ALKBH3 Partner ASCC3 Mediates P-Body Formation and Selective

Total Page:16

File Type:pdf, Size:1020Kb

ALKBH3 Partner ASCC3 Mediates P-Body Formation and Selective Wollen et al. J Transl Med (2021) 19:287 https://doi.org/10.1186/s12967-021-02948-6 Journal of Translational Medicine RESEARCH Open Access ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA Kristian Lied Wollen1,2, Lars Hagen1,2,3, Cathrine B. Vågbø1,2,3, Renana Rabe1,2, Tobias S. Iveland1,2, Per Arne Aas1,2, Animesh Sharma1,2,3, Bjørnar Sporsheim1,4, Hilde O. Erlandsen1, Vuk Palibrk1, Magnar Bjørås1, Davi M. Fonseca1,2,3, Nima Mosammaparast5 and Geir Slupphaug1,2,3* Abstract Background: Reversible enzymatic methylation of mammalian mRNA is widespread and serves crucial regulatory functions, but little is known to what degree chemical alkylators mediate overlapping modifcations and whether cells distinguish aberrant from canonical methylations. Methods: Here we use quantitative mass spectrometry to determine the fate of chemically induced methylbases in the mRNA of human cells. Concomitant alteration in the mRNA binding proteome was analyzed by SILAC mass spectrometry. Results: MMS induced prominent direct mRNA methylations that were chemically identical to endogenous meth- ylbases. Transient loss of 40S ribosomal proteins from isolated mRNA suggests that aberrant methylbases mediate arrested translational initiation and potentially also no-go decay of the afected mRNA. Four proteins (ASCC3, YTHDC2, TRIM25 and GEMIN5) displayed increased mRNA binding after MMS treatment. ASCC3 is a binding partner of the DNA/RNA demethylase ALKBH3 and was recently shown to promote disassembly of collided ribosomes as part of the ribosome quality control (RQC) trigger complex. We fnd that ASCC3-defcient cells display delayed removal of MMS- induced 1-methyladenosine (m1A) and 3-methylcytosine (m3C) from mRNA and impaired formation of MMS-induced P-bodies. Conclusions: Our fndings conform to a model in which ASCC3-mediated disassembly of collided ribosomes allows demethylation of aberrant m1A and m3C by ALKBH3. Our fndings constitute frst evidence of selective sanitation of aberrant mRNA methylbases over their endogenous counterparts and warrant further studies on RNA-mediated efects of chemical alkylators commonly used in the clinic. Keywords: Alkylating agents, ALKBH3, ASCC3, Epitranscriptome, 1-Methyladenosine, 3-Methylcytosine, 7-Methylguanosine, No-go decay, P-bodies, Ribosome quality control Background Enzymatic modifcation of nitrogen bases in mRNA *Correspondence: [email protected] regulates processing, transport, lifetime and transla- 1 Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway tion of mRNA molecules. In turn, this infuences cell Full list of author information is available at the end of the article diferentiation, stress responses, immunity, cognition © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Wollen et al. J Transl Med (2021) 19:287 Page 2 of 22 and cancer development ([1–3] and references therein). from ALKBH3 knockout cells [15], whereas hundreds of To date, 11 endogenous base modifcations have been sites have been identifed in wild type cells [36]. Whether described in mammalian mRNA. Tese are 7-methyl- ALKBH3 shares a similar function in mRNA demeth- guanosine (m7G, residing in the mRNA cap structure ylation of endogenous m 3C [13], remains unknown. [4] as well as internally [5–7]), pseudouridine (Ψ) [8], Te YTH-domain containing proteins YTHDF1-3 and inosine (I) [9], N4-acetylcytidine (ac4C) [10], 5-methyl- YTHDC1, but not YTHDC2, have been reported to be cytidine (m5C) [11], 5-hydroxymethylcytidine (hm 5C) m1A reader proteins [26, 37]. Presently, no readers are [12], 3-methylcytidine (m3C) [13], 1-methyladeno- known for m3C or internal m7G in mRNA and no stud- sine (m1A) [14, 15], 6-methyladenosine (m6A) [16, 17] ies have attempted to monitor alterations in the human and its derivatives 6-hydroxymethyladenosine (hm 6A) mRNA binding proteome after treatment with methylat- and 6-formyladenosine (f6A) [18]. Moreover, in silico ing agents. analysis recently suggested a large number of potential To begin addressing these issues, we separately quanti- 5-methyluridine (m5U) modifcation sites in mRNA [19]. fed endogenous and