prob., 42, 948; multiplication and and, 566–567 Representative particles, 321; convert division and, 43, 43 prob., 948 Real-World Chemistry: algal blooms moles to, 322; convert to moles, 323, Scintillation counter, 886 and phosphates, 250; ammoniated 323 prob., 324 prob.; mass to moles to Scuba diving, helium and, 192 cattle feed, 601; book preservation particles conversions, 338, 338–339 Seaborg, Glenn, 921 and, 661; cathode ray, 108; chrome prob. Second (s), 33 and chromium, 328; clay roofing tiles, Research: applied, 17; pure, 17 Secondary batteries, 720 302; enzymes (papain), 829; food Research chemist, 185 Second ionization energy, 192 preservation, 571; fuel cells, 722; gas Resonance, 258 Second law of thermodynamics, 543, grills, 375, 461; Gay-Lussac’s law and Reversible reactions, 595 546 pressure cookers, 448; hydrogen cya- Rhombohedral unit cells, 421 table, 422 Second period elements, 158 table, nide, 647; iron oxidation, 685; kilns, act. 161 table 461; liquid density measurement, 37; RNA (ribonucleic acid), 843 Seed crystal, 495 mineral identification, 73; mineral Roentgen, Wilhelm, 860, 889 Selenium, 936, 937, 939 supplements, 220; perspiration, 426; Rubber, 762 Semimetals. See Metalloids photoelectric effect, 142; polycyclic Rubidium, 906, 907 Sensitive teeth, 914 aromatic hydrocarbons (PAHs), 807; Rusting, 74, 77, 724–727; observe, 726 Serine, 827 table reef aquariums, 287; saltwater fish act.; prevent, 685, 725–727; redox Sex hormones, 839 and freezing point depression, 503; reactions in, 679 act., 724–725; as Shape-memory alloys, 213 scuba diving and helium, 192; solar spontaneous process, 542–543 Ships, corrosion of hulls of, 725–726 energy, 142; solar fusion, 883; specific Rutherford, Ernest, 110, 111–112, 112– Side chains, amino acid, 827 heat, 521; sunscreen, protection from 113, 862, 875 Sigma bonds, 244, 245 Rutherfordium, 185

Index 1047 Index

Significant figures Strong electrolytes

Significant figures, 50–51, 51 prob., Solubility product constant expres- Square root, 949 949–950, 951 prob.; adding and sub- sions, 614–619; ion concentrations Stainless steel, 228 table tracting, 53, 53 prob., 952, 953 prob.; from, 617, 618–619, 619 prob.; molar Standard enthalpy (heat) of formation, atomic mass values and, 328; multipli- solubility from, 616 prob., 616–617; 537–541, 538 table, 540 prob. cation and division and, 54, 54 prob., predicting precipitates, 618, 619 prob.; Standard hydrogen electrode, 711 952; rounding numbers and, 52, 952 writing, 614–615 Standardized Test Practice, 28–29, Silicates, 214 Soluble, 479 66–67, 98–99, 132–133, 170–171, Silicon, 84, 159 table, 181, 926–927, 929 Solutes, 299 202–203, 236–237, 278–279, 316–317, Silicon computer chips, 929 Solution concentration. See 364–365, 398–399, 438–439, 472–473, Silicon dioxide, 929 Concentration 512–513, 556–557, 590–591, 630–631, Silver, 226 table, 920 Solution formation. See Solvation 676–677, 704–705, 740–741, 782–783, Silver batteries, 719 Solutions, 81, 478–479; acidic. See 822–823, 856–857, 898–899 Silver nitrate flame test, 92 act. Acidic solutions; aqueous. See Standard reduction potentials, 712; Simple sugars. See Monosaccharides Aqueous solutions; basic. See Basic applications of, 716; calculate, 713– Single covalent bonds, 242–244 solutions; boiling point elevation, 714, 715 prob.; determine, 712, 712 Single-replacement reactions, 293–294, 500–501, 503 prob.; concentration, table; measure, 734 act. 295 prob.; metal replaces hydrogen, 475 act., 480–488; dilution of, 485, Standard temperature and pressure 293; metal replaces metal, 293–294, 486 prob.; electrolytes and colliga- (STP), 452 310 act.; nonmetal replaces nonmetal, tive properties, 498–499; formation Starch, 834 294, 294 act. (solvation), 489–492; freezing point States of matter, 71–72; gases, 72, 72 SI units, 32–37, 958 table depression, 501–502, 502 act., 503 act., 402–410; liquids, 71, 401 act., Skeleton equations, 284 prob.; heat of solution, 475 act., 415–419; milestones in understand- Slime, 785 act. 492; milestones in understanding, ing, 416–417; phase changes, 76–77, Slope, line, 57, 962 490–491; molar. See Molar solutions; 425–430; solids, 71, 420–424; summa- Soap, 419, 634, 837 act. neutral, 636; osmotic pressure and, rize information on, 401 act. Sodium, 136, 159, 159 table, 177, 906, 504; saturated, 493; solubility and. See Stationary phase, chromatography, 83 907, 908, 913 Solubility; supersaturated, 494–495; Stearic acid, 835 Sodium bicarbonate, 308 types of, 81 table, 479 table; unsatu- Steel, 227, 227 act. Sodium carbonate, 378 act. rated, 493; vapor pressure lowering Stereoisomers, 766. See also Optical Sodium chloride, 70, 73 table, 85, 205 and, 499–500 isomers act., 210, 211 table, 213, 729 Solution systems, 81, 81 table Sterling silver, 228 table Sodium hypochlorite, 683 Solvation, 489–492; aqueous solutions Steroids, 839 Sodium perborate, 924 of ionic compounds, 490; aqueous Steroid toxins, 839 Sodium/potassium ATPase, 909 solutions of molecular compounds, Stock solutions, dilution of, 485, 486 Sodium-potassium pump, 909 491; factors affecting, 492–494, 506 prob. Soft water, 24 act. act.; heat of solution, 475 act., 492; Stoichiometry, 368–378; actual yield Solar energy, 142, 354, 522 “like dissolves like”, 489 and, 385; baking soda decomposition, Solar fusion, 883 Solvents, 299 378 act.; interpret chemical equa- Solidification, 76. See also Freezing s orbitals, 154 tions, 370 prob.; mass-to-mass con- Solids, 71, 420–424; amorphous, 424; Space-filling molecular model, 253, 746 versions, 377, 377 prob.; mole ratios crystalline, 420–423, 422 act., 422 Space shuttle, 691 act., 722 and, 371–372, 390 act.; mole-to-mass table; density of, 39 act., 420; molecu- Space telescopes, 912 conversions, 376, 376 prob.; mole- lar, 422 Spandex, 811 to-mole conversions, 373–374, 375 Solubility, 479, 493–497; factors affect- Species, 693 prob.; particle and mole relationships ing, 492–494, 506 act.; of gases, Specific heat, 519–520, 522, 976 table; and, 368–369; percent yield and, 386, 495–496, 497 prob.; guidelines for, calorimetry and, 523–524, 525 prob., 386 prob., 388; problem-solving flow 975 table; of polar molecules, 268; 526 act.; heat absorbed, calculate, 520, chart, 374; product, calculate when saturated solutions and, 493; super- 521 prob.; heat released, calculate, reactant is limiting, 380–381, 382–383 saturated solutions and, 494–495; 520; solar energy and, 522; of various prob.; reactions involving gases. See temperature and, 493–494, 494 table; substances, 520 table Gas stoichiometry; theoretical yield unsaturated solutions and, 493 Specific rate constant (k), 574 and, 385; titration and. See Titration Solubility product constant ( K sp ), Spectator ions, 301 Storage batteries, 720 614–619, 969 table; compare, 624 act.; Spectroscopist, 139 Straight-chain alkanes, 750–751 ion concentrations from, 617, 617 Speed of light (c), 137, 969 table Stratosphere, 5 prob., 618–619; ion product constant Spontaneous processes, 542. See also Straussman, Fritz, 111 ( Qsp ) and, 618–619, 619 prob.; molar Reaction spontaneity (∆G) Strong acids, 644, 656 solubility from, 615–617, 616 prob.; Spontaneity, reaction rate and. See Strong bases, 648, 656 predicting precipitates, 618 Reaction spontaneity (∆G) Strong electrolytes, 498

