A Novel Hypoxic Long Noncoding RNA KB-1980E6.3 Maintains Breast Cancer Stem Cell Stemness Via Interacting with IGF2BP1 to Facilitate C-Myc Mrna Stability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the -
IGF2BP1 (D-9): Sc-166344
SANTA CRUZ BIOTECHNOLOGY, INC. IGF2BP1 (D-9): sc-166344 BACKGROUND STORAGE Insulin like growth factor 2 mRNA binding proteins (IGF2BPs) bind RNA and Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of influence RNA synthesis and metabolism. IGF2BP1, also known as coding shipment. Non-hazardous. No MSDS required. region determinant-binding protein/Insulin-like growth factor II mRNA-binding protein (CRD-BP), IMP1 or VICKZ1; IGF2BP2 (IMP2, VICKZ2, p62); and IGF2BP2 DATA (IMP3, KOC1, VICKZ3) contain a unique combination of RNA recognition motifs A B and four hnRNP K homology domains. IGF2BP1 is abundant in embryonal ABC DEF tissues and is expressed in 81% of colon cancers, 73% of sarcomas and 132 K – 58.5% of breast cancers. It recognizes c-Myc, IGF-II and t mRNAs, and H19 90 K – RNA, and plays a major role in proliferation of K-562 cells by an IGF-II-depen- 55 K – IGF2BP1 dent mechanism. IGF2BP2 binds the 5' UTR of IGF-II mRNA and influences tumor cell growth, in which IGF2BP2 is associated with apoptosis induced 43 K – by tretinoin. IGF2BP3 knockdown by RNA interference decreases levels of IGF-II protein without affecting IGF-II, c-Myc, or b Actin mRNA and H19 RNA levels. IGF2BP3 is a marker for carcinomas and high-grade dysplastic lesions IGF2BP1 (D-9): sc-166344. Western blot analysis IGF2BP1 (D-9): sc-166344. Immunofluorescence staining ofIGF2BP1 expressioninHEK293 (A), NIH/3T3 (B), of methanol-fixed HeLa cells showing nucleolar and of pancreatic ductal epithelium. K-562 (C), U-698-M (D) and Raji (E)wholecell lysates cytoplasmic localization (A). -
Exome Sequencing Revealed DNA Variants in NCOR1, IGF2BP1, SGLT2 and NEK11 As Potential Novel Causes of Ketotic Hypoglycemia in C
www.nature.com/scientificreports OPEN Exome sequencing revealed DNA variants in NCOR1, IGF2BP1, SGLT2 and NEK11 as potential novel causes of ketotic hypoglycemia in children Yazeid Alhaidan1,2,3,4*, Martin J. Larsen 1,2, Anders Jørgen Schou5, Maria H. Stenlid6, Mohammed A. Al Balwi 3,4, Henrik Thybo Christesen2,5,7,9 & Klaus Brusgaard1,2,8,9 Unexplained or idiopathic ketotic hypoglycemia (KH) is the most common type of hypoglycemia in children. The diagnosis is based on the exclusion of routine hormonal and metabolic causes of hypoglycemia. We aimed to identify novel genes that cause KH, as this may lead to a more targeted treatment. Deep phenotyping of ten preschool age at onset KH patients (boys, n = 5; girls, n = 5) was performed followed by trio exome sequencing and comprehensive bioinformatics analysis. Data analysis revealed four novel candidate genes: (1) NCOR1 in a patient with KH, iron defciency and loose stools; (2) IGF2BP1 in a proband with KH, short stature and delayed bone age; (3) SLC5A2 in a proband with KH, intermittent glucosuria and extremely elevated p-GLP-1; and (4) NEK11 in a proband with ketotic hypoglycemia and liver afiction. These genes are associated with diferent metabolic processes, such as gluconeogenesis, translational regulation, and glucose transport. In conclusion, WES identifed DNA variants in four diferent genes as potential novel causes of IKH, suggesting that IKH is a heterogeneous disorder that can be split into several novel diseases: NCOR1-KH, IGF2BP1-KH, SGLT2-KH or familial renal glucosuria KH, and NEK11-KH. Precision medicine treatment based on exome sequencing may lead to advances in the management of IKH. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The M A-Related Gene Signature for Predicting the Prognosis of Breast Cancer
The m6A-related gene signature for predicting the prognosis of breast cancer Shanliang Zhong1,*, Zhenzhong Lin2,*, Huanwen Chen3, Ling Mao4, Jifeng Feng5 and Siying Zhou6 1 Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China 2 Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China 3 Xinglin laboratory, The First Affiliated Hospital of Xiamen University, Nanjing, China 4 Department of Thyroid Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China 5 Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China 6 Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China * These authors contributed equally to this work. ABSTRACT N6-methyladenosine (m6A) modification has been shown to participate in tumorigen- esis and metastasis of human cancers. The present study aimed to investigate the roles of m6A RNA methylation regulators in breast cancer. We used LASSO regression to identify m6A-related gene signature predicting breast cancer survival with the datasets downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (TCGA). RNA-Seq data of 3409 breast cancer patients from GSE96058 and 1097 from TCGA were used in present study. A 10 m6A-related gene signature associated with prognosis was identified from 22 m6A RNA methylation regulators. The signature divided patients into low- and high-risk group. High-risk patients had a worse prognosis than the low-risk group. -
