Multiomic Analysis of the UV-Induced DNA Damage Response

Total Page:16

File Type:pdf, Size:1020Kb

Multiomic Analysis of the UV-Induced DNA Damage Response Resource Multiomic Analysis of the UV-Induced DNA Damage Response Graphical Abstract Authors Stefan Boeing, Laura Williamson, Vesela Encheva, ..., Michael Howell, Ambrosius P. Snijders, Jesper Q. Svejstrup Correspondence [email protected] In Brief Boeing et al. investigate the UV-induced DNA damage response by combining a range of proteomic and genomic screens. A function in this response for the melanoma driver STK19 as well as a number of other factors are uncovered. Highlights d A multiomic screening approach examines the UV-induced DNA damage response d Multiple factors are connected to the transcription-related DNA damage response d Melanoma gene STK19 is required for a normal DNA damage response Boeing et al., 2016, Cell Reports 15, 1597–1610 May 17, 2016 ª 2016 The Author(s) http://dx.doi.org/10.1016/j.celrep.2016.04.047 Cell Reports Resource Multiomic Analysis of the UV-Induced DNA Damage Response Stefan Boeing,1,5 Laura Williamson,1 Vesela Encheva,2 Ilaria Gori,3 Rebecca E. Saunders,3 Rachael Instrell,3 Ozan Aygun,€ 1,7 Marta Rodriguez-Martinez,1 Juston C. Weems,4 Gavin P. Kelly,5 Joan W. Conaway,4,6 Ronald C. Conaway,4,6 Aengus Stewart,5 Michael Howell,3 Ambrosius P. Snijders,2 and Jesper Q. Svejstrup1,* 1Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK 2Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK 3High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK 4Stowers Institute for Medical Research, Kansas City, MO 64110, USA 5Bioinformatics and Biostatistics Laboratory, the Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK 6Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA 7Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.celrep.2016.04.047 SUMMARY sures that RNAPII is ubiquitylated and degraded by the protea- some, enabling repair by other mechanisms (Wilson et al., 2013). In order to facilitate the identification of factors and Importantly, bulky DNA lesions not only block RNAPII prog- pathways in the cellular response to UV-induced ress, but also affect transcription genome-wide so that even DNA damage, several descriptive proteomic screens un-damaged genes temporarily cease to be expressed (Mayne and a functional genomics screen were performed in and Lehmann, 1982; Rockx et al., 2000; Proietti-De-Santis parallel. Numerous factors could be identified with et al., 2006). The mechanisms and factors that underlie TC- high confidence when the screen results were super- NER and the more general DNA-damage-induced repression of gene expression are still poorly understood. imposed and interpreted together, incorporating bio- Cockayne syndrome B protein (CSB, also named ERCC6) logical knowledge. A searchable database, bioLOGIC, plays a key role in both TC-NER and the global transcription which provides access to relevant information about a response to DNA damage (Vermeulen and Fousteri, 2013). protein or process of interest, was established to host CSB is recruited to damage-stalled RNAPII, allowing assembly the results and facilitate data mining. Besides uncov- of the core NER machinery around it (Fousteri et al., 2006). ering roles in the DNA damage response for numerous CSB is also required for the subsequent DNA incisions, permit- proteins and complexes, including Integrator, Cohe- ting lesion removal (Anindya et al., 2010). Importantly, CSB addi- sin, PHF3, ASC-1, SCAF4, SCAF8, and SCAF11, we tionally helps regulate global RNAPII-mediated transcription. uncovered a role for the poorly studied, melanoma- Indeed, CSB is crucial for the general recovery of transcription associated serine/threonine kinase 19 (STK19). Be- after DNA damage (Mayne and Lehmann, 1982), in a process sides effectively uncovering relevant factors, the that is partly independent of its role in repair (Rockx et al., 2000; Proietti-De-Santis et al., 2006). CSB contains a function- multiomic approach also provides a systems-wide ally important ubiquitin-binding domain (Anindya et al., 2010) overview of the diverse cellular processes connected and is itself both ubiquitylated (Groisman et al., 2003; Groisman to the transcription-related DNA damage response. et al., 2006) and phosphorylated (Christiansen et al., 2003), sup- porting the idea that post-translational modifications (PTMs) are important in the DNA damage response. Some CSB ubiquityla- INTRODUCTION tion is carried out by a ubiquitin ligase complex containing CSA (Groisman et al., 2006), a TC-NER factor that transfers to The cellular response to bulky DNA lesions, such as those chromatin only after DNA damage (Kamiuchi et al., 2002). induced by UV irradiation is multi-faceted. The effect of such With these factors and mechanisms