1048 Index Index

Strong nuclear force Tyndall effect

Strong nuclear force, 865 Taste, 262 Three Mile Island, 880, 883 Strontium, 186 prob., 910–911, 913, 914 Taste buds, 262 Thymine (T), 841 Strontium-90, 870, 871 table Television, 108 Time, 33 Strontium carbonate, 913 Tellurium, 936, 937 Tin, 226 table, 926–927, 930 Strontium chloride, 914 Temperature, 403; change in as evidence Tinplate, 930 Structural formulas, 253, 253, 746, 751 of chemical reaction, 282; chemical Titanium, 180, 181, 228, 918, 919 Structural isomers, 765 equilibrium and, 609–610, 611 act.; Titrant, 661 Structural proteins, 831 combined gas law and, 449, 450 prob.; Titration, 660–663; acid-base indica- Subatomic particles, 114 table, 119 table enzyme action and, 850 act.; evapora- tors and, 662, 663; end point of, 663; Sublimation, 83, 428 tion rate and, 432 act.; extreme and molarity from, 663, 664 prob., 670 Suboctets, 259 ideal gas law, 458; gas pressure and act.; steps in, 661 Substances, 5, 70 (Gay-Lussac’s law), 447, 448 prob.; gas Tokamak reactor, 884 Substituent groups, 752 volume and (Charles’s Law), 441 act., Tolerances, 49 Substituted cycloalkanes, naming, 756, 444–445, 446 prob.; pain receptors Toluene, 774 756–757 prob. and, 815; reaction rate and, 570, 571 Tools, zinc plating of, 295 Substituted hydrocarbons: alcohols, act., 583; solubility and, 493–494, 494 Tooth decay, fluoride and, 622 act. 792–793; aldehydes, 796–797; amides, table; viscosity and, 418 Torricelli, Evangelista, 406 800; amines, 795; carboxylic acids, Temperature inversion, 428 Touch sensors, 920 798; chemical reactions involving. See Temperature scales, 34–35; convert Toxicologist, 59 Organic reactions; crosslinks (make between, 34, 35; gas laws and, 451 Toxicology, 59 slime), 785 act.; esters, 799, 800 act.; Tetraethyl lead, 930 Trace elements, 195 ethers, 794; functional groups, 785 Tetragonal unit cell, 421 table, 422 act. Transactinide elements, 185 act., 786, 787 table; halocarbons, Tetrahedral molecular shape, 261, 263 Trans-fatty acids, 767 787–791; ketones, 797 table trans- isomers, 766 Substitutional alloys, 228 Thallium, 922, 923, 925 Transition elements, 177, 916–921; Substitution reactions, 790–791 Theoretical chemistry, 11 table analytical tests for, 917; applications Substrates, 830 Theoretical yield, 385 of, 918–921; atomic properties, 917; Subtraction: scientific notation and, 42; Theory, 16 common reactions involving, 916; significant figures and, 53 Thermal conductivity, 226 inner transition metals, 180; locations Sucrose, 73 table, 88, 205 act., 833 Thermochemical equations, 529–533; of strategic, 918; physical properties Sulfur, 159 table, 195, 936–937, 939 for changes of state, 530–531, 531 of, 916; transition metals, 180 Sulfuric acid, manufacture of, 388, 939 act.; Hess’s law, 534–536, 536 prob.; Transition metal ions, 208, 219, 219 Sunburn, 5 standard enthalpy (heat) of formation, table Sunlight, continuous spectrum of, 138 537–541, 540 prob.; writing, 529 Transition metals, 180, 185 Sunscreen, 5 Thermochemical universe, 526, 546 Transition state, 564 Sun, solar fusion in, 883 Thermochemistry, 523–528; combus- Transmutation, 865, 875 Superacids, 637 tion reactions, 532 prob., 533; enthalpy Transport proteins, 830 Super ball, properties of, 239 act. and enthalpy changes, 526–528; Transuranium elements, 876 Supercritical mass, 880 enthalpy (heat) of reaction, 527–528; Triclinic unit cells, 421 table Supersaturated solutions, 494–495 Hess’s law, 534–536, 536 prob.; molar Triglycerides, 836–837, 837 act.; phos- Surface area: reaction rate and, 569– enthalpy (heat) of fusion, 530–531; pholipids, 838; saponification of, 838, 570; solvation and, 492 molar enthalpy (heat) of vaporization, 838 act. Surface tension, 418–419 530; phase changes and, 530–531; sur- Trigonal bipyramidal molecular shape, Surfactants, 419 roundings, 526; systems, 526; thermo- 263 table Surroundings (thermochemical), 526 chemical equations, 529–533 Trigonal planar molecular shape, 261, Suspensions, 476 Thermocouples, 34 263 table Synthesis reactions, 289 Thermodynamics, second law of, 543 Trigonal pyramid molecular shape, 261, System (thermochemical), 526 Thermoluminescent dosimeter (TLD), 263 table Systeme International d’Unites. See SI 885 Triple covalent bonds, 245, 246 units Thermonuclear reactions, 883 Triple point, 429 Thermoplastic polymers, 813 Tritium, 904 Thermosetting polymers, 813 Troposphere, 5 T Third ionization energy, 192 Tungsten, 226, 918 Table salt. See Sodium chloride Third period elements, 159 table Turbidity, 478 act. Tap water, hard and soft, 24 act. Thixotropic substances, 476 Tyndall effect, 478, 478 act. Tarnish removal, 683, 683 act. Thomson, J. J., 108–109, 110, 212 Tartaric acid, 767 Thomson, William (Lord Kelvin), 35 Thorium, 921

