Portovi Personalnih Računara 50

Total Page:16

File Type:pdf, Size:1020Kb

Portovi Personalnih Računara 50 Elektronski fakultet u Nišu Katedra za elektroniku Portovi i magistrale Student: Mentor: Vladimir Stefanović 11422 prof. dr Mile Stočev Milan Jovanović10236 Sadržaj Uvod 3 1.Magistrale 4 2.Portovi dati alfabetnim redom 36 3.Portovi personalnih računara 50 4.Poređenja i opisi PC interfejsa i portova 59 5.Hardver – mehaničke komponente 126 2 Uvod Sam rad se sastoji iz 5 dela u kojima su detaljno opisani PC portovi, magistrale, kao i razlike i sličnosti koje među njima postoje. U prvom poglavlju data je opšta podela magistrala, ukratko je opisan njihov način funkcionisanja, dati su odgovarajući standardi, generacije, a ukratko su opisane i suerbrze magistrale. U drugom poglavlju dat je alfabetni spisak portova, od kojih je većina obuhvaćena ovim radom. Treće poglavlje odnosi se na portove personalnih računara, kako Pentium tako i Apple i Mackintosh. Četvrti deo odnosi se na opisane portove i interfejse i njihovo međusobno poređenje. U ovom poglavlju date su i detaljne tabele u kojima su navedene i opisane neke od najvažnijih funkcija. I konačno, peto poglavlje se odnosi na hardver – USB portove, memorijske kartice SCSI portove. U Nišu, 03.10.2008. godine 3 1. Magistrale Prilagodljivost personalnog računara - njegova sposobnost da se proširi pomoću više vrsta interfejsa dozvoljavajući priključivanje mnogo različitih klasa dodatnih sastavnih delova i periferijskih uredjaja - bila je jedan od ključnnih razloga njegovog uspeha. U suštini, moderni PC računarski sistem malo se razlikuje od originalne IBM konstrukcije - to je skup komponenata, kako unutrašnjih tako i spoljašnjih, medjusobno povezanih pomoću elektronskih magistrala, preko kojih podaci putuju, dok se obavlja ciklus obrade koji ih pretvara od podataka ulaza u podatke izlaza. Ove magistrale povezuju sve unutrašnje sastavne delove i spoljašnje uredjaje i periferale PC računara sa njegovom centralnom procesorskom jedinicom (CPU) i glavnom memorijom (RAM). Najbrža od svih magistrala je veza izmedju procesora i njegove primarne keš memorije i ona se nalazi u samom čipu centralne procesorske jedinice. Na sledećem nivou naniže je sistemska magistrala, koja povezuje procesor sa memorijom, i to kako sa malom sekundarnom keš statičkom RAM (SRAM) memorijom, tako i sa daleko većom dinamičkom RAM (DRAM) memorijom. Sistemska magistrala je široka 64 bita i, za računare zasnovane na INTEL-ovoj konstrukciji, ograničavana je na 66 MHz do početka 1998. godine, kada je nov skup čipova Pentijum II to podigao na 100 MHz. Centralna procesorska jedinica ne komunicira sa memorijom direktno, već posredstvom čipa sistemskog kontrolera, koji upravlja glavnom magistralom i mostom izmedju nje i, u mo- dernim PC računarima, PCI magistrale. Procesori koji koriste arhitekturu udvojenih nezavisnih magistrala (Dual Independent Bus - DIB) - što je prisutno na Intelovim konstrukcijama od Pentijuma II nadalje - zamenili su jednostruku sistemsku magistralu sa dve nezavisne magistrale, jednom za pristupanje 4 glavnoj memoriji i drugom za pristupanje keš memoriji drugog nivoa. Ove magistrale se nazivaju čeona i pozadinska magistrala, respektivno. Ključni koncept bio je otvorena arhitektura zasnovana na jednostavnoj magistrali za pro- širenje koja je olakšavala priključenje dodatnih sastavnih delova i uredjaja. Gotovo dve dekade posle njegovog uvodjenja, bilo je još uvek moguće uključiti originalne dodatne kartice u moderni PC računar što je danak opstanku snage konstrukcije. Dok je bilo mnogo ćorsokaka u tom periodu, evolucija konstrukcija standardne magistrale za proširenje je bila izuzetno zdrava tokom svih tih godina. Terminologija magistrala Savremen sistem može da se posmatra kao da sadrži samo dve klase magistrala: sistemsku magistralu, koja povezuje centralnu procesorsku jedinicu sa glavnom memorijom i keš memorijom drugog nivoa, i izvestan broj ulazno/izlaznih (I/O) magistrala, koje povezuju različite periferijske uredjaje sa centralnom procesorskom jedinicom, dok je ova poslednja povezana sa sistemskom magistralom putem "mosta", implementiranog u procesorskom skupu čipova. 