MMS-induced methylbases in HeLa Additional methylations at the ribose moieties further mRNA after MMS treatment and monitored concomi- contribute to this complexity [2, 20]. Enzyme “writers” tant alterations in the mRNA binding proteome. Imme- that are able to establish each of the base modifcations diately after MMS treatment, we observed markedly have been described, and enzymes that catalyze their increased levels of m1A, m3C and m7G in mRNA. Tis removal (“erasers”) have been described for the methyl- was accompanied by reduced binding of protein mem- ated bases except internal m7G. Proteins that specifcally bers of the ribosomal 40S subunit, whereas binding of bind to and dictate the functional outcomes (“readers”) of 60S proteins was essentially unafected. Te selective 40S the base modifcations in mRNA are much less charac- loss could be explained by ribosomal collisions at MMS- terized, and are primarily confned to m6A, m1A and the induced methylbases or secondary structures, thereby m7G mRNA cap [21–27]. activating the ribosomal quality control (RQC) pathway Notably, at least three of the endogenous mRNA modi- (reviewed in [38]), GIGYF2/4EHP-dependent sequestra- fcations, m1A and m3C and m7G, may also be introduced tion of the mRNA cap and blocked recruitment of 43S in nucleic acids by direct non-enzymatic methylation preinitiation complexes (PICs) to afected mRNAs [39, by endogenous and environmental methylating agents, 40]. including tobacco-specifc nitrosamines and agents fre- ASCC3 was among the very few proteins that increased quently used as cytostatic drugs in cancer treatment [28, binding to mRNA after MMS treatment. ASCC3 is a 29]. Although chemical methylation of human mRNA DNA helicase that associates with ALKBH3 to facili- has previously not been specifcally addressed, treatment tate unwinding and efcient demethylation of m1A and of total RNA from diferent species with methyl meth- m3C in DNA [41, 42]. In addition, it was recently identi- anesulfonate (MMS) or 1-methyl-nitrosourea (MNU) fed to bind stalled ribosomes as part of the RQC trigger resulted in prominent formation of m7G as well as sev- (RQT) complex that facilitates ribosomal splitting [43]. eral fold higher relative levels of m 1A and m3C in total Our results suggest that cells exploit these properties of RNA than in DNA [28]. m1A, m3C and m7G all introduce ASCC3 to allow ALKBH3-mediated demethylation of a positive charge in addition to the methyl group. Tis aberrant m1A and m3C in the coding region of mRNA, can dramatically afect RNA–protein interactions and whereas canonical methylbases remain unafected. In secondary structures through electrostatic efects, and addition, ASCC3 has a role in P-body formation, poten- may interfere with mRNA–tRNA interactions [29–32]. tially by promoting ribosomal detachment from mRNAs A crucial question then is whether these aberrant meth- harboring difcult-to-repair lesions and assembly of such ylations are recognized and processed diferentially com- transcripts in P-bodies for further repair or degradation. pared to their endogenous counterparts. We previously Although the molecular details of such a mechanism demonstrated that the human AlkB-homolog ALKBH3 remain to be elucidated, our results provide frst evi- is able to demethylate m1A and m3C in RNA as well as dence of selective removal of aberrant methylbases from in DNA with single-strand substrate preference [33, 34]. the human mRNA pool and may have signifcant impli- Another member of the same family, ALKBH1, may con- cations to modulate the efects of cytotoxic alkylating tribute to demethylation of certain structured m1A sites drugs. in mRNA [35]. ALKBH3 is able to restore RNA function by reactivating chemically methylated RNA bacterio- Methods phages and tRNA and has been shown to act as an eraser Chemicals, plasmids and antibodies of endogenous m 1A in mRNA in vivo [15, 33]. Tousands Complete protease inhibitor cocktail was from Roche of reversible m 1A sites have been identifed in mRNA Inc. Dulbecco’s modifed Eagle medium (DMEM) minus Wollen et al. J Transl Med (2021) 19:287 Page 3 of 22 l-arginine and l-lysine, dialyzed fetal calf serum (dFCS) of l-arginine (and l-lysine) in the growth media as pre- and trypsin were from Termo Scientifc.
