A Conceptual Design for the Triumf Kaon Factory Control System

Total Page:16

File Type:pdf, Size:1020Kb

A Conceptual Design for the Triumf Kaon Factory Control System TRIUMF A CONCEPTUAL DESIGN FOR THE TRIUMF KAON FACTORY CONTROL SYSTEM W.K. Dawson, R.W. Dobinson,* D.P. Gurd and Ch. Serre* TRIUMF Technology Division *on leave of absence from CERN CANADA'S NATIONAL MESON FACILITY OPERATED AS A JOINT VENTURE BY: UNIVERSITY OF ALBERTA SIMON FRASER UNIVERSITY UNIVERSITY OF VICTORIA UNIVERSITY OF BRITISH COLUMBIA UNDER A CONTRIBUTION FROM THE NATIONAL RESEARCH COUNCIL OF CANADA TRI-87-1 TRI-87-1 A CONCEPTUAL DESIGN FOR THE TRIUMF KAON FACTORY CONTROL SYSTEM W.K. Dawson, R.W. Dobinson,* D.P. Gurd and Ch. Serre* TRIUMF Technology Division *on leave of absence from CERN Postal address: TRIUMF 4004 Wesbrook Mall Vancouver, B.C. Canada V6T 2A3 December 1987 All trademarks found in this report are acknowledged as such. ii TABLE OF CONTENTS 1.0 Introduction 1-1 1.1 Why Was a Design Study Undertaken? 1-1 1.2 How Was the Work Carried Out? 1-1 1.3 Report Layout 1-2 1.4 Acknowledgements 1-3 2.0 Requirements 2-1 2.1 The Accelerators - 2-1 2.2 Timing and Synchronization 2-1 2.3 Multiple Rings, Physical Size and Complexity 2-4 2.4 High Intensity 2-5 2.5 Safety Systems 2-6 2.6 Users of the Control System 2-7 2.7 General Needs - Motherhood and Apple Pie 2-9 3.0 Review of Current Technologies and Trends in Other Laboratories . 3-1 3.1 The Importance and Role of Protocols and Standards 3-1 3.1.1 Review 3-1 3.1.2 Trends in Other Laboratories 3-2 3.2 Software 3-3 3.2.1 Review 3-3 3.2.2 Trends in Other Laboratories . 3-7 3.3 Minicomputers and Microcomputers 3-8 3.3.1 Review 3-8 3.3.2 Trends in Other Laboratories 3-9 3.4 Buses 3-10 3.4.1 Review 3-10 3.4.2 Trends in Other Laboratories 3-12 3.5 Local Area Networks 3-13 3.5.1 Review 3-13 3.5.2 Trends in Other Laboratories 3-15 3.6 Architecture of Control Systems ... 3-16 3.6.1 Review 3-16 3.6.2 Trends in Other Laboratories 3-18 4.0 Reference Model 4-1 iii 5.0 Implementation 5-1 5.1 The Human Interface 5-1 5.1.1 The Main Control Room 5-2 5.1.2 Types of Control Stations 5-3 5.1.3 The Operator Interface - Hardware 5-3 5.1.4 The Operator Interface - Software 5-4 5.2 Software 5-5 5.2.1 The Software Environment - System Software 5-5 5.2.1.1 Operating Systems . 5-5 5.2.1.2 Network Software 5-6 5.2.1.3 Languages 5-7 5.2.2 Applications Kernel 5-8 5.2.2.1 Console Software 5-8 5.2.2.2 Equipment Access 5-9 5.2.2.3 Alarms, Logging, Etc 5-9 5.2.3 Application Software 5-10 5.3 Components of the System 5-11 5.3.1 The LAN 5-11 5.3.2 Equipment Crates 5-13 5.3.3 Processors 5-14 5.3.4 Parting Shots 5-16 5.4 Methodologies 5-16 5.4.1 Site Standards 5-16 5.4.2 Software Implementation 5-17 5.4.2.1 Software Engineering 5-17 5.4.2.2 Program Definition and Priority 5-18 5.4.2.3 Application Program Production 5-19 5.4.3 Controls Hardware 5-20 5.5 The Organization and Role of the Controls Group 5-21 6.0 Resources Required 6-1 6.1 Manpower 6-1 6.1.1 TRIUMF Staff 6-2 6.1.2 The Universities 6-3 6.1.3 Canadian Industry 6-3 6.1.4 Participation by People from Other Laboratories 6-3 6.2 Equipment Cost Estimates . 6-4 6.3 Implementation Timescales ..... ... 6-5 iv 7.0 Conclusions 7-1 7.1 General Remarks 7-1 7.2 Current Proposed Design 7-2 7.3 Further Work - A Program of Research and Development 7-3 7.3.1 Overall Design 7-3 7.3.2 Timing and Synchronization of the Accelerator Complex ..... 7-3 7.3.3 Analogue and Video Signal Collection, Distribution and Display . 7-3 7.3.4 General Software Environment 7-4 7.3.5 The Use of Workstations and Personal Computers as Consoles ... 7-4 7.3.6 VME Hardware and Software 7-4 7.3.7 Local Device Controllers ^-5 7.3.8 Languages > 7-5 7.3.9 Modelling and Expert Systems 7-5 7.3.10 Data Bases 7-5 7.3.11 Integration With the Present TRIUMF Control System 7-5 7.4 Final Remarks 7-6 Appendices Appendix A - Contributors A-l Appendix B - Preliminary Device Inventory ...... B-l Appendix C - Buses Versus Local Area Networks C-l Executive Summary A design study for a KAON Factory control system has been carried out during the period December 1986 to June 1987. In the course of the study wide-ranging discussions have taken place both internally and with colleagues in other laboratories. Work done so far represents only the first step in the design phase and must be followed up by more detailed studies. Suggestions are presented for a next stage program of KAON Factory control system research and