in mind, we set out to damage on transcription is particularly complex. Bulky DNA le- chart the transcription-related DNA damage response. In mod- sions in the transcribed strand cause stalling of RNA polymerase ern ‘‘global screens,’’ the characteristics of thousands of pro- II (RNAPII), resulting in a block to transcript elongation. Damage- teins or genes can be mapped concomitantly, but it is often stalled RNAPII then functions as a molecular beacon that triggers problematic to recognize the important candidates in a list of transcription-coupled nucleotide excision repair (TC-NER), the hundreds of scoring proteins. In the hope of addressing this dif- process whereby DNA damage in the transcribed strand of ficulty, we developed a multiomic approach. In this approach, active genes is preferentially removed (Gaillard and Aguilera, distinct global screens were performed under the same condi- 2013). On the other hand, if the DNA lesion for some reason tions and the results then overlapped and integrated. Specif- cannot be removed by TC-NER, a mechanism of last resort en- ically, we used quantitative proteomics to determine the impact Cell Reports 15, 1597–1610, May 17, 2016 ª 2016 The Author(s) 1597 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). UV-irradiation Local Global Remodeler UVSSAUVSSA CSB RNAPII XPF-RPACSA-Cul XPG ERCC1 DNA RNA ! TFIIH Transcription 0 6 12 24 48 hrs Interactomes PTMs Chromatin Proteome SiRNA screen Upon UV, interaction with UV-induced Chromatin translocation Nascent transcription Ubiquitylation ?? upon UV-irradiation ?? RNAPII CSB Phosphorylation - + after UV Light Heavy Light Heavy UV siRNAs untreated UV-treated untreated UV-treated Light Heavy Chromatin extraction Tryptic digest untreated UV-treated Measure nascent FLAG-IP & control IP Enrich K-Gly-Gly peptides, transcription or Chromatin extraction Peptide Elution Enrich Phos-peptides Mass Spectrometry Mass Spectrometry Mass Spectrometry low normal high Data integration, bioLOGIC Network analysis, identification of individual ‘hits’ Figure 1. Graphical Overview of the Multiomic Approach to Charting the Transcription-Related DNA Damage Response UV-induced DNA damage has effects both at the local (‘‘repairosome’’) and the global level. The proteomic screens and the siRNA screen used to investigate the damage response are outlined. UV irradiation (30 J/m2) was used for all proteomic analysis, while 15 J/m2 was used in the RNAi screen. of DNA damage on (1) the RNAPII interactome, (2) the CSB inter- tracted from HEK293 cells at 3 hr after UV-induced DNA dam- actome, (3) chromatin association dynamics, (4) the protein age. We hoped this would uncover factors across the whole ubiquitylome, and (5) the phosphoproteome. This was comple- DNA damage response, from early events, such as DNA damage mented with (6) a functional RNAi screen. Candidates were signaling and gene expression shutdown, to late events, such as then ranked based on their performance in the screens overall post-incision repair factors and transcription-recovery proteins and further filtered for biological relevance and technical robust- (see Figure 1). The proteomic screens were performed under ness and are searchable using a newly established database, identical conditions and all made use of quantitative stable named bioLOGIC. The multiomic approach not only confirmed isotope labeling by amino acids in cell culture (SILAC) prote- the involvement of well-known TC-NER factors, but also uncov- omics (Ong et al., 2002), enabling us to distinguish between ered numerous new factors and cellular pathways that have not ‘‘constitutive’’ and UV-induced interactors and modifications. previously been connected to the transcription-related DNA Moreover, proteasome inhibition has previously been shown to damage response. One example is the poorly studied melanoma prevent dissociation of certain DNA-damage-induced protein in- gene STK19. teractions (Groisman et al., 2006). We therefore also carried out all proteomic experiments in the presence of proteasome inhib- RESULTS itor MG132. To uncover factors with a role in the transcription-related DNA CSB Interactome damage response, we carried out a combination of proteomic CSB is the central transcription-repair coupling factor and is spe- and genomic screens. The UV-induced DNA damage response cifically recruited to damage-stalled RNAPII. The UV-induced has typically been studied at early time-points (30 min to 1 hr af- CSB
Recommended publications
  • Applicability of Multidimensional Fractionation to Affinity Purification Mass Spectrometry Samples and Protein Phosphatase 4 Substrate Identification