Recommended publications
  • SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
    SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Hypopituitarism May Be an Additional Feature of SIM1 and POU3F2 Containing 6Q16 Deletions in Children with Early Onset Obesity
    Open Access Journal of Pediatric Endocrinology Case Report Hypopituitarism may be an Additional Feature of SIM1 and POU3F2 Containing 6q16 Deletions in Children with Early Onset Obesity Rutteman B1, De Rademaeker M2, Gies I1, Van den Bogaert A2, Zeevaert R1, Vanbesien J1 and De Abstract Schepper J1* Over the past decades, 6q16 deletions have become recognized as a 1Department of Pediatric Endocrinology, UZ Brussel, frequent cause of the Prader-Willi-like syndrome. Involvement of SIM1 in the Belgium deletion has been linked to the development of obesity. Although SIM1 together 2Department of Genetics, UZ Brussel, Belgium with POU3F2, which is located close to the SIM1 locus, are involved in pituitary *Corresponding author: De Schepper J, Department development and function, pituitary dysfunction has not been reported frequently of Pediatric Endocrinology, UZ Brussel, Belgium in cases of 6q16.1q16.3 deletion involving both genes. Here we report on a case of a girl with typical Prader-Willi-like symptoms including early-onset Received: December 23, 2016; Accepted: February 21, hyperphagic obesity, hypotonia, short hands and feet and neuro-psychomotor 2017; Published: February 22, 2017 development delay. Furthermore, she suffered from central diabetes insipidus, central hypothyroidism and hypocortisolism. Her genetic defect is a 6q16.1q16.3 deletion, including SIM1 and POU3F2. We recommend searching for a 6q16 deletion in children with early onset hyperphagic obesity associated with biological signs of hypopituitarism and/or polyuria-polydipsia syndrome. The finding of a combined SIM1 and POU3F2 deletion should prompt monitoring for the development of hypopituitarism, if not already present at diagnosis. Keywords: 6q16 deletion; SIM1; POU3F2; Prader-Willi-like syndrome; Hypopituitarism Introduction insipidus and of some specific pituitary hormone deficiencies in children with a combined SIM1 and POU3F2 deficiency.
    [Show full text]
  • Systematic Description of the Expression and Prognostic Value of M6A Regulators in Human Ovarian Cancer
    Systematic Description of the Expression and Prognostic Value of M6A Regulators in Human Ovarian Cancer Yuwei Chen Fujian Medical University Fujian Cancer Hospital Yang Sun ( [email protected] ) Fujian Cancer Hospital https://orcid.org/0000-0003-4224-8832 Xinbei Chen Fujian Medical University Fujian Cancer Hospital Siming Li Fujian Medical University Fujian Cancer Hospital Hongmei Xia Fujian Cancer Hospital Research Keywords: m6A regulators, m6A, ovarian cancer, Prognostic values, bioinformatics analysis. Posted Date: December 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-131682/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Systematic description of the expression and prognostic value of m6A regulators in human ovarian cancer 1 Yuwei Chen1, Yang Sun1*, Xinbei Chen1, Siming Li1, Hongmei Xia1 2 * Correspondence: 3 Yang Sun 4 [email protected] 5 Total words:5253 6 Total Figures and Tables: 11 Figures and 3 Tables 7 Keywords: m6A regulators, m6A, ovarian cancer, Prognostic values, 8 bioinformatics analysis. 9 Abstract 10 Background: N6-methyladenine (m6A) methylation, known as a kind of RNA 11 methylation regulator, has become a hotspot for research in the life sciences in recent 12 years. The existing studies revealed that m6A regulators helped to regulate the 13 progression of several malignant tumors. However, the expression mode and 14 prognostic value of m6A regulators in ovarian cancer have not been fully elucidated. 15 Methods: ONCOMINE, GEPIA, Human protein atlas, Kaplan-meier, UALCAN, 16 cBioPortal, GeneMANIA, DAVID, Sring, and Metascape were utilized in this study. 17 Results: In this study, through a comprehensive use of multiple database systems, 18 m6A regulators-induced mRNA and protein expression levels and their prognostic 19 value in the epithelial ovarian cancer of various histological types were analyzed.