Index 1049 Index

Ultraviolet radiation Zinc plating

charide, 833; element, 85; eliminate, v. soft, 24 act.; history in a glass of, U 751; environment, 75; evolve, 5; force, 355; hydration reactions forming, 804; Ultraviolet radiation: overexposure to, 419; formula, 284; gases, 403; generate, hydrogen bonds in, 413–414; ion prod-

damage from, 5; ozone layer and, 5, 6 878; homologous, 751; indicators, 663; uct constant for (K w ), 650–651, 651 Ultraviolet (Lyman) series, 147, 150 act. initial, 576; investigate, 566; meter, 33; prob.; law of multiple proportions and, Unbalanced forces, 597 method, 694; mixture, 81; mole, 321, 89; layering of in graduated cylinder, Unit cell, 421, 421 table, 422 act. 456; monosaccharide, 833; neutral, 31 act.; Lewis structure, 243; melting Units, 32–37; base SI, 33–35; converting 113; orient, 412; overlap, 244; ozone, of, 425–426; phase diagram, 429, 430; between, 957–958, 958 prob.; derived 5; percent, 48; period, 159; periodic, physical properties, 73 table, 75; polar- SI, 35–37; English, 32 176; phenomenon, 141; polysaccha- ity of, 267–268; as pure substance, 70; Universe (thermochemical), 526, 546 ride, 833; potential, 714; pressure, 495; sigma bonds in, 244, 245; solutions of. Unsaturated fatty acids, 835–836 product, 381; radiation, 863; random, See Aqueous solutions; surface tension Unsaturated hydrocarbons, 746 544; ratio, 333, 462; recover, 21; reduce, of, 419; thermochemistry, 530–531, Unsaturated solutions, 493 730; reduction, 681; resonance, 258; 531 act.; turbidity and Tyndall effect, Ununquadium, 185 saturated, 494; species, 693; specific, 478 act.; vaporization of, 426 Uranium-235, 878–879, 880 119; stoichiometry, 369; stress, 607; Watson, James, 637, 841–842 Uranium-238, 863, 880 structure, 184; sum, 42; system, 543; Wavelength, 137, 140 prob. Urea, 800 trans-, 766; transfer, 219; trigonal pla- Wave mechanical model of the atom. UV-B radiation, 5 nar, 262; unstable, 867; weight, 10 See Quantum mechanical model of Volt, 710 atom Volta, Alessandro, 709 Wave model of light, 137–139; atomic V Voltaic cell potentials. See emission spectrum and, 144–145; Valence electrons, 161; chemical bonds Electrochemical cell potentials dual nature of light and, 143 and, 207; periodic table trends, 182– Voltaic cells, 709–711; chemistry of, Waves, 137–138; amplitude of, 137; 185, 186 prob. 710–711; electrochemical cell poten- electromagnetic wave relationship, Valence Shell Electron Pair Repulsion tials, 711–714, 715 prob., 716–717, 137; frequency of, 137; wavelength of, (VSEPR) theory. See VSEPR model 734 act.; half-cells, 710 137, 140 prob. Valine, 827 table Voltaic pile, 709 Waxes, 838 van der Waals forces, 269–270, 271 Volume: chemical equilibrium and, Weak acids, 645, 648 table Vapor, 72 608–609; combined gas law and, 449, Weak bases, 649 Vaporization, 426–427; molar enthalpy 450 prob.; determine mass of object Weak electrolytes, 498 (heat) of vaporization, 530, 531 act. from, 38 prob.; gas pressure and Weather balloons, 449 See also Boiling, Evaporation (Boyle’s law), 442–443, 443 prob., 444 Weather patterns, density of air masses Vapor pressure, 427 act.; gas stoichiometry and, 460–461, and, 37 Vapor pressure lowering, 499–500 461 prob., 462, 462–463 prob.; gas Weight, 9–10 Variables, 14; controlling, 14–15; temperature and (Charles’ Law), 441 Willstater, Richard, 912 dependent, 14, 56; independent, 14 act., 444–445, 446 prob.; identify an Wohler, Friedrich, 744 Venom, 838 unknown by, 50 act.; SI units for, Word equations, 284 Vinegar-baking soda volcano, 669 35–36 Viscosity, 401 act., 417, 418 Volumetric analysis, 341 Visible (Balmer) series, 147, 148, 150 act. VSEPR model, 261–262, 263 table, 264 X Visible spectroscopy, 917 prob., 272 act. Xenon, 944, 945 Visible spectrum, 138–139 X-ray crystallography, 212 Vitalism, 744 X rays, 137, 864, 914 Vitamins, 383 W Xylene, 772, 774 Vocabulary margin features: alloy, 227; Warfarin, 59 anhydrous, 352; aromatic, 771; atom, Water: adhesion and cohesion of, 419; 103; attain, 243; aufbau, 157; bond, amphoteric nature of, 639; boiling of, Z 794; buffer, 667; capacity, 721; cis-, 766; 427, 969 table; capillary action, 419; Zewail, Ahmed, 581 class, 799; combustion, 290; comple- changes of state and, 76, 425–428; Zinc, 208, 920 tion, 599; complex, 845; compound, chemical properties, 75; condensation Zinc-carbon dry cells, 718–719 300; concentrated, 485; concentra- of, 428; covalent bonds in, 240, 243; Zinc plating, 295 tion, 561; concept, 113; conceptualize, density of solid, 420; electrical con- 845; conduct, 215; conductor, 180; ductivity of, 205 act.; electrolysis of, conform, 642; conjugate, 639; convert, 86; evaporation of, 426–427, 432 act.; 595; correspond, 711; demonstrate, formation of in aqueous solutions, 303, 547; deposit, 747; derive, 372; disac- 304 prob.; freezing, 428, 969 table; hard