5 U sistemima sa arhitekturom udvojenih nezavisnih magistrala (DIB), jedna sistemska ma- gistrala je zamenjena sa dve: "čeonom magistralom" ("frontside bus") za razmenu podataka izmedju centralne procesorske jedinice i glavne memorije i izmedju centralne procesorske jedinice i periferijskih magistrala, i "pozadinskom magistralom" ("backside bus") za pristupanje keš memoriji drugog nivoa. Upotreba udvojenih nezavisnih magistrala podiže performansu, omogućavajući centralnoj procesorskoj jedinici da pristupa podacima sa svake od njenih magistrala simultano i paralelno. Evolucija sistema magistrala za PC računare u periodu od više od jedne dekade rezultovala je pojavom mnoštva termina, od kojih je najveći broj zbunjujući, redundantan ili zastareo. Sistemska magistrala se često naziva "glavna magistrala", "procesorska magistrala" ili "lokalna magistrala". Alternativna generička terminologija za I/O magistralu uključuje "magistralu za proširenje", "spoljašnju magistralu", "host magistralu" kao i, sasvim zbunjujuće, "lokalnu magistralu". Dati sistem može da koristi izvestan broj različitih ulazno/izlaznih (I/O) sistema magistrala i tipično se mogu konkurentno implementirati sledeći: • ISA magistrala, najstarija, najsporija ulazno/izlazna (I/O) magistrala, koja će uskoro postati zastarela; • PCI magistrala, prisutna na sistemima klase Pentijum od sredine 90-ih godina; • USB magistrala, zamena za PC serijski port, koja dozvoljava da se priključi do 127 uredjaja, upotrebom čvorišta ili zrakastog ulančavanja. ISA magistrala Kada se pojavila na prvom PC računaru, 8-bitna ISA magistrala je radila na učestanosti od skromnih 4,77 MHz - istom brzinom kao i procesor. Ona je godinama poboljšavana, da bi na kraju postala magistrala Industrijske Standardne Arhitekture (ISA) u 1982. godini, dolaskom računara IBM PC/AT koji je koristio procesor Intel 80286 i 16-bitnu magistralu za podatke. Na tom stepenu razvoja, ona je uspešno držala korak sa sistemskom magistralom, prvo na 6 MHz, a kasnije i na 8 MHz. ISA magistrala definiše 16-bitnu vezu koju pokreće generator takta od 8 MHz, što izgleda primitivno poredjeno sa brzinom današnjih procesora. Ona ima teoretsku brzinu prenosa podataka do 16 Mbajta u sekundi. Funkcionalno, ova brzina bi bila prepolovljena na 8 Mbajta u sekundi, zato što je jedan ciklus magistrale potreban za adresiranje, a još jedan ciklus magistrale za prenos 16 bitova podataka. U stvarnosti, magistrala može da prenosi oko 5 Mbajta u sekundi - još uvek dovoljno za mnoge periferijske uredjaje - i veliki broj ISA kartica za proširenje je osigurao njeno prisustvo u kasnim 90-im godinama. Kako su procesori postali brži i dobili šire staze za podatke, osnovna ISA konstrukcija nije bila u stanju da se promeni da bi držala korak. Čak i danas, većina ISA kartica ostaje na 8-bitnoj tehnologiji. Manji broj tipova sa stazama podataka od 16-bita - kontroleri čvrstih diskova, grafički adapteri i pojedini mrežni adapteri - ograničeni su niskim nivoima propusne moći ISA magistrale, pa ovi procesi mogu bolje da se opslužuju pomoću kartica za proširenje u priključcima bržih magistrala. Vodič za konstrukciju sistema PC99 - koji su zajedno napisale svemoćne firme Intel i Microsoft - kategorički zahtevaju uklanjanje priključaka ISA magistrale, što čini njeno preživljavanje u sledećem milenijumu veoma neverovatnim. 