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • A Novel Hypoxic Long Noncoding RNA KB-1980E6.3 Maintains Breast Cancer Stem Cell Stemness Via Interacting with IGF2BP1 to Facilitate C-Myc Mrna Stability
    Oncogene (2021) 40:1609–1627 https://doi.org/10.1038/s41388-020-01638-9 ARTICLE A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability 1 2 3 4 1 1 1 1 1 Pengpeng Zhu ● Fang He ● Yixuan Hou ● Gang Tu ● Qiao Li ● Ting Jin ● Huan Zeng ● Yilu Qin ● Xueying Wan ● 1 1 5 1 Yina Qiao ● Yuxiang Qiu ● Yong Teng ● Manran Liu Received: 15 June 2020 / Revised: 13 November 2020 / Accepted: 18 December 2020 / Published online: 19 January 2021 © The Author(s), under exclusive licence to Springer Nature Limited 2021. This article is published with open access Abstract The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB- 1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both 1234567890();,: 1234567890();,: in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/ IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.
    [Show full text]
  • The Interaction of DNA Repair Factors ASCC2 and ASCC3 Is Affected by Somatic Cancer Mutations
    ARTICLE https://doi.org/10.1038/s41467-020-19221-x OPEN The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations Junqiao Jia 1, Eva Absmeier1,5, Nicole Holton1, Agnieszka J. Pietrzyk-Brzezinska1,6, Philipp Hackert2, ✉ Katherine E. Bohnsack 2, Markus T. Bohnsack2,3 & Markus C. Wahl 1,4 The ASCC3 subunit of the activating signal co-integrator complex is a dual-cassette Ski2-like nucleic acid helicase that provides single-stranded DNA for alkylation damage repair by the 1234567890():,; α-ketoglutarate-dependent dioxygenase AlkBH3. Other ASCC components integrate ASCC3/ AlkBH3 into a complex DNA repair pathway. We mapped and structurally analyzed inter- acting ASCC2 and ASCC3 regions. The ASCC3 fragment comprises a central helical domain and terminal, extended arms that clasp the compact ASCC2 unit. ASCC2–ASCC3 interfaces are evolutionarily highly conserved and comprise a large number of residues affected by somatic cancer mutations. We quantified contributions of protein regions to the ASCC2–ASCC3 interaction, observing that changes found in cancers lead to reduced ASCC2–ASCC3 affinity. Functional dissection of ASCC3 revealed similar organization and regulation as in the spliceosomal RNA helicase Brr2. Our results delineate functional regions in an important DNA repair complex and suggest possible molecular disease principles. 1 Laboratory of Structural Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany. 2 Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany. 3 Göttingen Center for Molecular Biosciences, Georg-August-Universität, Göttingen, Germany. 4 Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, D-12489 Berlin, Germany. 5Present address: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
    [Show full text]
  • The VE-Cadherin/Amotl2 Mechanosensory Pathway Suppresses Aortic InAmmation and the Formation of Abdominal Aortic Aneurysms
    The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inammation and the formation of abdominal aortic aneurysms Yuanyuan Zhang Karolinska Institute Evelyn Hutterer Karolinska Institute Sara Hultin Karolinska Institute Otto Bergman Karolinska Institute Maria Forteza Karolinska Institute Zorana Andonovic Karolinska Institute Daniel Ketelhuth Karolinska University Hospital, Stockholm, Sweden Joy Roy Karolinska Institute Per Eriksson Karolinska Institute Lars Holmgren ( [email protected] ) Karolinska Institute Article Keywords: arterial endothelial cells (ECs), vascular disease, abdominal aortic aneurysms Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-600069/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The VE-cadherin/AmotL2 mechanosensory pathway suppresses aortic inflammation and the formation of abdominal aortic aneurysms Yuanyuan Zhang1, Evelyn Hutterer1, Sara Hultin1, Otto Bergman2, Maria J. Forteza2, Zorana Andonovic1, Daniel F.J. Ketelhuth2,3, Joy Roy4, Per Eriksson2 and Lars Holmgren1*. 1Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden. 2Department of Medicine Solna, BioClinicum, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. 3Department of Cardiovascular and Renal Research, Institutet of Molecular Medicine, Univ. of Southern Denmark, Odense, Denmark 4Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm,
    [Show full text]
  • Supplementary Information
    Supplementary Information Table S1. Gene Ontology analysis of affected biological processes/pathways/themes in H1 hESCs based on sets of statistically significant differentially expressed genes. Exposures Overrepresented Categories (Upregulation) EASE Score Negative regulation of cell differentiation 0.0049 Lipid biosynthetic process 0.015 Negative regulation of cell proliferation 0.02 5 cGy, 2 h Transcription factor binding 0.037 Regulation of apoptosis 0.038 Positive regulation of anti-apoptosis 0.048 P53 signaling pathway 4.2 × 10−10 Positive regulation of apoptosis 7.5 × 10−8 Response to DNA damage stimulus 1.5 × 10−6 Cellular response to stress 9.6 × 10−6 1 Gy, 2 h Negative regulation of cell proliferation 9.8 × 10−6 Cell cycle arrest 7.0 × 10−4 Negative regulation of cell differentiation 1.5 × 10−3 Regulation of protein kinase activity 0.011 I-kappaB kinase/NF-kappaB cascade 0.025 Metallothionein superfamily 9.9 × 10−18 Induction of apoptosis 8.8 × 10−5 DNA damage response 2.6 × 10−4 1 Gy, 16 h Positive regulation of anti-apoptosis 0.001 Positive regulation of cell death 0.005 Cellular response to stress 0.012 Exposures Overrepresented Categories (Downregulation) EASE Score Alternative splicing 0.016 1 Gy, 2 h Chromatin organization 0.020 Chromatin assembly 2.0 × 10−6 Cholesterol biosynthesis 5.1 × 10−5 Macromolecular complex assembly 9.3 × 10−4 1 Gy, 16 h PPAR signaling pathway 0.007 Hemopoietic organ development 0.033 Immune system development 0.040 S2 Table S2. Gene Ontology analysis of affected biological processes/pathways/themes in H7 based on sets of statistically significant differentially expressed genes.