1050 Index Researchers, (tc bl br)Mark A. Schneider/Visuals Unlimited, (tr)Jeff J. Daly, Fundamental Photo Credits Photography, NYC, (bcl)Carl Frank/Science Photo Library/Photo Researchers, (bcr)Roberto De Gugliemo/Science Photo Library/Photo Researchers; 422 Ross Frid/Visuals Unlimited; 423 Cover SPL/Photo Researchers; iv (t)courtesy of Thandi Buthelezi, (tc)courtesy of Laurel Deborah Davis/PhotoEdit; 424 Wally Eberhart/Visuals Unlimited; 426 CORBIS; 428 (t)Richard Dingrando, (bc)courtesy of Nicholas Hainen, (b)courtesy of Dinah Zike; 2 (t)Ted Kinsman/ Megna, Fundamental Photography, NYC, (b)Alissa Crandall/CORBIS; 431 Peter Scholey/Getty Science Photo Library/Photo Researchers, (c)Beateworks Inc./Alamy, (b)Daniel Sambraus/ Images; 432 Matt Meadows; 440 (t)Patrick Ward/CORBIS, (b)Elizabeth Opalenik/CORBIS, Photo Researchers, (bkgd)BL Images Ltd/Alamy; 3 Tom Pantages; 4 (l)STScI/NASA/CORBIS, (bkgd)CORBIS; 441 Matt Meadows; 448 Marie-Louise Avery/Alamy; 449 Roger Ressmeyer/ (r)Atlantide Phototravel/CORBIS; 5 CORBIS; 6 David Hay Jones/Science Photo Library/Photo CORBIS; 454 unlike by STOCK4B; 456 Cordelia Malloy/Science Photo Library; 457 Matt Researchers; 7 NASA/Photo Researchers; 9 David Young-Wolff/PhotoEdit; 10 (l)AFP/Getty Meadows; 458 (l)Pasquale Sorrentino/Science Photo Library/Photo Researchers, (r)Paul Images, (r)NASA Ames Research Center/Photo Researchers; 13 Art Vandalay/Getty Images; Broadbent/Alamy Images; 459 (l)Barry Runk/Grant Heilman Photography, (r)Lee Pengelly/ 14 (t)Matt Meadows, (b)Martyn F. Chillmaid/Science Photo Library/Photo Researchers; 15 Alamy Images; 461 Thomas R. Fletcher/www.proseandphotos.com; 462 Denny Eilers/Grant Chuck Bryan/epa/CORBIS; 17 Hank Morgan/Science Photo Library/Photo Researchers; 18 Heilman Photography; 464 Janet Horton Photography; 465 Jason Cohn/Reuters/CORBIS; (l)Charles D. Winters/Photo Researchers, (r)Dr Jeremy Burgess/Science Photo Library/Photo 466 Matt Meadows; 474 (t)David Papazian/Beateworks/CORBIS, (b)Peter Bowater/Alamy, Researchers; 19 Matt Meadows; 21 NASA/Science Photo Library/Photo Researchers; 22 (bkgd)Tom Feiler/Masterfile; 475 Matt Meadows; 476 Tom Pantages; 478 Matt Meadows/Peter (l)Philippe Psaila/Science Photo Library/Photo Researchers, (r)Eye Of Science/Science Photo Arnold, Inc.; 480 Tom Pantages; 482 AP Photo/L.G. Patterson; 484 Matt Meadows; 485 Richard Library/Photo Researchers; 23 (tl)The Andy Warhol Foundation, Inc./Art Resource, NY, Megna, Fundamental Photography, NYC; 489 Matt Meadows; 490 (l)Hulton-Deutsch Collection/ (tr)courtesy of Sharon Miller/NASA; 26 STScI/NASA/CORBIS; 30 Photri/T.Sanders; 31 Matt CORBIS, (r)SuperStock; 491 (t)Richard Megna/Fundamental Photography, NYC, (b)courtesy of Meadows; 32 (l)Rhoda Peacher, (r)Janet Horton Photography; 34 Robert Rathe; 37 (t)Matt DuPont; 492 (t b)Tiercel Photographics, (c)Rhonda Peacher Photography; 493 Andrew Lambert Meadows, (b)B. Runk/S. Schoenberger/Grant Heilman Photography; 40 The Hope Diamond/ Photography/Science Photo Library; 494 The McGraw-Hill Companies, Inc./Stephen Frisch, Smithsonian Institution, Washington DC/The Bridgeman Art Library; 42 Ed Young/CORBIS; 44 photographer; 495 Theo Allofs/Visuals Unlimited; 496 (t)Marilyn Genter/The Image Works, CORBIS; 49 Chris Gibson/Alamy; 52 Matt Meadows; 59 Jonathan Nourok/PhotoEdit; 68 Magnus (bl)Rachel Epstein/PhotoEdit, (br)CORBIS; 498 FP, Fundamental Photography, NYC; 501 (l)AP Hjorleifsson/Getty Images; 70 (l)Luca Trovato/Getty Images, (r)Thomas Raupach/Peter Arnold, Photo/Gerry Broome, (r)Tom Pantages; 505 Courtesy of Dr. Christopher L. Sabine, National Inc.; 71 (t)Michael Newman/PhotoEdit, (b)Colin Young-Wolff/PhotoEdit; 72 (t)Richard T. Oceanic and Atmospheric Administration; 506 Tom Pantages; 508 Leonard Lessin/Peter Arnold, Nowitz/CORBIS, (b)Spencer Grant/PhotoEdit; 73 (l)Sydney James/Getty Images, (r)Scientifica/ Inc.; 511 Courtesy NODC; 514 Purestock/Getty Images; 515 Matt Meadows; 516 (l)Agence Visuals Unlimited; 74 (l)Gibson Stock Photography, (r)Richard Megna, Fundamental Zoom/Getty Images, (r)Donald Miralle/Getty Images; 517 Alan Sirulnikoff/Photo Researchers; Photography, NYC; 75 British Antarctic Survey/Science Photo Library/Photo Researchers; 76 519 (l)Stephen Chernin/Getty Images, (r)Bob Krist/CORBIS; 521 Matt Meadows; 522 Eurelios/ (l)Ilianski/Alamy, (r)Design Pics Inc./Alamy; 77 (t)Alan Schein/zefa/CORBIS, (b)Astrid & Hanns- Phototake; 524 Tom Pantages; 526 Matt Meadows; 527 Tim Fuller; 528 Phil Degginger/Alamy; frieder Michler/Science Photo Library/Photo Researchers; 79 (l r)Richard Megna, Fundamental 533 Janet Horton Photography; 534 (l)CORBIS, (r)Mark A. Schneider/Visuals Unlimited; 537 Will Photography, NYC; 80 (l)Custom Medical Stock Photo, (r)Envision/CORBIS; 81 Robert Fournier/ & Deni McIntyre/Photo Researchers; 539 Jeff Maloney/Getty Images; 542 Ton Koene/Visuals Visuals Unlimited; 82 Martyn F. Chillmaid/Photo Researchers; 83 Tony Freeman/PhotoEdit; 84 Unlimited; 544 Dinodia Photo Library/PixtureQuest; 545 Matt Meadows; 546 Jon Arnold (l)Barry Mason/Alamy, (c)Tony Freeman/PhotoEdit, (r)AP Photo/Breakthrough Films & Images/Alamy; 549 (t)AP Photo, (b)Joshua Matz/Grant Heilman Photography; 550 Matt Televisions Inc., Randy Brooke; 85 Science Museum/SSPL/The Image Works; 86 (tl)Andrew Meadows; 552 Wesley Hitt/Alamy; 554 Frank Cezus/Getty Images; 554 Marc Muench/Getty Lambert Photography/Photo Researchers, (tr)Charles D. Winters/Photo Researchers, (b)Larry Images; 558 (inset)PhotriMicroStock/J.Greenberg, (bkgd)Transtock Inc/Alamy; 559 Matt Stepanowicz/Fundamental Photography, NYC; 90 Matt Meadows/Peter Arnold, Inc.; 91 Robert Meadows; 560 (l)Motoring Picture Library/Alamy, (cl)The Car Photo Library, (cr)John Terence Corry; 100 (inset)Colin Cuthbert/Photo Researchers, (bkgd)CORBIS; 101 Tom Pantages; 102 Turner/Taxi/Getty Images, (r)Getty Images; 563 Masterfile Corporation; 567 Charles D. Winters/ (l)PhotoLink/Getty Images, (t)Andre Jenny/Alamy, (r)Digital Vision/PunchStock, (b)Sean Daveys/ Photo Researchers; 568 Tom Pantages; 569 Richard Megna, Fundamental Photography, NYC; Australian Picture Library/CORBIS; 103 (t)Science Photo Library/Photo Researchers, (b)The Art 570 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 571 Tom Pantages; Archive/Museo Nazionale Palazzo Altemps Rome/Dagli Ort; 104 (t)Rischgitz/Getty Images, 572 (l)Arco Images/Alamy, (r)SuperStock; 574 (l)Mark Thomas/Science Photo Library/Photo (b)Wellcome Library, London; 106 (l)Stockdisc/PunchStock, (r)European Space Agency/Science Researchers, (r)Dr Jurgen Scriba/Science Photo Library/Photo Researchers; 581 Stephen Wilkes/ Photo Library/Photo Researchers; 107 Philippe Plailly/Science Photo Library/Photo Researchers; Getty Images; 584 Matt Meadows; 592 Stock Connection Distribution/Alamy; 593 Matt 110 SSPL/The Image Works; 111 (l)Bettmann/CORBIS, (r)CERN/Photo Researchers; 113 Meadows; 594 Randall Hyman Photography; 597 Tim Fuller; 598 Oote Boe/Alamy; 600 Martyn Research Group of Professor C. J. Zhong/SUNY-Binghamton/Supported by NSF; 117 Dan Peha/ Chillmaid /Photolibrary; 601 Dr. A. Leger/ISM/Phototake; 603 Plowes ProteaPix; 606 Shalom viestiphoto.com; 120 Eitan Simanor/Alamy; 122 (l r)Image Source/Getty Images; 125 Mauro Ormsby/Blend Images/Getty Images; 608 Getty Images; 610 Richard Megna, Fundamental Fermariello/Science Photo Library/Photo Researchers; 126 Janet Horton Photography; 134 Photography, NYC; 612 Tim Brakemeier/dpa/CORBIS; 614 (l)James L. Amos/CORBIS, (r)1996- Roger Ressmeyer/CORBIS; 135 Matt Meadows; 136 137 Richard Megna, Fundamental 98 AccuSoft Inc., All right/Robert Harding World Imagery/CORBIS; 615 Yoav Levy/Phototake; Photography, NYC; 138 David Parker/Science Photo Library/Photo Researchers; 141 CORBIS; 618 620 Tom Pantages; 623 Mount Everest from the South. AlpineAscents.com Collection; 142 Andrew Fox/CORBIS; 145 (t b)Richard Megna, Fundamental Photography, NYC; 149 John 624 Matt Meadows; 625 David Taylor/Photo Researchers; 627 Matt Meadows; 629 Marie- D. Norman/CORBIS; 153 Alberto Biscaro/Masterfile; 164 Matt Meadows; 172 Jim Sugar/Science Louise Avery/Alamy; 632 (t b)Tim Fuller, (bkgd)Jane Faircloth/TRANSPARENCIES, Inc.; 633 Matt Faction/Getty Images; 173 Tom Pantages; 175 Science Photo Library/Photo Researchers; 177 Meadows; 634 (l)Pat O’Hara/CORBIS, (r)W. Wayne Lockwood, M.D./CORBIS; 635 (l cl r)Tom Courtesy of Dell Inc.; 181 Miyoko Oyashiki/CORBIS Sygma; 185 Lawrence Berkley National Pantages, (cr)Eric Fowke/PhotoEdit; 636 With kind permission of the University of Edinburgh/ Laboratory; 192 Brandon D. Cole/CORBIS; 195 3D4Medicalcom/Getty Images; 204 CORBIS; The Bridgeman Art Library; 637 (tl)courtesy of the Archives, California Institue of Technology, 205 Matt Meadows; 206 David Nardini/Getty Images; 208 Richard Megna, Fundamental (r)Kazuyoshi Nomachi/CORBIS, (bl)Pasieka/Science Photo Library/Photo Researchers; 638 Photography, NYC; 210 (l)Andrew Lambert Photography/Photo Researchers, (r)Charles D. Spencer Grant/PhotoEdit; 639 Ciaran Griffin/Getty Images; 643 Jim Wark/Peter Arnold, Inc.; 644 Winters/Photo Researchers; 212 Colin Woods/Alamy; 213 (t)Manfred Kage/Peter Arnold, Inc., 645 Matt Meadows; 646 Louise Lister/Getty Images; 652 (t)Ingram Publishing/Alamy, (cl)Sue (c)Cat Gwynn/CORBIS, (b)Philippe Plailly/Science Photo Library/Photo Researchers; 214 Wilson/Alamy, (cr)foodfolio/Alamy, (bl)Eric Fowke/PhotoEdit, (br)Janet Horton Photography; (l r)Traudel Sachs/Phototake, (c)Mark A. Schneider/Photo Researchers; 220 Richard Megna, 654 Peter Dean/Grant Heilman Photography; 656 Matt Meadows; 658 (l)Matt Meadows, Fundamental Photography, NYC; 228 Greg Huglin/SuperStock; 229 Macduff Everton/CORBIS; (r)Andrew Lambert Photography/Science Photo Library/Photo Researchers; 659 660 661 662 230 Matt Meadows; 238 BIOS Gilson FranÁois/Peter Arnold, Inc.; 239 Matt Meadows; 240 663 664 665 Matt Meadows; 666 Sisse Brimberg/Getty Images; 668 Dr. Dennis Kunkel/Visuals Charles Krebs/Getty Images; 244 Visual Arts Library (London)/Alamy; 247 Charles O’Rear/ Unlimited; 669 (l)Charles