    Applicability of Multidimensional Fractionation to Affinity Purification Mass Spectrometry Samples and Protein Phosphatase 4 Substrate Identification by Wade Hampton Dunham A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Molecular Genetics University of Toronto © Copyright by Wade Dunham 2012 ii Applicability of Multidimensional Fractionation to Affinity Purification Mass Spectrometry Samples and Protein Phosphatase 4 Substrate Identification Wade Dunham Master of Science Department of Molecular Genetics University of Toronto 2012 Abstract Affinity-purification coupled to mass spectrometry (AP-MS) is gaining widespread use for the identification of protein-protein interactions. It is unclear however, whether typical AP sample complexity is limiting for the identification of all protein components using standard one-dimensional LC-MS/MS. Multidimensional sample separation is a useful for reducing sample complexity prior to MS analysis, and increases peptide and protein coverage of complex samples, yet the applicability of this approach to AP-MS samples remains unknown. Here I present work to show that multidimensional separation of AP-MS samples is not a cost-effective method for identifying increased peptide or protein coverage in these sample types. As such this approach was not adapted for the identification of putative Phosphoprotein Phosphatase 4 (PP4c) substrates. Instead, affinity purification coupled to one- dimensional LC-MS/MS was used to identify putative PP4c substrates, and semi- quantitative methods applied to identify possible PP4c targeted phosphosites in PP2A subfamily phosphatase inhibited (okadaic acid treated) cells. iii Acknowledgments I would like to acknowledge and thank everyone in the Gingras lab, in particular my supervisor Anne-Claude, for allowing me to take on complex projects and to be an integral part in the pursuit of high impact publications.
    [Show full text]
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo)
    animals Article Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo) Kyu-Sang Lim 1 , Sun-Sik Chang 2, Bong-Hwan Choi 3, Seung-Hwan Lee 4, Kyung-Tai Lee 3 , Han-Ha Chai 3, Jong-Eun Park 3 , Woncheoul Park 3 and Dajeong Lim 3,* 1 Department of Animal Science, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25340, Korea; [email protected] 3 Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; [email protected] (B.-H.C.); [email protected] (K.-T.L.); [email protected] (H.-H.C.); [email protected] (J.-E.P.); [email protected] (W.P.) 4 Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected] Received: 26 July 2019; Accepted: 23 September 2019; Published: 26 September 2019 Simple Summary: Allele-specific expression (ASE) is the biased allelic expression of genetic variants within the gene. Recently, the next-generation sequencing (NGS) technologies allowed us to detect ASE genes at a transcriptome-wide level. It is essential for the understanding of animal development, cellular programming, and the effect on their complexity because ASE shows developmental, tissue, or species-specific patterns. However, these aspects of ASE still have not been annotated well in farm animals and most studies were conducted mainly at the fetal stages. Hence, the current study focuses on detecting ASE genes in 17 tissues in adult cattle.
    [Show full text]
  • 82262967.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 19, 1478–1484, September 15, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.07.041 Report Key Features of the X Inactivation Process Are Conserved between Marsupials and Eutherians Shantha K. Mahadevaiah,1 Helene Royo,1 in situ hybridization (RNA FISH) [1] and semiquantitative John L. VandeBerg,2 John R. McCarrey,3 Sarah Mackay,4 reverse transcriptase-polymerase chain reaction (RT-PCR) and James M.A. Turner1,* [2] have concluded that the X chromosome of the marsupial 1MRC National Institute for Medical Research, Mill Hill, Monodelphis domestica (opossum) remains inactive during London NW7 1AA, UK spermiogenesis. However, Cot-1 RNA FISH has since been 2Department of Genetics, Southwest Foundation for shown to primarily detect silencing of repeat rather than Biomedical Research, San Antonio, TX 78227, USA coding X-linked sequences [16, 17], and RT-PCR cannot 3Department of Biology, University of Texas at San Antonio, discriminate between steady-state RNA levels and ongoing San Antonio, TX 78249, USA transcription. We therefore sought to reexamine male germline 4Division of Integrated Biology, Faculty of Biomedical & Life X silencing and its relationship to female XCI with a gene- Sciences, University of Glasgow, Glasgow G12 8QQ, specific RNA FISH approach. Scotland, UK For our analysis of XCI in the male germline, we selected ten genes distributed across the opossum X chromosome (Fig- ure 1A). We wished to compare X gene silencing in opossum Summary with that in mouse, in which MSCI and its maintenance have been well characterized [18, 19].