    [Show full text]
  • Figure S1. Reverse Transcription‑Quantitative PCR Analysis of ETV5 Mrna Expression Levels in Parental and ETV5 Stable Transfectants
    Figure S1. Reverse transcription‑quantitative PCR analysis of ETV5 mRNA expression levels in parental and ETV5 stable transfectants. (A) Hec1a and Hec1a‑ETV5 EC cell lines; (B) Ishikawa and Ishikawa‑ETV5 EC cell lines. **P<0.005, unpaired Student's t‑test. EC, endometrial cancer; ETV5, ETS variant transcription factor 5. Figure S2. Survival analysis of sample clusters 1‑4. Kaplan Meier graphs for (A) recurrence‑free and (B) overall survival. Survival curves were constructed using the Kaplan‑Meier method, and differences between sample cluster curves were analyzed by log‑rank test. Figure S3. ROC analysis of hub genes. For each gene, ROC curve (left) and mRNA expression levels (right) in control (n=35) and tumor (n=545) samples from The Cancer Genome Atlas Uterine Corpus Endometrioid Cancer cohort are shown. mRNA levels are expressed as Log2(x+1), where ‘x’ is the RSEM normalized expression value. ROC, receiver operating characteristic. Table SI. Clinicopathological characteristics of the GSE17025 dataset. Characteristic n % Atrophic endometrium 12 (postmenopausal) (Control group) Tumor stage I 91 100 Histology Endometrioid adenocarcinoma 79 86.81 Papillary serous 12 13.19 Histological grade Grade 1 30 32.97 Grade 2 36 39.56 Grade 3 25 27.47 Myometrial invasiona Superficial (<50%) 67 74.44 Deep (>50%) 23 25.56 aMyometrial invasion information was available for 90 of 91 tumor samples. Table SII. Clinicopathological characteristics of The Cancer Genome Atlas Uterine Corpus Endometrioid Cancer dataset. Characteristic n % Solid tissue normal 16 Tumor samples Stagea I 226 68.278 II 19 5.740 III 70 21.148 IV 16 4.834 Histology Endometrioid 271 81.381 Mixed 10 3.003 Serous 52 15.616 Histological grade Grade 1 78 23.423 Grade 2 91 27.327 Grade 3 164 49.249 Molecular subtypeb POLE 17 7.328 MSI 65 28.017 CN Low 90 38.793 CN High 60 25.862 CN, copy number; MSI, microsatellite instability; POLE, DNA polymerase ε.
    [Show full text]
  • Migration of Thymic Pre-T Cells Regulates Development
    Alternative Splicing Controlled by Heterogeneous Nuclear Ribonucleoprotein L Regulates Development, Proliferation, and Migration of Thymic Pre-T Cells This information is current as of October 2, 2021. Marie-Claude Gaudreau, Florian Heyd, Rachel Bastien, Brian Wilhelm and Tarik Möröy J Immunol published online 20 April 2012 http://www.jimmunol.org/content/early/2012/04/20/jimmun ol.1103142 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/04/20/jimmunol.110314 Material 2.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 20, 2012, doi:10.4049/jimmunol.1103142 The Journal of Immunology Alternative Splicing Controlled by Heterogeneous Nuclear Ribonucleoprotein L Regulates Development, Proliferation, and Migration of Thymic Pre-T Cells Marie-Claude Gaudreau,*,† Florian Heyd,‡ Rachel Bastien,* Brian Wilhelm,x and Tarik Mo¨ro¨y*,† The regulation of posttranscriptional modifications of pre-mRNA by alternative splicing is important for cellular function, devel- opment, and immunity.
    [Show full text]
  • Multiomic Analysis of the UV-Induced DNA Damage Response
    Resource Multiomic Analysis of the UV-Induced DNA Damage Response Graphical Abstract Authors Stefan Boeing, Laura Williamson, Vesela Encheva, ..., Michael Howell, Ambrosius P. Snijders, Jesper Q. Svejstrup Correspondence [email protected] In Brief Boeing et al. investigate the UV-induced DNA damage response by combining a range of proteomic and genomic screens. A function in this response for the melanoma driver STK19 as well as a number of other factors are uncovered. Highlights d A multiomic screening approach examines the UV-induced DNA damage response d Multiple factors are connected to the transcription-related DNA damage response d Melanoma gene STK19 is required for a normal DNA damage response Boeing et al., 2016, Cell Reports 15, 1597–1610 May 17, 2016 ª 2016 The Author(s) http://dx.doi.org/10.1016/j.celrep.2016.04.047 Cell Reports Resource Multiomic Analysis of the UV-Induced DNA Damage Response Stefan Boeing,1,5 Laura Williamson,1 Vesela Encheva,2 Ilaria Gori,3 Rebecca E. Saunders,3 Rachael Instrell,3 Ozan Aygun,€ 1,7 Marta Rodriguez-Martinez,1 Juston C. Weems,4 Gavin P. Kelly,5 Joan W. Conaway,4,6 Ronald C. Conaway,4,6 Aengus Stewart,5 Michael Howell,3 Ambrosius P. Snijders,2 and Jesper Q. Svejstrup1,* 1Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK 2Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK 3High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln’s
    [Show full text]