D. Winters/Photo Researchers, (r)CORBIS; 672 673 674 Matt CORBIS; 257 Suzanne Long/Alamy; 261 Matt Meadows; 268 Tony Craddock/Photo Researchers; Meadows; 678 (inset)Tom Pantages, (bkgd)Jeff Daly/Fundamental Photography, NYC; 679 270 Scientifica/Visuals Unlimited; 271 (t)Peter Weber/Getty Images, (tcl)Perennou Nuridsany/ Tom Pantages; 680 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 681 Tom Photo Researchers, (cr)Susumu Nishinaga/Photo Researchers, (b bcl)Prof. Kellar Autumn, Lewis Pantages; 682 The McGraw-Hill Companies, Inc./Stephen Frisch, photographer; 685 Dean & Clark College; 272 Matt Meadows; 280 (t)Robert Clay/Alamy, (b)Terry W. Eggers/CORBIS, Conger/CORBIS; 686 John Cancalosi/Peter Arnold, Inc.; 689 L. S. Stepanowicz/Visuals Unlimited; (bkgd)Woodfall Wild Images/Alamy; 281 Matt Meadows; 282 Charles D. Winters/Photo 693 E. R. Degginger/Photo Researchers; 694 Tom Pantages; 697 (t)Mikael Karlsson/Alamy, Researchers; 283 (l)Mihaela Ninic/Alamy, (c)Phototake Inc./Alamy, (b)VStock/Alamy; 284 (b)Adrian Neumann/[email protected]; 700 Tom Pantages; 701 (t)Peticolas/Megna, Charles D. Winters/Photo Researchers; 287 Marilyn Genter/The Image Works; 290 (t)Josh Fundamental Photography, NYC, (cl)Tony Freeman/PhotoEdit, (cr)Ian Pilbeam/Alamy; 702 Tom Westrich/zefa/CORBIS, (bl)Jeff Vanuga/CORBIS, (br)Mary Evans Picture Library/The Image Pantages; 703 (t)Richard Megna, Fundamental Photography, NYC, (bl br)Yuliya Andrianova/ Works; 291 (l)Bettmann/CORBIS, (r)David Tipling/Alamy; 292 Courtesy of Mercedes-Benz Echo Ceramics; 706 (l)Tom Pantages, (tr) bobo/Alamy, (br)Khalid Ghani/NHPA, (bkgd)Michael Canada; 293 (l)Charles D. Winters/Photo Researchers, (r)Yoav Levy/Phototake; 295 Donald Durham/Nature Picture Library; 707 Matt Meadows; 709 Royal Institution/SSPL/The Image Pye/Alamy; 296 Andrew Lambert Photography/Photo Researchers; 299 Tom Pantages; 300 Works; 710 (t)Rafael Macia/Photo Researchers, (b)Chuck Franklin/Alamy; 719 (l)Tom Pantages, 303 Matt Meadows; 305 Charles D. Winters/Photo Researchers; 309 (l)Darwin Dale/Photo (r)Sami Sarkis/Alamy; 721 Stockbyte Platinum/Alamy; 722 (tl)Paul Silverman, Fundamental Researchers, (r)Eye of Science/Photo Researchers, (bkgd)E.R. Degginger/Animals Animals - Photography, NYC, (tr)Paul Rapson/Science Photo Library/Photo Researchers, (r)Ferruccio/ Earth Scenes; 310 Matt Meadows; 318 (t)Tom Pantages, (b)CORBIS, (bkgd)Tom Stack/Tom Alamy; 723 Pasquale Sorrentino/Photo Researchers; 724 Ilianski/Alamy; 725 Roger Ressmeyer/ Stack & Associates; 319 320 321 Matt Meadows, 322 CORBIS; 325 326 327 Matt Meadows; CORBIS; 726 Geoff Butler; 730 Tom Pantages; 731 Jeff Greenberg/PhotoEdit; 733 Tom 328 Jeff Greenberg/PhotoEdit; 335 Matt Meadows; 341 (l)Comstock Images/Alamy, (r)GECO Pantages; 742 Steve Starr/CORBIS; 743 Andrew Lambert Photography/Science Photo Library/ UK/Photo Researchers; 346 Tony Freeman/PhotoEdit; 351 Alfred Pasieka/Photo Researchers; Photo Researchers; 744 Panorama Media (Beijing)Ltd./Alamy; 745 A. T. Willett/Alamy; 748 352 354 356 Matt Meadows; 366 Clive Schaupmeyer/AGStockUSA/Science Photo Library/Photo Keith Dannemiller/Alamy; 749 Rachel Epstein/PhotoEdit; 752 (l)Michael Newman/PhotoEdit, Researchers; 368 Charles D. Winters/Photo Researchers; 371 Division of Chemical Education, (r)Janet Horton Photography; 757 Robin Nelson/PhotoEdit; 762 Michael Newman/PhotoEdit; Inc., American Chemical Society; 373 Richard Megna/Fundamental Photography, NYC; 375 764 Paul A. Souders/CORBIS; 767 (l)Masterfile, (r)Beth Galton/Getty Images; 770 R H Rhonda Peacher Photography; 379 Aaron Haupt; 380 Chris McElcheran/Masterfile; 384 385 Productions/Getty Images; 772 (tl)Paul Silverman, Fundamental Photography, NYC, (tr)CORBIS, Matt Meadows; 388 Gunter Marx Photography/CORBIS; 389 3D4Medicalcom/Getty Images; 390 (bl)Colin Garratt, Milepost 92½/CORBIS, (br)SSPL/The Image Works; 774 PicturePress/Getty Matt Meadows; 400 Richard W. Ramette; 401 Matt Meadows; 402 (l)Steve McCutcheon/Visuals Images; 775 Peter Titmuss/Alamy; 776 Matt Meadows; 784 (inset)Science Pictures Ltd/Science Unlimited, (c)Lester V. Bergman/CORBIS, (b)Dirk Wiersma/Photo Researchers; 406 H. Turvey/ Photo Library/Photo Researchers, (bkgd)Waina Cheng/Photolibrary; 785 786 Matt Meadows; Photo Researchers; 410 Tom Pantages; 415 Richard Megna/Fundamental Photography, NYC; 787 David Hoffman Photo Library/Alamy; 789 DK Limited/CORBIS; 790 Keith Wood/Getty 416 (t)Gabe Palmer/Alamy, (b)SSPL/The Image Works; 417 (l)Kent Wood/Photo Researchers, Images; 791 Paul Almasy/CORBIS; 797 Bill Aron/PhotoEdit; 798 Norm Thomas/Photo (r)Geoffrey Wheeler/Submission from National Institute of Standards and Technology; 418 Pier Researchers; 799 (l)Masterfile, (r)J.Garcia/photocuisine/CORBIS; 802 Cordelia Molloy/Photo Munstermanu/Foto Nature/Minden Pictures; 419 Richard Megna, Fundamental Photography, Researchers; 803 Chuck Franklin/Alamy; 807 (t)NASA/ESA/STScI/Science Photo Library/Photo NYC; 420 Daryl Benson/Masterfile; 421 (tl)Charles D. Winters/Science Photo Library/Photo