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genome-Wide Identification and Analysis of Prognostic Features in Human Cancers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446243; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Genome-wide identification and analysis of prognostic features in human cancers Joan C. Smith1,2 and Jason M. Sheltzer1* 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. 2. Google, Inc., New York, NY 10011. * Lead contact; to whom correspondence may be addressed. E-mail: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.06.01.446243; this version posted June 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Clinical decisions in cancer rely on precisely assessing patient risk. To improve our ability to accurately identify the most aggressive malignancies, we constructed genome-wide survival models using gene expression, copy number, methylation, and mutation data from 10,884 patients with known clinical outcomes. We identified more than 100,000 significant prognostic biomarkers and demonstrate that these genomic features can predict patient outcomes in clinically-ambiguous situations. While adverse biomarkers are commonly believed to represent cancer driver genes and promising therapeutic targets, we show that cancer features associated with shorter survival times are not enriched for either oncogenes or for successful drug targets.
    [Show full text]
  • Hypopituitarism May Be an Additional Feature of SIM1 and POU3F2 Containing 6Q16 Deletions in Children with Early Onset Obesity
    Open Access Journal of Pediatric Endocrinology Case Report Hypopituitarism may be an Additional Feature of SIM1 and POU3F2 Containing 6q16 Deletions in Children with Early Onset Obesity Rutteman B1, De Rademaeker M2, Gies I1, Van den Bogaert A2, Zeevaert R1, Vanbesien J1 and De Abstract Schepper J1* Over the past decades, 6q16 deletions have become recognized as a 1Department of Pediatric Endocrinology, UZ Brussel, frequent cause of the Prader-Willi-like syndrome. Involvement of SIM1 in the Belgium deletion has been linked to the development of obesity. Although SIM1 together 2Department of Genetics, UZ Brussel, Belgium with POU3F2, which is located close to the SIM1 locus, are involved in pituitary *Corresponding author: De Schepper J, Department development and function, pituitary dysfunction has not been reported frequently of Pediatric Endocrinology, UZ Brussel, Belgium in cases of 6q16.1q16.3 deletion involving both genes. Here we report on a case of a girl with typical Prader-Willi-like symptoms including early-onset Received: December 23, 2016; Accepted: February 21, hyperphagic obesity, hypotonia, short hands and feet and neuro-psychomotor 2017; Published: February 22, 2017 development delay. Furthermore, she suffered from central diabetes insipidus, central hypothyroidism and hypocortisolism. Her genetic defect is a 6q16.1q16.3 deletion, including SIM1 and POU3F2. We recommend searching for a 6q16 deletion in children with early onset hyperphagic obesity associated with biological signs of hypopituitarism and/or polyuria-polydipsia syndrome. The finding of a combined SIM1 and POU3F2 deletion should prompt monitoring for the development of hypopituitarism, if not already present at diagnosis. Keywords: 6q16 deletion; SIM1; POU3F2; Prader-Willi-like syndrome; Hypopituitarism Introduction insipidus and of some specific pituitary hormone deficiencies in children with a combined SIM1 and POU3F2 deficiency.
    [Show full text]
  • Genomic Profiling Reveals High Frequency of DNA Repair Genetic
    www.nature.com/scientificreports OPEN Genomic profling reveals high frequency of DNA repair genetic aberrations in gallbladder cancer Reham Abdel‑Wahab1,9, Timothy A. Yap2, Russell Madison4, Shubham Pant1,2, Matthew Cooke4, Kai Wang4,5,7, Haitao Zhao8, Tanios Bekaii‑Saab6, Elif Karatas1, Lawrence N. Kwong3, Funda Meric‑Bernstam2, Mitesh Borad6 & Milind Javle1,10* DNA repair gene aberrations (GAs) occur in several cancers, may be prognostic and are actionable. We investigated the frequency of DNA repair GAs in gallbladder cancer (GBC), association with tumor mutational burden (TMB), microsatellite instability (MSI), programmed cell death protein 1 (PD‑1), and its ligand (PD‑L1) expression. Comprehensive genomic profling (CGP) of 760 GBC was performed. We investigated GAs in 19 DNA repair genes including direct DNA repair genes (ATM, ATR , BRCA1, BRCA2, FANCA, FANCD2, MLH1, MSH2, MSH6, PALB2, POLD1, POLE, PRKDC, and RAD50) and caretaker genes (BAP1, CDK12, MLL3, TP53, and BLM) and classifed patients into 3 groups based on TMB level: low (< 5.5 mutations/Mb), intermediate (5.5–19.5 mutations/Mb), and high (≥ 19.5 mutations/Mb). We assessed MSI status and PD‑1 & PD‑L1 expression. 658 (86.6%) had at least 1 actionable GA. Direct DNA repair gene GAs were identifed in 109 patients (14.2%), while 476 (62.6%) had GAs in caretaker genes. Both direct and caretaker DNA repair GAs were signifcantly associated with high TMB (P = 0.0005 and 0.0001, respectively). Tumor PD‑L1 expression was positive in 119 (15.6%), with 17 (2.2%) being moderate or high. DNA repair GAs are relatively frequent in GBC and associated with coexisting actionable mutations and a high TMB.