development which must be carried out before final choices can be made. There are many urgent questions still to be resolved. We have reviewed the characteristics of the accelerators making up the KAON Factory, the requirements of potential users of the controls system and the current state of the electronics and computing technologies that might be used. A preliminary inventory of equipment to be controlled has been taken. We propose a reference model for the control system and investigate practical implementations of the model based on the use of widely supported national and international standards. The selected implementation makes use of a number of well established but not fully mature technologies. It can accommodate enhancement of capabilities in a straightforward evolutionary way. An important consideration was the commercial availability from more than one source of as many of the hardware and software components as possible. Preliminary cost estimates for the control system total $38.1 M. Since some major and many minor components have not yet been fully defined this number should be treated as a lower bound. When compared to the overall KAON Factory cost estimate we found, not unexpectedly, that the construction of the control system is manpower intensive. Manpower costs for both hardware and software represent about 17% of the overall manpower cost estimate while equipment costs are about 7.7% of the estimated accelerator costs. A major contributor to the costs is application software which will take about 120 man years - roughly one-half the total manpower estimate. New recruitment for the KAON Factory control system must take account of the need for specialized talents not at the moment found on site. The KAON Factory control system requires the application of advanced high technology in many areas which are new to TRIUMF. Maximum opportunity should be given to present staff to meet these new challenges. The magnitude of the new control system will represent a significant increase in size and complexity over the present TRIUMF one. A successful and timely implementation will require, from the start, proper long term planning and organization. It will be essential to use appropriate management tools throughout the project. The role and organization of the controls group should be defined carefully giving it equal weight with other participants in the KAON Factory program. We suggest that a controls representative now be included in the appropriate KAON Factory planning and study groups. vi SOMMAIRE Un avant-projet pour le système de contrôle de l'usine à KAON a été effectué entre décembre 1986 et juin 1987. Tout au long de cette étude de larges discussions ont eu lieu, aussi bien à TRIUMF qu'avec nos collègues des autres laboratoires. Le travail réalisé jusqu'à maintenant représente en fait seulement- 1*\ première étape de l'étude et doit 'être suivi par des recherches plus approfondies» Nous proposons un programme de Recherches et Développements pour le système de contrôle de l'usine à KAON, qui doit 'être entrepris avant que les décisions finales ne soient prises. Beaucoup de problèmes urgents doivent encore 'être résolus. Nous avons examiné les caractéristiques des accélérateurs composant l'usine à KAON, les requêtes des utilisateurs potentiels du système de contrôle, l'évolution de la technologie en électronique et en informatique. Un inventaire préliminaire des équipements à cSntroler a été effectué. Nous proposons un modèle de référence pour le système de contrôle et examinons ses possibles réalisations à partir de produits standardisés au niveau national et international La réalisation choisie fait appel à un certain nombre de technologies bien connues, mais pas encore complètement établies. Il peut s'adapter à un accroissement de capacités par une évolution simple et directe. Nous avons pris la précaution de prévoir, aussi souvent que possible, plus d'un fabricant par produit, aussi bien pour le matériel que pour le logiciel. Les chiffres préliminaires que nous avons estimés donnent un total de $38.1 M pour le système de contrôle. Etant donné que certains composants importants et beaucoup de composants de moindre importance n'ont pas encore été étudiés, ce chiffre doit 'être pris comme une limite inférieure. Lorsque nous comparons avec le budget total du projet de l'usine à KAON nous trouvons, tout naturellement, que la réalisation du système de contrôle réclame une main d'oeuvre importante.
Recommended publications
  • SIS4100 VME to FASTBUS Interface User Manual
    SIS Documentation SIS4100 FASTBUS Master SIS4100 VME to FASTBUS Interface User Manual SIS GmbH Moorhof 2d 22399 Hamburg Germany Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20 email: [email protected] http://www.struck.de Version: 1.01 as of 27.07.99 Page 1 of 57 SIS Documentation SIS4100 FASTBUS Master Revision Date Modification 0.1 01.02.99 Generation 1.0 26.07.99 First official release 1.01 27.07.99 some additions Copyright note: You are welcome to copy or reproduce this manual in part or whole as long as SIS GmbH is clearly indicated as originator (by the SIS GmbH FASTBUS icon on the top of the page e.g.). Page 2 of 57 SIS Documentation SIS4100 FASTBUS Master Table of contents 1 Introduction..................................................................................................................................................... 5 2 NGF Working Principle .................................................................................................................................. 6 3 Design ............................................................................................................................................................. 7 3.1 Features ................................................................................................................................................... 7 3.2 Mechanical concept................................................................................................................................. 7 3.3 VME properties......................................................................................................................................
    [Show full text]
  • Publication Title 1-1962
    publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013
    [Show full text]
  • FASTBUS SOFTWARE WORKSHOP Geneva, 23 and 24 September
    CERN 85-15 4 November 1985 Data Handling Division ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH FASTBUS SOFTWARE WORKSHOP Geneva, 23 and 24 September 1985 PROCEEDINGS GENBVA 1985 © Copyright CERN, Genève, 1985 Propriété littéraire et scientifique réservée pour Literary and scientific copyrights reserved in ail tous les pays du monde. Ce document ne peut countries of the world. This report, or any part of être reproduit ou traduit en tout ou en partie sans it, may not be reprinted or translated without l'autorisation écrite du Directeur général du written permission of the copyright holder, the CERN, titulaire du droit d'auteur. Dans les cas Director-General of CERN. However, permission appropriés, et s'il s'agit d'utiliser le document à will be freely granted for appropriate non• des fins non commerciales, cette autorisation commercial use. sera volontiers accordée. If any patentable invention or registrable design Le CERN ne revendique pas la propriété des is described in the report, CERN makes no claim inventions brevetables et dessins ou modèles to property rights in it but offers it for the free use susceptibles de dépôt qui pourraient être décrits of research institutions, manufacturers and dans le présent document; ceux-ci peuvent être others. CERN, however, may oppose any attempt librement utilisés par les instituts de recherche, by a user to claim any proprietary or patent rights les industriels et autres intéressés. Cependant, le in such inventions or designs as may be des• CERN se réserve le droit de s'opposer à toute cribed in the present document.
    [Show full text]
  • Digital Technical Journal, Number 7, August 1988: CVAX
    Digital Technical Tournal Digital Equipment Corporation Managing Editor Richard W Beam Edltor Jane C. Dlak Pcoductloa St& Production Editor - Helen 1 Partenon Designer - Charlotte Bell Typographers -Jonathan M. Bohy Macgaret Burdine lllusultor - Deborah Kc~lcy Advisoiy Board Samuel H. Fuller, Chairman Robert M. Glorioso John W. McCredle Mahendra R. Patel F. Grant Saviers William D. Srrcckr Victor A. Vyssutsky The Digital Technical Journal is published by Digital Equipment Corporatloa, 77 Reed Road, Hudson, Magsachu~etts0 1749. Changes of address should be sent to Digital Equipment Corporation. attention: List Maintenance. I0 Forbes Road, Northboro, MA 01532 Please indude the address label wlth changes marked. Comments on the content of any paper arc welcomed. Write to the editor at Mall Stop HL02.3/K11 at the published~bpaddress. Comments can ahbe sent on the BNET to RDVAX: :BIAKEor on the ARPANET to B~%RDVAX.DE~DE~. Copyright @ 1988 Digital Equipment Corporation. Copying without fee is permitted provided that such copies are made for use in educational lnstltutions by faculty members and are nor distributed for commercial advantage. Abstncting with credit of Digital Equipment Corporation's authorship is permltted. Requests for other copies for a Pee may br made to Digiul Press of Digital Equipment Corporation. A11 rights reserved. The information in this journal is subject to change without notice and should not bc construed as a com- mltment by Digital Equipment Corporation. Digital Equipment Corpmtion assumes no responslbllity for any errors that may appcss in this document ISSN 0898.901X Documentatlcm Number EY-6742H-DP The following are wademarks of Digital Gquipmcnt Corporation: ALL.IN-I.
    [Show full text]
  • Force CPCI-680 Manual (Pdf)
    Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Emerson / Motorola / Force Computers cPCI-680 at our website: Click HERE PPC/PowerCoreCPCI-680 Reference Guide P/N 214452 Revision AB September 2001 Copyright The information in this publication is subject to change without notice. Force Computers, GmbH reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance, or design. Force Computers, GmbH shall not be liable for technical or editorial errors or omissions contained herein, nor for indirect, special, incidental, or consequential damages resulting from the furnishing, performance, or use of this material. This information is pro- vided “as is” and Force Computers, GmbH expressly disclaims any and all warranties, express, implied, statutory, or otherwise, including without limitation, any express, statutory, or implied warranty of merchantability, fitness for a particular purpose, or non-infringement. This publication contains information protected by copyright. This publication shall not be reproduced, transmitted, or stored in a retrieval system, nor its contents used for any purpose, without the prior written consent of Force Computers, GmbH.
    [Show full text]
  • Microtca.4 at SIRIUS and a CLOSER LOOK INTO the COMMUNITY
    8th Int. Beam Instrum. Conf. IBIC2019, Malmö, Sweden JACoW Publishing ISBN: 978-3-95450-204-2 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2019-WEBO02 MicroTCA.4 AT SIRIUS AND A CLOSER LOOK INTO THE COMMUNITY D. O. Tavares∗, G. B. M. Bruno, S. R. Marques, L. M. Russo, H. A. Silva, LNLS, Campinas, Brazil Abstract light source facilities and demonstrators of the ILC technolo- More and more facilities have been adopting MicroTCA.4 gies, DESY soon took a prominent role in the development as the standard for new electronics. Despite the advertised of ATCA and MicroTCA standard extensions for physics. advantages in terms of system manageability, high availabil- An evaluation campaign for both standards was launched ity, backplane performance and supply of high quality COTS around 2007 [5] and reported on 2009 [6, 7], with ATCA- modules by industry, the standard still lacks a greater accep- based LLRF demonstration and an AMC timing receiver tance in the accelerators community. This paper reports on developed in collaboration with the University of Stockholm. the deployment of MicroTCA.4 systems at Sirius light source, In the following years MicroTCA.4 was fully embraced by which comprised the development and manufacturing of sev- FLASH and European XFEL projects. More recently, an eral open hardware modules, development of a generic gate- R&D and technology transfer center has been established, ware/software framework and re-implementation of MMC the MicroTCA Technology Lab [8]. IPMI firmware as an open source project. A special focus will be given to the difficulties found, unforeseen expansions CURRENT STATUS of the system and general architectural aspects.
    [Show full text]
  • MTCA.4 Backplane Architecture
    MicroTCA.4 /4.1 Hardware Standards & Software Guidelines Progress Overview Ray Larsen SLAC National Accelerator Laboratory for the xTCA for Physics Collaboration TIPP’17Beijing PRC May 26, 2017 May 22-26 2017 TIPP’17 Beijing R. Larsen 1 Standard Platforms for Physics • Major Goals: Interoperable HW-SW components – 1. Interoperable HW-SW platform essentials, software diagnostics, interfaces – Lab users & Industry Collaboration to share, save on development costs – Speed “time to market”, lower costs by commercial availability, avoid 1-supplier traps (incl. custom lab sol’n) – Avoid dependence on vendor proprietary solution – Adaptable to new technology needs for >/= 2 decades TIPP’17 Beijing R. Larsen May 22-26 2017 2 Physics Standards History • Standards driven by new innovations for economic, performance advantages • Lab-Developed Standards Timeline – 50 Years ago, ~1965, NIM, Nuclear Instrument Module – 40 Years ago, ~1975, CAMAC Data bus modules – 30 Years ago, ~1985, FASTBUS 10X BW bidirectional – 12+ Years ago, ~2004, ATCA, MTCA announced • Multi-GHz serial technology backplane • Redundancy for 0.99999 Availability at Shelf (Crate) level • Intelligent Platform Management Interface (IPMI) – 7+ Years ago- 2009 MTCA.4 HW, SW WG’s begin TIPP’17 Beijing R. Larsen May 22-26 2017 3 Physics Standards Timeline MTCA.4.1, SW SDM, SPM ‘17 107-11 76-9 MTCA.4.1, SW HP, SHAPI ‘16 5-56 ATCA 3.8, MTCA.4 ’10,11 ATCA ‘04 4 3 FASTBUS ‘85 2 CAMAC ‘75 1 NIM ‘65 0 1940 1960 1980 2000 2020 TIPP’17 Beijing R. Larsen May 22-26 2017 4 Physics Standards History
    [Show full text]
  • VAX 6000 Series Installation Guide
    VAX 6000 Series Installation Guide Order Number EK–600EB–IN.002 This guide is intended for use by Digital customer service engineers and self-maintenance customers installing a VAX 6000 series system. digital equipment corporation maynard, massachusetts First Printing, October 1990 Revised, November 1991 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. Copyright ©1990, 1991 by Digital Equipment Corporation. All Rights Reserved. Printed in U.S.A. The following are trademarks of Digital Equipment Corporation: DEC PDP VAXcluster DEC LANcontroller ULTRIX VAXELN DECnet UNIBUS VMS DECUS VAX XMI DWMVA VAXBI FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio frequency energy. The equipment has been type tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such radio frequency interference when operated in a commercial environment. Operation of this equipment in a residential area may cause interference, in which case the user at his own expense may be required to take measures to correct the interference.
    [Show full text]
  • VAX 6000 Platform Technical User's Guide
    VAX 6000 Platform Technical User’s Guide Order Number: EK–600EA–TM-001 This manual serves as a reference for field-level repair or programming for systems based on the VAX 6000 platform. The manual describes the platform architecture, the XMI system bus, the DWMBB XMI-to-VAXBI adapter, and the power and cooling systems found in the H9657-CA/CB/CU cabinet. Digital Equipment Corporation First Printing, May 1991 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. Copyright ©1991 by Digital Equipment Corporation All Rights Reserved. Printed in U.S.A. The postpaid READER’S COMMENTS form on the last page of this document requests the user’s critical evaluation to assist in preparing future documentation. The following are trademarks of Digital Equipment Corporation: DEMNA PDP VAXcluster DEC ULTRIX VAXELN DEC LANcontroller UNIBUS VMS DECnet VAX XMI DECUS VAXBI dt This document was prepared using VAX DOCUMENT, Version 1.2 Contents PREFACE xiii CHAPTER 1 THE VAX 6000 PLATFORM OVERVIEW 1–1 1.1 SPECIFICATIONS 1–2 1.2 SYSTEM FRONT VIEW 1–4
    [Show full text]
  • Digital Technical Journal, Number 7, August 1988: CVAX-Based Systems
    CVAX-based Systems Digital Technical Journal Digital Equipment Corporation umhcr 7 August I9R8 Managing Editor Richard W Beane Editor jane C. Blake Production Staff Produnion Editor- Helen L. Paucrson Designer- Charlo!!<: Bell Typographers- Jonathan !\·f. Uohy Margart:t Burdine lllustrawr- Dt:borah Keeley Advisory Board Samuel H. Fuller, Chairman Robert M. Glorioso John W McCredie Mahendra R. Patel F. Grant Saviers William D. Strecker Victor A. Vyssotsky The Digital Tecbnical jnumal is published by Digital Equipmt:nt Corporation. 77 Reed Road. Hudson. Massachuscus 01749. Changes of address should be sent to Digital E quipment Corporation. aut:ntion: List Maintenance. I 0 Forbes Road. Northboro. MA 015j2. Please includt: the address label with changes marked. Comments on the content of any paper are wclcomt:d. Write to the editor at Mail Stop 1-lLOl-.�/Kil at the published-by address. Comments can also be sent on the ENET to RDV�'X::OIAKE or on the ARPANET to BLA.K.E'X,RDVAX. DEC�)l)ECWRL. Copyright © 1988 Digital Equ ipment Corporation. Copying without fee is permiued providt:d that such copies are made for use in t:duc:uional institmions by faculty members and arc not distributed for commercial advamage. Abstracting with credit of Digital Equipment Corporation's authorship is pcrmiued. Requests for other copies for a fee may be made 10 Digital Press of Digital Equipmem Corporation. All rights reserved. The information in this journal is subject to change without notice and should not be construed as a com­ miunem by Digital E quipment Corporation. Digital Equipment Corporation assumt:s no responsibility for any errors that may appear in this document.
    [Show full text]
  • High Availability Instrumentation Packaging Standards for the ILC & Detectors
    SLAC-PUB-12208 November 2006 High Availability Instrumentation Packaging Standards for the ILC & Detectors R. W. Downing1 and R. S. Larsen2, Members, IEEE Abstract– ILC designers are exploring new packaging The main focus of this paper is the development of HA standards for Accelerator Controls and Instrumentation, packaging standards for Accelerator Controls and particularly high-speed serial interconnect systems for intelligent Instrumentation, but the techniques are equally applicable to instruments versus the existing parallel backplanes of VME, VXI data acquisition and detector systems. The Telco industry has and CAMAC. The High Availability Advanced Telecom Computing Architecture (ATCA) system is a new industrial open driven HA design for many years and has recently standard designed to withstand single-point hardware or collaborated on a new open specification, the Advanced software failures. The standard crate, controller, applications Telecom Computing Architecture, ATCA or AdvancedTCA. module and sub-modules are being investigated. All modules and Adoption of a commercially available standard electronics is sub-modules are hot–swappable. A single crate is designed for a of prime importance for ILC to achieve a common design data throughput in communications applications of 2 Tb/s and an platform, low engineering costs and high system reliability. Availability of 0.99999, which translates into a downtime of five minutes per year. The ILC is planning to develop HA The Baseline model for ILC is a 15 km long machine tunnel architectures for controls, beam instrumentation and detector with a parallel service tunnel that allows access to most of the systems. control and instrumentation electronics while the machine is running.
    [Show full text]
  • Openvms I/O User's Reference Manual
    OpenVMS I/O User’s Reference Manual Order Number: AA–PV6SD–TK April 2001 This manual contains the information necessary to interface directly with the I/O device drivers supplied as part of the Compaq OpenVMS operating system. Several examples of programming techniques are included. This document does not contain information on I/O operations using the OpenVMS Record Management Services. Revision/Update Information: This manual supersedes the OpenVMS I/O User’s Reference Manual, OpenVMS Alpha Version 7.2, OpenVMS VAX Version 7.2 Software Version: OpenVMS Alpha Version 7.3 OpenVMS VAX Version 7.3 Compaq Computer Corporation Houston, Texas © 2001 Compaq Computer Corporation Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office. OpenVMS and Tru64 are trademarks of Compaq Information Technologies Group, L.P in the United States and other countries. Microsoft, MS-DOS, Visual C++, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States and other countries. Intel, Intel Inside, and Pentium are trademarks of Intel Corporation in the United States and other countries. Motif, OSF/1, and UNIX are trademarks of The Open Group in the United States and other countries. All other product names mentioned herein may be trademarks of their respective companies. Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. Compaq shall not be liable for technical or editorial errors or omissions contained herein.
    [Show full text]