Credits 1051 Credits

Researchers, (b)CORBIS; 809 Alan L. Detrick/Science Photo Library/Photo Researchers; 810 CORBIS, (b)Michael Dalton, Fundamental Photography, NYC; 909 Geoffrey Wheeler; (t)Myrleen Ferguson Cate/PhotoEdit, (bl)SSPL/The Image Works, (br)Victor De Schwanberg/ 910 Charles D. Winters/Photo Researchers; 911 (l)Andrew Lambert/Photo Researchers, Science Photo Library/Photo Researchers; 811 (l)Bettmann/CORBIS, (r)Danita Delimont/Alamy; (r)Fundamental Photography, NYC; 912 (l)Mark A. Schneider/Photo Researchers, (r)courtesy of 812 (t)Siede Preis/Photodisc Green/Getty Images, (tc)David Young-Wolff/PhotoEdit, (b)CORBIS, Northrop Grumman Space Technology; 913 (t)Paul Freytag/zefa/CORBIS, (b)Rebecca Cook/ (bc)Dorling Kindersley/Getty Images; 813 David R. Frazier Photolibrary, Inc.; 815 Neil CORBIS; 914 (t)Dung Vo Trung/CORBIS, (b)Neil Borden/Photo Researchers; 915 (l)Fred Emmerson/Robert Harding World Imagery/Getty Images; 816 Matt Meadows; 824 (t)Eye Of Haebegger/Grant Heilman Photography, (r)Bettmann/CORBIS; 916 Cordelia Molloy/Science Science/Science Photo Library/Photo Researchers, (c)Dr. Kessel & Dr. Kardon/Tissues & Organs/ Photo Library/Photo Researchers; 917 Martyn F. Chillmaid/Photo Researchers; 918 Colin Visuals Unlimited, (b)Steve Gschmeissner/Photo Researchers, (bkgd)AK PhotoLibrary/Alamy; Walton/Alamy; 919 (t)Roger Harris/Photo Researchers, (c)Tom Pantages, (b)Kalicoba/Alamy; 825 Matt Meadows; 826 (l) John Conrad/CORBIS, (r)Ron Niebrugge/Alamy; 829 Janet Horton 920 (t)The Art Archive/Egyptian Museum Cairo/Dagli Orti, (b)Theodore Clutter/Photo Photography; 831 (l)CORBIS, (r)Medical-on-Line/Alamy; 833 IndexStock; 834 (l)Foodcollection. Researchers; 921 (t)ISM/Phototake, (b)Fritz Goro/Time & Life Pictures/Getty Images; 924 (t)Tom com/Alamy, (r)Brand X Pictures/Alamy; 835 D. Hurst/Alamy; 836 Michael Newman/PhotoEdit; Pantages, (tc)Greg Stott/Masterfile, (b)Toshiba Corporation images, (bc)Eye of Science/Photo 838 Pat O’Hara/CORBIS; 839 Joe Mc Donald/Animals Animals/Earth Scenes; 846 (t)CORBIS, Researchers; 925 (t)Judith Collins/Alamy, (b)Collection CNRI/Phototake; 926 Andrew Lambert (b)AP Photo/Joe Cavaretta; 847 (t)David Young-Wolff/PhotoEdit, (b)Alex Farnsworth/The Image Photography/Science Photo Library/Photo Researchers; 927 David Taylor/Photo Researchers; Works; 848 Wally McNamee/CORBIS; 849 (t)epa/CORBIS, (b)Mary Schweitzer; 855 CORBIS; 928 (tl)Chemical Design/Science Photo Library/Photo Researchers, (tr)Johner Images/Getty 858 (t)ADEAR/RDF/Visuals Unlimited, (c)ISM/Phototake, (b)Science Photo Library/Photo Images, (b)Dr Tim Evans/Science Photo Library/Photo Researchers; 929 Phil Schermeister/ Researchers, (bkgd)John Terence Turner/Taxi/Getty Images; 859 Comstock Images/Alamy; 860 CORBIS; 930 (t)Martin Dohrn/naturepl.com, (c)Goodshoot-Jupiterimages France/Alamy, (l)alwaysstock, LLC/Alamy, (r)Lee C. Coombs/Phototake; 861 C. Powell, P. Fowler & D. Perkins/ (b)Allan H Shoemake/Taxi/Getty Images; 931 Chinch Gryniewicz, Ecoscene/CORBIS; 933 Tom Photo Researchers; 864 Reuters/CORBIS; 874 Pixtal/SuperStock; 880 vario images GmbH & Pantages; 934 (t)Wally Eberhart/Visuals Unlimited, (c)Dr P. Marazzi/Photo Researchers, (b)Al Co.KG/Alamy; 881 Savintsev Fyodor/ITAR-TASS/CORBIS; 882 (t)Catherine Pouedras/Science Francekevich/CORBIS; 935 (t,bl)Michael Newman/PhotoEdit, (br)Janet Horton; 937 Chuck Place Photo Library/Photo Researchers, (bl)Bettmann/CORBIS, (br)John Hopkins Medical Institute/ Photography; 938 (t)Scientifica/Visuals Unlimited, (b)Glow Images/Alamy; 939 Leslie Garland AIP/Photo Researchers; 883 (t)epa/CORBIS, (b)D. Ducros/Photo Researchers; 884 (t)EFDA-JET/ Picture Library/Alamy; 940 Larry Stepanowicz/Visuals Unlimited; 941 Andrew Lambert Photo Researchers; 886 Martin Bond/Science Photo Library/Photo Researchers; 887 Custom Photography/Science Photo Library/Photo Researchers; 942 Michael Newman/PhotoEdit; Medical Stock Photo/cmsp.com; 888 (tl)ISM/Phototake, (tr)WDCN/Univ. College London/Photo 944 (l)Charles D. Winters/Photo Researchers, (r)Ted Kinsman/Science Photo Library/Photo Researchers, (b)Mediscan; 891 Johan Reinhard; 901 CORBIS; 904 (l)SPL/Photo Researchers, Researchers; 945 (t)epa/CORBIS, (bl)Phototake Inc./Alamy, (br)Wolfgang Kaehler/CORBIS; 946 (r)Matt Meadows; 905 (t)European Southern Observatory/Photo Researchers, (b)Melanie (l)Chris Bjornberg/Photo Researchers, (r)Daniele Pellegrini/Photo Researchers; 947 (t)Julian Stetson Freeman/The Christian Science Monitor via Getty Images; 906 Richard Megna/ Baum/Science Photo Library/Photo Researchers, (b)CORBIS; 952 Matt Meadows; 956 ABN Stock Fundamental Photography, NYC; 907 (l)David Taylor/Science Photo Library/Photo Researchers, Images/Alamy; 958 Matt Meadows; 959 Bill Aron/PhotoEdit; 964 Matt Meadows; 965 Elena (c cl)Jerry Mason/Science Photo Library/Photo Researchers, (cr r)Tom Pantages, (t)NASA/epa/ Rooraid/PhotoEdit; 967 Geoff Butler

1052 Credits CChemistryhemistry nline glencoe.com Access your Student Edition on the Internet so you don't need to bring your textbook home every night. You can link to fea- tures and get additional practice with these online study tools.

Check out the following features on your Online Learning Center:

Study Tools Section Self-Check Quizzes Chapter Tests • Interactive Tables Standardized Test Practice • Interactive Time Line Vocabulary PuzzleMaker • Interactive Figures Personal Tutor Study to Go Online Student Edition Multilingual Science Glossary

Extensions Periodic Table Links WebQuest Projects Career Links Science Fair Ideas Math Handbook Internet ChemLabs Prescreened Web Links

For Teachers Teacher Bulletin Board Teaching Today, and much more!

About the Photo: When a piece of sodium metal is dropped into a flask of bromine gas, the vigorous reaction produces heat and sparks of light. Safety Symbols Th ese safety symbols are used in laboratory and investigations in this book to indicate possible hazards. Learn the meaning of each symbol and refer to this page oft en. Remember to wash your hands thoroughly aft er completing lab procedures.

SAFETY SYMBOLS HAZARD EXAMPLES PRECAUTION REMEDY

Special disposal certain chemicals, Do not dispose of these Dispose of wastes as DISPOSAL procedures need to be living organisms materials in the sink or directed by your teacher. followed. trash can.

Organisms or other bacteria, fungi, blood, Avoid skin contact with Notify your teacher if you BIOLOGICAL biological materials that unpreserved tissues, plant these materials. Wear suspect contact with might be harmful to materials mask or gloves. material. Wash hands humans thoroughly.

Objects that can burn boiling liquids, hot plates, Use proper protection Go to your teacher for EXTREME skin by being too cold or dry ice, liquid nitrogen when handling. first aid. TEMPERATURE too hot

Use of tools or glassware razor blades, pins, Practice common-sense Go to your teacher for SHARP that can easily puncture or scalpels, pointed tools, behavior and follow first aid. OBJECT slice skin dissecting probes, guidelines for use of broken glass the tool.

Possible danger to ammonia, acetone, nail Make sure there is good Leave foul area and FUME respiratory tract from polish remover, heated ventilation. Never smell notify your teacher fumes sulfur, moth balls fumes directly. Wear a immediately. mask.

Possible danger from improper grounding, liquid Double-check setup with Do not attempt to fix ELECTRICAL electrical shock or burn spills, short circuits, teacher. Check condition electrical problems. Notify exposed wires of wires and apparatus. your teacher immediately.

Substances that can pollen, moth balls, steel Wear dust mask and Go to your teacher for IRRITANT irritate the skin or mucous wool, fiberglass, potassium gloves. Practice extra care first aid. membranes of the permanganate when handling these respiratory tract materials.

Chemicals that can react bleaches such as Wear goggles, gloves, Immediately flush the CHEMICAL with and destroy tissue hydrogen peroxide; acids and an apron. affected area with water and other materials such as sulfuric acid, and notify your teacher. hydrochloric acid; bases such as ammonia, sodium hydroxide

Substance may be mercury, many metal Follow your teacher’s Always wash hands TOXIC poisonous if touched, compounds, iodine, instructions. thoroughly after use. inhaled, or swallowed. poinsettia plant parts Go to your teacher for first aid.

Open flame may ignite alcohol, kerosene, Avoid open flames and Notify your teacher FLAMMABLE flammable chemicals, potassium permanganate, heat when using immediately. Use fire loose clothing, or hair. hair, clothing flammable chemicals. safety equipment if applicable.

Open flame in use, may hair, clothing, paper, Tie back hair and loose Always wash hands OPEN FLAME cause fire. synthetic materials clothing. Follow teacher's thoroughly after use. instructions on lighting Go to your teacher for and extinguishing flames. first aid.

Eye Safety Clothing Animal Radioactivity Handwashing Proper eye Protection Safety This symbol After the lab, wash protection should This symbol This symbol appears when hands with soap be worn at all appears when sub- appears when radioactive and water before times by anyone stances could stain safety of animals materials are used. removing goggles performing or or burn clothing. and students observing science must be ensured. activities. PERIODIC TABLE OF THE ELEMENTS

1 Gas Element Hydrogen Liquid Atomic number 1 State of Hydrogen matter 1 Symbol H Solid 12H 1.008 Atomic mass 1.008 Synthetic

Lithium Beryllium 3 4 2 Li Be 6.941 9.012

Sodium Magnesium 11 12 3 Na Mg 3456789 22.990 24.305

Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt 19 20 21 22 23 24 25 26 27 4 K Ca Sc Ti V Cr Mn Fe Co 39.098 40.078 44.956 47.867 50.942 51.996 54.938 55.847 58.933

Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium 37 38 39 40 41 42 43 44 45 5 Rb Sr Y Zr Nb Mo Tc Ru Rh 85.468 87.62 88.906 91.224 92.906 95.94 (98) 101.07 102.906

Cesium Barium Lanthanum Hafnium Tantalum Tungsten Rhenium Osmium Iridium 6 55 56 57 72 73 74 75 76 77 Cs Ba La Hf Ta W Re Os Ir 132.905 137.327 138.905 178.49 180.948 183.84 186.207 190.23 192.217

Francium Radium Actinium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium 7 87 88 89 104 105 106 107 108 109 Fr Ra Ac Rf Db Sg Bh Hs Mt (223) (226) (227) (261) (262) (266) (264) (277) (268)

The number in parentheses is the mass number of the longest lived isotope for that element.

Cerium Praseodymium Neodymium Promethium Samarium Europium 58 59 60 61 62 63 Lanthanide series Ce Pr Nd Pm Sm Eu 140.115 140.908 144.242 (145) 150.36 151.965

Thorium Protactinium Uranium Neptunium Plutonium Americium Actinide series 90 91 92 93 94 95 Th Pa U Np Pu Am 232.038 231.036 238.029 (237) (244) (243) Metal 18 Metalloid Nonmetal Helium Recently 2 13 14 15 16 17 He observed 4.003

Boron Carbon Nitrogen Oxygen Fluorine Neon 5 6 7 8 9 10 B C N O F Ne 10.811 12.011 14.007 15.999 18.998 20.180

Aluminum Silicon Phosphorus Sulfur Chlorine Argon 13 14 15 16 17 18 10 11 12 Al Si P S Cl Ar 26.982 28.086 30.974 32.066 35.453 39.948

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 28 29 30 31 32 33 34 35 36 Ni Cu Zn Ga Ge As Se Br Kr 58.693 63.546 65.39 69.723 72.61 74.922 78.96 79.904 83.80

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon 46 47 48 49 50 51 52 53 54 Pd Ag Cd In Sn Sb Te I Xe 106.42 107.868 112.411 114.82 118.710 121.757 127.60 126.904 131.290

Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon 78 79 80 81 82 83 84 85 86 Pt Au Hg Tl Pb Bi Po At Rn 195.08 196.967 200.59 204.383 207.2 208.980 208.982 209.987 222.018

Darmstadtium Roentgenium Ununbium Ununtrium Ununquadium Ununpentium Ununhexium Ununoctium 110 111 112 113 114 115 116 118 Ds Rg * Uub * Uut *Uuq *Uup **Uuh Uuo (281) (272) (285) (284) (289) (288) (291) (294) *The names and symbols for elements 112, 113, 114, 115, 116, and 118 are temporary. Final names will be selected when the elements’ discoveries are verified.

Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium 64 65 66 67 68 69 70 71 Gd Tb Dy Ho Er Tm Yb Lu 157.25 158.925 162.50 164.930 167.259 168.934 173.04 174.967

Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 96 97 98 99 100 101 102 103 Cm Bk Cf Es Fm Md No Lr (247) (247) (251) (252) (257) (258) (259) (262)