    [Show full text]
  • Further Insights Into the Regulation of the Fanconi Anemia FANCD2 Protein
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2015 Further Insights Into the Regulation of the Fanconi Anemia FANCD2 Protein Rebecca Anne Boisvert University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Boisvert, Rebecca Anne, "Further Insights Into the Regulation of the Fanconi Anemia FANCD2 Protein" (2015). Open Access Dissertations. Paper 397. https://digitalcommons.uri.edu/oa_diss/397 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. FURTHER INSIGHTS INTO THE REGULATION OF THE FANCONI ANEMIA FANCD2 PROTEIN BY REBECCA ANNE BOISVERT A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CELL AND MOLECULAR BIOLOGY UNIVERSITY OF RHODE ISLAND 2015 DOCTOR OF PHILOSOPHY DISSERTATION OF REBECCA ANNE BOISVERT APPROVED: Dissertation Committee: Major Professor Niall Howlett Paul Cohen Becky Sartini Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2015 ABSTRACT Fanconi anemia (FA) is a rare autosomal and X-linked recessive disorder, characterized by congenital abnormalities, pediatric bone marrow failure and cancer susceptibility. FA is caused by biallelic mutations in any one of 16 genes. The FA proteins function cooperatively in the FA-BRCA pathway to repair DNA interstrand crosslinks (ICLs). The monoubiquitination of FANCD2 and FANCI is a central step in the activation of the FA-BRCA pathway and is required for targeting these proteins to chromatin.
    [Show full text]
  • FANCJ Regulates the Stability of FANCD2/FANCI Proteins and Protects Them from Proteasome and Caspase-3 Dependent Degradation
    FANCJ regulates the stability of FANCD2/FANCI proteins and protects them from proteasome and caspase-3 dependent degradation Komaraiah Palle, Ph.D. (Kumar) Assistant Professor of Oncologic Sciences Abraham Mitchell Cancer Research Scholar Mitchell Cancer Institute University of South Alabama Outline • Fanconi anemia (FA) pathway • Role of FA pathway in Genome maintenance • FANCJ and FANCD2 functional relationship • FANCJ-mediated DDR in response to Fork-stalling Fanconi Anemia • Rare, inherited blood disorder. • 1:130,000 births Guido Fanconi 1892-1979 • Affects men and women equally. • Affects all racial and ethnic groups – higher incidence in Ashkenazi Jews and Afrikaners Birth Defects Fanconi anemia pathway • FA is a rare chromosome instability syndrome • Autosomal recessive disorder (or X-linked) • Developmental abnormalities • 17 complementation groups identified to date • FA pathway is involved in DNA repair • Increased cancer susceptibility - many patients develop AML - in adults solid tumors Fanconi Anemia is an aplastic anemia FA patients are prone to multiple types of solid tumors • Increased incidence and earlier onset cancers: oral cavity, GI and genital and reproductive tract head and neck breast esophagus skin liver brain Why? FA is a DNA repair disorder • FA caused by mutations in 17 genes: FANCA FANCF FANCM FANCB FANCG/XRCC9 FANCN/PALB2 FANCC FANCI RAD51C/FANCO FANCD1/BRCA2 FANCJ SLX4/FANCP FANCD2 FANCL ERCC2/XPF/FANCQ FANCE BRCA1/FANCS • FA genes function in DNA repair processes • FA patient cells are highly sensitive
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]