Systematic Description of the Expression and Prognostic Value of M6A Regulators in Human Ovarian Cancer
Systematic Description of the Expression and Prognostic Value of M6A Regulators in Human Ovarian Cancer Yuwei Chen Fujian Medical University Fujian Cancer Hospital Yang Sun ( [email protected] ) Fujian Cancer Hospital https://orcid.org/0000-0003-4224-8832 Xinbei Chen Fujian Medical University Fujian Cancer Hospital Siming Li Fujian Medical University Fujian Cancer Hospital Hongmei Xia Fujian Cancer Hospital Research Keywords: m6A regulators, m6A, ovarian cancer, Prognostic values, bioinformatics analysis. Posted Date: December 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-131682/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Systematic description of the expression and prognostic value of m6A regulators in human ovarian cancer 1 Yuwei Chen1, Yang Sun1*, Xinbei Chen1, Siming Li1, Hongmei Xia1 2 * Correspondence: 3 Yang Sun 4 [email protected] 5 Total words:5253 6 Total Figures and Tables: 11 Figures and 3 Tables 7 Keywords: m6A regulators, m6A, ovarian cancer, Prognostic values, 8 bioinformatics analysis. 9 Abstract 10 Background: N6-methyladenine (m6A) methylation, known as a kind of RNA 11 methylation regulator, has become a hotspot for research in the life sciences in recent 12 years. The existing studies revealed that m6A regulators helped to regulate the 13 progression of several malignant tumors. However, the expression mode and 14 prognostic value of m6A regulators in ovarian cancer have not been fully elucidated. 15 Methods: ONCOMINE, GEPIA, Human protein atlas, Kaplan-meier, UALCAN, 16 cBioPortal, GeneMANIA, DAVID, Sring, and Metascape were utilized in this study. 17 Results: In this study, through a comprehensive use of multiple database systems, 18 m6A regulators-induced mRNA and protein expression levels and their prognostic 19 value in the epithelial ovarian cancer of various histological types were analyzed. -
IGF2BP1 Is a Targetable SRC/MAPK-Dependent Driver Of
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.19.159905; this version posted June 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian 2 cancer 3 4 Authors: Nadine Bley1*$#, Annekatrin Schott1*, Simon Müller1, Danny Misiak1, Marcell 5 Lederer1, Tommy Fuchs1, Chris Aßmann1, Markus Glaß1, Christian Ihling2, Andrea Sinz2, 6 Nikolaos Pazaitis3, Claudia Wickenhauser3, Martina Vetter4, Olga Ungurs4, Hans-Georg 7 Strauss4, Christoph Thomssen4, Stefan Hüttelmaier1$. 8 9 10 Addresses: 11 1 Sect. Molecular Cell Biology, Inst. of Molecular Medicine, Charles Tanford Protein Center, 12 Medical Faculty, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06120 Halle, 13 Germany 14 2 Dept. of Pharmaceutical Chemistry & Bioanalytics, Inst. of Pharmacy, Charles Tanford 15 Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes Str. 3A, 06120 Halle, 16 Germany 17 3 Inst. of Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger 18 Str. 14, 06112 Halle, Germany 19 4 Clinics for Gynecology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst- 20 Grube-Str. 40, 06120 Halle, Germany 21 22 23 * These authors contributed equally to this work 24 $ shared corresponding authorship 25 # Correspondence: should be addressed to Nadine Bley 26 Running title: IGF2BP1-directed AJ disassembly depends on SRC activation 27 Disclosure of Potential Conflicts of Interests: the authors declare no conflicts of interest. -
Proteomic Profiling of Retinoblastoma by High Resolution Mass Spectrometry Ravikanth Danda1,5, Kalaivani Ganapathy1, Gajanan Sathe4, Anil K
Danda et al. Clin Proteom (2016) 13:29 DOI 10.1186/s12014-016-9128-7 Clinical Proteomics RESEARCH Open Access Proteomic profiling of retinoblastoma by high resolution mass spectrometry Ravikanth Danda1,5, Kalaivani Ganapathy1, Gajanan Sathe4, Anil K. Madugundu4, Sharavan Ramachandran1, Uma Maheswari Krishnan5, Vikas Khetan3, Pukhraj Rishi3, T. S. Keshava Prasad4, Akhilesh Pandey6,7,8,9, Subramanian Krishnakumar1*, Harsha Gowda4* and Sailaja V. Elchuri2* Abstract Background: Retinoblastoma is an ocular neoplastic cancer caused primarily due to the mutation/deletion of RB1 gene. Due to the rarity of the disease very limited information is available on molecular changes in primary retino- blastoma. High throughput analysis of retinoblastoma transcriptome is available however the proteomic landscape of retinoblastoma remains unexplored. In the present study we used high resolution mass spectrometry-based quantita- tive proteomics to identify proteins associated with pathogenesis of retinoblastoma. Methods: We used five pooled normal retina and five pooled retinoblastoma tissues to prepare tissue lysates. Equivalent amount of proteins from each group was trypsin digested and labeled