6 Kasniji standardi Medjutim, postoje oblasti gde je veća brzina prenosa podataka od suštinske važnosti. Grafički displeji visoke rezolucije zahtevaju masivne količine podataka, posebno da bi se prikazale animacija ili video punog pokreta. Moderni čvrsti diskovi i mrežni priključci su svakako sposobni za veće brzine. Prvi pokušaj da se zasnuje novi standard bio je Arhitektura mikro kanala (Micro Channel Architecture - MCA), uvedena od firme IBM. Ubrzo je sledio Prošireni ISA (Extended ISA - EISA), razvijen od strane konzorcijuma koji su osnovali IBM-ovi glavni suparnici. Mada oba ova sistema rade na brzinama generatora takta od 10 MHz i 8 MHz respektivno, oni su oba od 32 bita i sposobni su za brzine prenosa znatno iznad 20 Mbajta u sekundi. Kako i samo ime sugeriše, EISA slot može takodje da prihvati i konvencionalnu ISA karticu. Medjutim, MCA uopšte nije kompatibilan sa ISA. Nijedan od ovih sistema nije doživeo procvet, najviše zbog toga što su bili suviše skupi da bi se upotrebili na većini računara, pa su podržani samo na najmoćnijim serverima datoteka. Lokalna magistrala Matične ploče Intel 80286 mogle su da podržavaju rad procesora i slotova za proširenje na različitim brzinama preko iste magistrale. Medjutim, od uvodjenja čipa 386 u 1987. godini, na matičnim pločama postoje dva sistema magistrale. Pored "zvanične" magistrale - bila to ISA, EISA ili MCA - tu je bila takodje i "sistemska magistrala" koja povezuje sam procesor sa glavnom memorijom. Porast popularnosti Grafičke korisničke sprege (Graphical User Interface - GUI) - kao kod Microsoft-ovog operativnog sistema Windows - i, kao posledica, potreba za bržom grafikom, pokrenuli su koncept periferijskih uredjaja na lokalnoj magistrali. Magistrala putem koje su oni na početku bili povezani bila je opšte poznata kao "lokalna magistrala", zato što je njena velika brzina i osetrljiva priroda procesora značila da to može da radi samo na kratkim rastojanjima. Početni napori da se poveća brzina bili su vlasnički: proizvodjači su integrisali grafiku i kontroler čvrstog diska u sistemsku magistralu. To je omogućilo značajna poboljšanja performanse ali je, sa druge strane, ograničilo mogućnost
Recommended publications
  • SIS4100 VME to FASTBUS Interface User Manual
    SIS Documentation SIS4100 FASTBUS Master SIS4100 VME to FASTBUS Interface User Manual SIS GmbH Moorhof 2d 22399 Hamburg Germany Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20 email: [email protected] http://www.struck.de Version: 1.01 as of 27.07.99 Page 1 of 57 SIS Documentation SIS4100 FASTBUS Master Revision Date Modification 0.1 01.02.99 Generation 1.0 26.07.99 First official release 1.01 27.07.99 some additions Copyright note: You are welcome to copy or reproduce this manual in part or whole as long as SIS GmbH is clearly indicated as originator (by the SIS GmbH FASTBUS icon on the top of the page e.g.). Page 2 of 57 SIS Documentation SIS4100 FASTBUS Master Table of contents 1 Introduction..................................................................................................................................................... 5 2 NGF Working Principle .................................................................................................................................. 6 3 Design ............................................................................................................................................................. 7 3.1 Features ................................................................................................................................................... 7 3.2 Mechanical concept................................................................................................................................. 7 3.3 VME properties......................................................................................................................................
    [Show full text]
  • Publication Title 1-1962
    publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013
    [Show full text]
  • FASTBUS SOFTWARE WORKSHOP Geneva, 23 and 24 September
    CERN 85-15 4 November 1985 Data Handling Division ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH FASTBUS SOFTWARE WORKSHOP Geneva, 23 and 24 September 1985 PROCEEDINGS GENBVA 1985 © Copyright CERN, Genève, 1985 Propriété littéraire et scientifique réservée pour Literary and scientific copyrights reserved in ail tous les pays du monde. Ce document ne peut countries of the world. This report, or any part of être reproduit ou traduit en tout ou en partie sans it, may not be reprinted or translated without l'autorisation écrite du Directeur général du written permission of the copyright holder, the CERN, titulaire du droit d'auteur. Dans les cas Director-General of CERN. However, permission appropriés, et s'il s'agit d'utiliser le document à will be freely granted for appropriate non• des fins non commerciales, cette autorisation commercial use. sera volontiers accordée. If any patentable invention or registrable design Le CERN ne revendique pas la propriété des is described in the report, CERN makes no claim inventions brevetables et dessins ou modèles to property rights in it but offers it for the free use susceptibles de dépôt qui pourraient être décrits of research institutions, manufacturers and dans le présent document; ceux-ci peuvent être others. CERN, however, may oppose any attempt librement utilisés par les instituts de recherche, by a user to claim any proprietary or patent rights les industriels et autres intéressés. Cependant, le in such inventions or designs as may be des• CERN se réserve le droit de s'opposer à toute cribed in the present document.
    [Show full text]
  • Printing Machine Computer Based Control System
    Printing Machine Computer Based Control System Sayed Haroon Shadad A thesis submitted to University of Khartoum, the Faculty of Engineering, Department of Electrical and Electronic Engineering, in complete fulfillment of the requirements for the degree of Masters of Science In Electrical & Electronic Engineering Supervisor: Dr. Sami Mohamed Sharif 2004 Keywords: printing, machine, computer based, control ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ (وءاﺗﺎآﻢ ﻡﻦ آﻞ ﻡﺎ ﺱﺄﻟﺘﻤﻮﻩ وإن ﺗﻌﺪوا ﻧﻌﻤﺖ اﷲ ﻻ ﺗﺤﺼﻮهﺎ إن اﻹﻧﺴﺎن ﻟﻈﻠﻮم آﻔﺎر) اﻵیﺔ (٣٤) ﻡﻦ ﺱﻮرة إﺑﺮاهﻴﻢ i Dedication To my daughters and sons: “A little knowledge is a dangerous thing---incomplete knowledge about a subject is sometimes worse than no knowledge at all” ii AKNOWLEDEMENT First, I would like to express my thanks to Allah for his great help in the completion of this thesis. I would like to express my sincere thanks to my supervisor, Dr Sami Mohamed Sharif for his fruitful efforts, guidance and interest. My thanks to Dr. Ezeldeen Kamil Amin, for his advice and encouragement. I would like to express my deep thanks to all the staff in my company; Sudan Currency printing Press (SCPP) represented by the General Manager Dr. Hassan Omer A/Rahman for his great assistance and encouragement and for taking the burden of the costs of the project. My, deep thanks to the following colleagues for their kind support in the gloomy days: ¾ Mustafa Arena Computer Engineer. ¾ Al Doma Al Bager Electrical Technician. ¾ Tag Al Sir Mohammed Electrical Technician. iii اﻟﺨﻼﺻﺔ ﺗﻤﺘﻠﻚ ﺷﺮآﺔ ﻡﻄﺎﺑﻊ اﻟﺴﻮدان ﻟﻠﻌﻤﻠﺔ اﻟﻮرﻗﻴﺔ ﻋﺪد ﻡﻦ ﻡﺎآﻴﻨﺎت اﻟﻄﺒﺎﻋﺔ و هﻨﺎك ﺱﺘﺔ ﻡﻦ هﺬﻩ اﻟﻤﺎآﻴﻨﺎت ﺗﻌﺘﺒﺮ ﻗﺪیﻤﺔ ﻧﺴﺒﻴﺎ.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,676,600 B2 Davies Et Al
    USOO7676600B2 (12) United States Patent (10) Patent No.: US 7,676,600 B2 Davies et al. (45) Date of Patent: Mar. 9, 2010 (54) NETWORK, STORAGE APPLIANCE, AND 4,245,344 A 1/1981 Richter METHOD FOR EXTERNALIZING AN INTERNAL AO LINK BETWEEN A SERVER AND A STORAGE CONTROLLER (Continued) INTEGRATED WITHIN THE STORAGE APPLIANCE CHASSIS FOREIGN PATENT DOCUMENTS (75) Inventors: Ian Robert Davies, Longmont, CO WO WOO21 O1573 12/2002 (US); George Alexander Kalwitz, Mead, CO (US); Victor Key Pecone, Lyons, CO (US) (Continued) (73) Assignee: Dot Hill Systems Corporation, OTHER PUBLICATIONS Longmont, CO (US) Williams, Al. “Programmable Logic & Hardware.” Dr. Dobb's Jour nal. Published May 1, 2003, downloaded from http://www.dd.com/ (*) Notice: Subject to any disclaimer, the term of this architect 184405342. pp. 1-7. patent is extended or adjusted under 35 U.S.C. 154(b) by 1546 days. (Continued) Primary Examiner Hassan Phillips (21) Appl. No.: 10/830,876 Assistant Examiner—Adam Cooney (22) Filed: Apr. 23, 2004 (74) Attorney, Agent, or Firm—Thomas J. Lavan: E. Alan pr. A5, Davis (65) Prior Publication Data (57) ABSTRACT US 2005/0027751A1 Feb. 3, 2005 Related U.S. Application Data A network Storage appliance is disclosed. The storage appli (60) Provisional application No. 60/473,355, filed on Apr. ance includes a port combiner that provides data COU1 23, 2003, provisional application No. 60/554,052, cation between at least first, second, and third I/O ports; a filed on Mar. 17, 2004. storage controller that controls storage devices and includes s the first I/O port; a server having the second I/O port; and an (51) Int.
    [Show full text]
  • Force CPCI-680 Manual (Pdf)
    Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Emerson / Motorola / Force Computers cPCI-680 at our website: Click HERE PPC/PowerCoreCPCI-680 Reference Guide P/N 214452 Revision AB September 2001 Copyright The information in this publication is subject to change without notice. Force Computers, GmbH reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance, or design. Force Computers, GmbH shall not be liable for technical or editorial errors or omissions contained herein, nor for indirect, special, incidental, or consequential damages resulting from the furnishing, performance, or use of this material. This information is pro- vided “as is” and Force Computers, GmbH expressly disclaims any and all warranties, express, implied, statutory, or otherwise, including without limitation, any express, statutory, or implied warranty of merchantability, fitness for a particular purpose, or non-infringement. This publication contains information protected by copyright. This publication shall not be reproduced, transmitted, or stored in a retrieval system, nor its contents used for any purpose, without the prior written consent of Force Computers, GmbH.
    [Show full text]
  • Microtca.4 at SIRIUS and a CLOSER LOOK INTO the COMMUNITY
    8th Int. Beam Instrum. Conf. IBIC2019, Malmö, Sweden JACoW Publishing ISBN: 978-3-95450-204-2 ISSN: 2673-5350 doi:10.18429/JACoW-IBIC2019-WEBO02 MicroTCA.4 AT SIRIUS AND A CLOSER LOOK INTO THE COMMUNITY D. O. Tavares∗, G. B. M. Bruno, S. R. Marques, L. M. Russo, H. A. Silva, LNLS, Campinas, Brazil Abstract light source facilities and demonstrators of the ILC technolo- More and more facilities have been adopting MicroTCA.4 gies, DESY soon took a prominent role in the development as the standard for new electronics. Despite the advertised of ATCA and MicroTCA standard extensions for physics. advantages in terms of system manageability, high availabil- An evaluation campaign for both standards was launched ity, backplane performance and supply of high quality COTS around 2007 [5] and reported on 2009 [6, 7], with ATCA- modules by industry, the standard still lacks a greater accep- based LLRF demonstration and an AMC timing receiver tance in the accelerators community. This paper reports on developed in collaboration with the University of Stockholm. the deployment of MicroTCA.4 systems at Sirius light source, In the following years MicroTCA.4 was fully embraced by which comprised the development and manufacturing of sev- FLASH and European XFEL projects. More recently, an eral open hardware modules, development of a generic gate- R&D and technology transfer center has been established, ware/software framework and re-implementation of MMC the MicroTCA Technology Lab [8]. IPMI firmware as an open source project. A special focus will be given to the difficulties found, unforeseen expansions CURRENT STATUS of the system and general architectural aspects.
    [Show full text]
  • Making the Switch to Rapidio
    QNX Software Systems Ltd. 175 Terence Matthews Crescent Ottawa, Ontario, Canada, K2M 1W8 Voice: +1 613 591-0931 1 800 676-0566 Fax: +1 613 591-3579 Email: [email protected] Web: www.qnx.com Making the Switch to RapidIO Using a Message-passing Microkernel OS to Realize the Full Potential of the RapidIO Interconnect Paul N. Leroux Technology Analyst QNX Software Systems Ltd. [email protected] Introduction Manufacturers of networking equipment have hit a bottleneck. On the one hand, they can now move traffic from one network element to another at phenomenal speeds, using line cards that transmit data at 10 Gigabits per second or higher. But, once inside the box, data moves between boards, processors, and peripherals at a much slower clip: typically a few hundred megabits per second. To break this bottleneck, equipment manufacturers are seeking a new, high-speed — and broadly supported — interconnect. In fact, many have already set their sights on RapidIO, an open-standard interconnect developed by the RapidIO Trade Association and designed for both chip-to-chip and board-to-board communications. Why RapidIO? Because it offers low latency and extremely high bandwidth, as well as a low pin count and a small silicon footprint — a RapidIO interface can easily fit Making the Switch to RapidIO into the corner of a processor, FPGA, or ASIC. Locked Out by Default: The RapidIO is also transparent to software, allowing Problem with Conventional any type of data protocol to run over the intercon- Software Architectures nect. And, last but not least, RapidIO addresses the demand for reliability by offering built-in While RapidIO provides a hardware bus that is error recovery mechanisms and a point-to-point both fast and reliable, system designers must find or architecture that helps eliminate single points develop software that can fully realize the benefits of failure.
    [Show full text]
  • MTCA.4 Backplane Architecture
    MicroTCA.4 /4.1 Hardware Standards & Software Guidelines Progress Overview Ray Larsen SLAC National Accelerator Laboratory for the xTCA for Physics Collaboration TIPP’17Beijing PRC May 26, 2017 May 22-26 2017 TIPP’17 Beijing R. Larsen 1 Standard Platforms for Physics • Major Goals: Interoperable HW-SW components – 1. Interoperable HW-SW platform essentials, software diagnostics, interfaces – Lab users & Industry Collaboration to share, save on development costs – Speed “time to market”, lower costs by commercial availability, avoid 1-supplier traps (incl. custom lab sol’n) – Avoid dependence on vendor proprietary solution – Adaptable to new technology needs for >/= 2 decades TIPP’17 Beijing R. Larsen May 22-26 2017 2 Physics Standards History • Standards driven by new innovations for economic, performance advantages • Lab-Developed Standards Timeline – 50 Years ago, ~1965, NIM, Nuclear Instrument Module – 40 Years ago, ~1975, CAMAC Data bus modules – 30 Years ago, ~1985, FASTBUS 10X BW bidirectional – 12+ Years ago, ~2004, ATCA, MTCA announced • Multi-GHz serial technology backplane • Redundancy for 0.99999 Availability at Shelf (Crate) level • Intelligent Platform Management Interface (IPMI) – 7+ Years ago- 2009 MTCA.4 HW, SW WG’s begin TIPP’17 Beijing R. Larsen May 22-26 2017 3 Physics Standards Timeline MTCA.4.1, SW SDM, SPM ‘17 107-11 76-9 MTCA.4.1, SW HP, SHAPI ‘16 5-56 ATCA 3.8, MTCA.4 ’10,11 ATCA ‘04 4 3 FASTBUS ‘85 2 CAMAC ‘75 1 NIM ‘65 0 1940 1960 1980 2000 2020 TIPP’17 Beijing R. Larsen May 22-26 2017 4 Physics Standards History
    [Show full text]
  • VME, Gig-E, Serial Rapidio (Srio) Or PCI Express (Pcie) CONTROL
    Model 67C3 6U, OpenVPX, MULTI-FUNCTION I/O CARD VME, Gig-E, Serial RapidIO (sRIO) or PCI Express (PCIe) CONTROL A/D, D/A, Discrete/TTL/CMOS/Differential I/O, RTD, Synchro/Resolver/LVDT/RVDT Measurement and Simulation, Encoder/Counter ARINC 429/575, RS-422/485/232, MIL-STD-1553, CANbus FEATURES Multiple functions on a single slot 6U OpenVPX card OpenVPX Slot Profile: SLT6-BRG-4F1V2T-10.5.1 User can specify up to six different function modules Automatic background BIT testing continually checks and reports the health of each channel Control via VME or Dual Gig-E interfaces PCIe (x1) options or sRIO (1x) Front and/or Rear I/O Conduction or Convection cooled versions Commercial and Rugged applications Software Support Kit and Drivers are available Front I/O GigE Front I/O DESCRIPTION The 67C3 is a single slot 6U OpenVPX Function Function Function Function Function Function (0.8” pitch) multi-function I/O and serial Module Module Module Module Module Module # 1 # 2 # 3 # 4 # 5 # 6 communications card. With VME, Gigabit Ethernet (Gig- E) and High Speed sRIO or PCIe control interface Module Module Module Module Module Module resources resources resources resources resources resources selections, users can confidently choose to take advantage of the OpenVPX form-factor offering higher speed switched fabric communication options. Inter Module Bus The motherboard contains six independent module slots, each of which can be populated with a function- specific module, and can now be controlled by the VME, Optional Board Resources Reference Gig-E and sRIO or PCIe. This enhanced motherboard, Generator using multiple DSPs, allows for higher processing power and dedicated control for each module.
    [Show full text]
  • International Standard ISO/IEC 10859 Was Prepared by Joint Technical Committee ISO/IEC JTC1, Information Technology, SC 26: Microprocessor System
    This is a preview - click here to buy the full publication INTERNATIONAL ISO/IEC STANDARD 10859 First edition 1997-06 Information technology – 8-bit backplane interface: STEbus and mechanical core specifications for microcomputers Technologies de l'information – Interface de fond de panier 8 bits – Bus STE ISO/IEC 1997 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland This is a preview - click here to buy the full publication – 2 – 10859 © ISO/IEC:1997 CONTENTS Page FOREWORD ................................................................................................................... 3 IEEE STANDARD FOR A 8-BIT BACKPLANE INTERFACE: STEBUS INTRODUCTION ............................................................................................................. 4 Clause 1 General .................................................................................................................... 5 2 Functional description............................................................................................... 9 3 Signal lines............................................................................................................... 10 4 Arbitration................................................................................................................
    [Show full text]
  • Rapidio™: an Embedded System Component Network Architecture
    February 22, 2000 RapidIOª: An Embedded System Component Network Architecture Architecture and Systems Platforms Motorola Semiconductor Product Sector 7700 West Parmer Lane, MS: PL30 Austin, TX 78729 Abstract This paper describes RapidIO, a high performance low pin count packet switched sys- tem level interconnect architecture. The interconnect architecture is intended to be an open standard which addresses the needs of a variety of applications from embedded infrastructure to desktop computing. Applications include interconnecting microproces- sors, memory, and memory mapped I/O devices in networking equipment, storage sub- systems, and general purpose computing platforms. This interconnect is intended primarily as an intra-system interface, allowing chip to chip and board to board com- munications at giga-byte per second performance levels. Supported programming mod- els include globally shared distributed memory and message-passing. In its simplest form, the interface can be implemented in an FPGA end point. The interconnect archi- tecture deÞnes a protocol independent of a physical implementation. The physical fea- tures of an implementation utilizing the interconnect are deÞned by the requirements of the implementation, such as I/O signalling levels, interconnect topology, physical layer protocol, error detection, etc. The interconnect is deÞned as a layered architecture which allows scalability and future enhancements while maintaining compatibility. 1 of 25 Introduction 1 Introduction Computer and embedded system development continues to be burdened by divergent requirements. On one hand the performance must increase at a nearly logarithmic rate, while on the other hand system cost must stay the same or decrease. Several applica- tions, such as those found in telecommunications infrastructure equipment, are also bur- dened with increasing capabilities while decreasing the board size and ultimately the ßoor space which equipment occupies.
    [Show full text]