with iTRAQ tags. The samples were analyzed on Orbitrap Velos mass spectrometer. We further validated few of the differentially expressed proteins by immunohistochemistry on primary tumors. Results: We identified and quantified a total of 3587 proteins in retinoblastoma when compared with normal adult retina. In total, we identified 899 proteins that were differentially expressed in retinoblastoma with a fold change of 2 of which 402 proteins were upregulated and 497 were down regulated. Insulin growth factor 2 mRNA binding protein≥ 1 (IGF2BP1), chromogranin A, fetuin A (ASHG), Rac GTPase-activating protein 1 and midkine that were found to be overexpressed in retinoblastoma were further confirmed by immunohistochemistry by staining 15 independent retinoblastoma tissue sections. -
Genetic and Pharmacological Approaches to Preventing Neurodegeneration
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2012 Genetic and Pharmacological Approaches to Preventing Neurodegeneration Marco Boccitto University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Neuroscience and Neurobiology Commons Recommended Citation Boccitto, Marco, "Genetic and Pharmacological Approaches to Preventing Neurodegeneration" (2012). Publicly Accessible Penn Dissertations. 494. https://repository.upenn.edu/edissertations/494 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/494 For more information, please contact [email protected]. Genetic and Pharmacological Approaches to Preventing Neurodegeneration Abstract The Insulin/Insulin-like Growth Factor 1 Signaling (IIS) pathway was first identified as a major modifier of aging in C.elegans. It has since become clear that the ability of this pathway to modify aging is phylogenetically conserved. Aging is a major risk factor for a variety of neurodegenerative diseases including the motor neuron disease, Amyotrophic Lateral Sclerosis (ALS). This raises the possibility that the IIS pathway might have therapeutic potential to modify the disease progression of ALS. In a C. elegans model of ALS we found that decreased IIS had a beneficial effect on ALS pathology in this model. This beneficial effect was dependent on activation of the transcription factor daf-16. To further validate IIS as a potential therapeutic target for treatment of ALS, manipulations of IIS in mammalian cells were investigated for neuroprotective activity. Genetic manipulations that increase the activity of the mammalian ortholog of daf-16, FOXO3, were found to be neuroprotective in a series of in vitro models of ALS toxicity. -
Novel Regulators of the IGF System in Cancer
biomolecules Review Novel Regulators of the IGF System in Cancer Caterina Mancarella 1, Andrea Morrione 2 and Katia Scotlandi 1,* 1 IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, 40136 Bologna, Italy; [email protected] 2 Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-051-6366-760 Abstract: The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activa- tion of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia. Keywords: IGF system; cancer; transcriptional regulators; functional regulation; circular RNAs; IGF2BPs; ADAR; DDR1; E-cadherin; decorin Citation: Mancarella, C.; Morrione, A.; Scotlandi, K. Novel Regulators of the IGF System in Cancer. 1. Introduction Biomolecules 2021, 11, 273. https:// doi.org/10.3390/biom11020273 The insulin-like growth factor (IGF) system is a network of ligands, binding proteins and receptors regulating crucial physiological and pathological biological processes. -
An Integrated Genome-Wide Multi-Omics Analysis of Gene Expression Dynamics in the Preimplantation Mouse Embryo
bioRxiv preprint doi: https://doi.org/10.1101/495788; this version posted December 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo Steffen Israel1,*, Mathias Ernst2,3,*, Olympia E. Psathaki4, Hannes C. A. Drexler1, Ellen Casser1, Yutaka Suzuki5, Wojciech Makalowski6, Michele Boiani1,†, Georg Fuellen2,†, Leila Taher2,3,† 1 Max-Planck-Institute for Molecular Biomedicine, Roentgenstr. 20, 48149 Muenster, Germany 2 Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Ernst-Heydemann Str. 8, 18057 Rostock, Germany 3 Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany 4 University of Osnabrück, Center for Cellular Nanoanalytics Osnabrück (CellNanOs), Integrated Bioimaging Facility Osnabrück (iBiOs), Barbarastr. 11, 49076 Osnabrück, Germany 5 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan 6 Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Str. 14, 48149, Muenster, Germany. * These authors contributed equally † Corresponding authors: LT: [email protected]; GF: [email protected]; MB: [email protected]. Running Title: Multi-omics of the preimplantation mouse embryo Keywords: Preimplantation development, Proteome, Transcriptome, Model Organism 1 bioRxiv preprint doi: https://doi.org/10.1101/495788; this version posted December 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -