Garryales Nymphaeales Austrobaileyales

Total Page:16

File Type:pdf, Size:1020Kb

Garryales Nymphaeales Austrobaileyales Amborellales Garryales Nymphaeales Austrobaileyales Acorales G Eenzaadlobbigen G Alismatales Petrosaviales Garryales Pandanales Deze kleine, nieuwe orde is de Dioscoreales Liliales tweehuizige planten die bepaa Asparagales haren. De bloemen zijn klein en De twee families zijn afkomstig Arecales Dasypogonales Eucommiales, in de Hamamelisa Poales Van niet alle planten uit deze o G Commeliniden G Commelinales Zingiberales Gentianales Ceratophyllales De Gentianales zijn een goed o Chloranthales kenmerken. De Gentiaanfamilie (Apocynaceae) vormden altijd a Canellales eerst in een eigen orde, de Rub Piperales G Magnoliiden G Magnoliales Laurales Er zijn overeenkomsten in de ba het matK-gen in het chloroplast Ranunculales Sabiales Ze hebben altijd steunblaadjes, Proteales afscheiden om de groeitoppen Trochodendrales bloemkroon ligt gedraaid in de Buxales soms erg giftig. Gunnerales Berberidopsidales Dilleniales Caryophyllales Santalales Saxifragales G Geavanceerde tweezaadlobbigen G Vitales Crossosomatales Geraniales Myrtales Garryales Zygophyllales This small, new order is the sister gr Celastrales Malpighiales that contain iridoids like aucubin. T G Fabiden G Oxalidales indehiscent fruits. Fabales The two families come from other o Rosales Hamamelidae, and Garryaceae from Cucurbitales sufficiently known. Fagales Brassicales G G Gentianales Malviden Malvales Sapindales Gentianales are a well circumscribed Gentianaceae, Loganiaceae, and Ap Cornales Ericales G Asteriden G Eucommiaceae Garryales Garryaceae G Lamiiden G Gentianales Solanales Rubiaceae Lamiales Gentianaceae Loganiaceae Aquifoliales Gelsemiaceae G G Apiales Campanuliden Apocyynaceae Dipsacales 21 Asterales Garryales | Gentianales I Euc Deze f loofver De bla De blo Garryales Iep. De Deze kleine, nieuwe orde is de zustergroep van de rest van de Lamiiden. Het zijn houtige, De soo chemis tweehuizige planten die bepaalde iridoiden bevatten, zoals aucubine. Ze hebben eencellige tonicum haren. De bloemen zijn klein en groeien uit tot openspringende vruchten. De twee families zijn afkomstig uit andere ordes. De Eucommiaceae uit een eigen orde, de Eucommiales, in de Hamamelisachtigen, en de Garryaceae uit de Cornales. Van niet alle planten uit deze orde is al voldoende bekend voor een goede indeling. Gentianales De Gentianales zijn een goed omschreven groep, gebaseerd op moleculaire en morfologische kenmerken. De Gentiaanfamilie (Gentianaceae), Loganiaceae en Maagdenpalmfamilie (Apocynaceae) vormden altijd al de kern van deze orde. De Sterbladigen (Rubiaceae) werden eerst in een eigen orde, de Rubiales geplaatst. Er zijn overeenkomsten in de basenvolgorde van het rbcL-gen, het ndhF-gen, het atpB-gen en I Gar het matK-gen in het chloroplast-DNA, en van het 18S-gen in het ribosomaal kern-DNA. Een kle Ze hebben altijd steunblaadjes, al zijn ze soms klein, en dikke klierharen (colleteren) die slijm 2 gesla afscheiden om de groeitoppen te beschermen. Ze hebben tegenoverstaande bladeren, en de van alt bloemkroon ligt gedraaid in de knop. Verder delen ze bepaalde alkaloiden en zijn daardoor struike soms erg giftig. Azië (H en Gar Noord- Amerik tegeno basis m De blo 1 krans bessen voor m vooral Garryales This small, new order is the sister group of the rest of the Lamiids. Garryales are woody, dioecious plants I Ster that contain iridoids like aucubin. They have unicellular hairs. The flowers are small and develop into De Ste indehiscent fruits. 600 ge The two families come from other orders. Eucommiaceae from their own order, Eucommiales, in the wereld Hamamelidae, and Garryaceae from the order Cornales. Not all plants in the order Garryales are struike sufficiently known. zijn ee De bla Gentianales steunb 5 met e Gentianales are a well circumscribed group, based on both molecular and morphological characters. een on Gentianaceae, Loganiaceae, and Apocynaceae have been at the heart of this order for some time. vorm, a Rubiaceae were placed in another order, Rubiales. vogels, There are similarities in base sequences of the rbcL-gene, the worde Eucommiaceae ndhF-gene, the atpB-gene, and the matK-gene in the chloroplast zoals H Garryaceae DNA, and of the 18S gene in the ribosomal nuclear DNA. Koffie They all have stipules and thick glandular hairs (colleters), that Rubiaceae econom Gentianaceae produce mucilage in order to project the shoot apex. sierpla Loganiaceae The leaves are opposite, and the corolla is convolute in bud. bedeel Gelsemiaceae They share certain alkaloids and may be extremely poisonous. Walstro Apocyynaceae Blauw Meekra I Eucommiaceae I Gentiaanfamilie (Gentianaceae) Deze familie telt slechts 1 soort: Eucommia ulmoides. Het is een tweehuizige, Een vrij grote familie met 87 geslachte loofverliezende, windbestoven boom uit China, die niet uit het wild bekend is. voornamelijk van kruiden, soms struik De bladeren zijn enkelvoudig, gezaagd, en staan in een spiraal aan de takken. voorkomen, maar vooral in gematigde De bloemen zijn klein, okselstandig, zonder bloemdek, en lijken op die van de vertegenwoordigers zonder bladgroen Iep. De vruchten zijn eenzadig en gevleugeld. schimmels betrekken. De bladeren zijn De soort is hier geplaatst op basis van kenmerken van de eicel, en op onderaan met elkaar verbonden, waa chemische kenmerken. De boom produceert latex. Uit de bast wordt een steunblaadjes ontbreken. De bloemen tonicum gewonnen, en een medicijn tegen arthritis. regelmatig, met een opvallende, vergr kroon. Ze hebben meestal geen haren bittere smaak. De vrucht is meestal ee Uit de Gentiaan (Gentiana) en Cansco medicijnen gemaakt. De Gentiaan en bekende sierplanten. Ook in Nederlan vertegenwoordigers van de Gentiaanf Gentiaan (Gentiana), Duizendguldenk (Centaurium), Bitterling (Blackstonia), Draadgentiaan (Cicendia filiformis) en Baardgentiaan (Gentianella). Aucuba japonica I Garryaceae Een kleine familie met slechts 2 geslachten en 17 soorten van altijdgroene bomen en struiken: Aucuba uit Oost- I Loganiaceae Azië (Himalaya tot Japan) Dit is een vrij kleine pantropische en Garrya uit Westelijk familie met 13 geslachten en ruim Noord- en Midden- 400 soorten, die vooral in Australië en Amerika. De bladeren staan Nieuw Caledonië voorkomen. Er zijn tegenover elkaar en zijn aan de Garrya elliptica eenjarige kruiden bij, maar ook struik basis met elkaar verbonden. en klimmers. Ze hebben vlakke, De bloemen zijn klein en hebben maar tegenoverstaand bladeren. De bloeme 1 krans van bloemblaadjes. De vruchten zijn zijn 4-5-tallig, de vruchten zijn variabe bessen. Garrya wordt wel als sierplant gekweekt, in het gebied van herkomst Deze familie is veel kleiner geworden: voor medicinale doeleinden. Aucuba japonica is een erg bekende tuinplant, zo zijn de Gelsemiaceae nu een aparte vooral de cultuurvariëteit ‘Variegata’, met goudgespikkelde bladeren. familie, en is Buddleja naar de Helmkruidfamilie (Scrophulariaceae) I Sterbladigenfamilie (Rubiaceae) verhuisd. De Sterbladigen zijn de grootste familie in deze orde, met ruim Het meest bekende geslacht uit deze 600 geslachten en meer dan 10.000 soorten. Ze komen overal ter familie is Strychnos. Uit Strychnos wereld voor, maar vooral in de tropen. Het zijn meestal bomen en nux-vomica wordt strychnine gewonne struiken, soms klimmers. De kruidachtige Sterbladigen in Europa uit de bast van S. toxifera curare. zijn een buitenbeentje in deze familie. De bladeren zijn enkelvoudig en tegenoverstaand, met steunblaadjes. De bloemen zijn regelmatig, met een kleine kelk, 5 met elkaar vergroeide kroonbladen en 5 meeldraden, en hebben een onderstandig vruchtbeginsel. De bloemen zijn erg variabel van vorm, afhankelijk van de manier van bestuiven: door insecten, vogels, vleermuizen of wind. Ook de vruchten zijn erg variabel en worden op allerlei manieren verspreid. Veel tropische Sterbladigen zoals Hydnophytum en Myrmecodia bieden onderdak aan mieren. Koffie (Coffea arabica) en Cinchona, een bron van quinine, zijn economisch bijzonder belangrijk. Gardenia is de bekendste sierplant uit deze familie. In Nederland is met Sterbladigen karig bedeeld: Lievevrouwebedstro (Asperula odorata), enkele soorten Walstro (Galium), Kruisbladwalstro (Cruciata laevipes), Blauw walstro (Sherardia arvensis), en de oude kleurstofplant Meekrap (Rubia tinctorum). Lievevrouwebedstro I Gentiaanfamilie (Gentianaceae) I Gelsemiaceae tweehuizige, Een vrij grote familie met 87 geslachten en meer dan 1600 soorten, Dit is een kleine familie wild bekend is. voornamelijk van kruiden, soms struiken of bomen, die wereldwijd met 11 soorten: Gelsemi aan de takken. voorkomen, maar vooral in gematigde streken. Er zijn enkele die in de tropen voorkom n op die van de vertegenwoordigers zonder bladgroen, die hun voedingsstoffen van recentelijk afgesplitst va schimmels betrekken. De bladeren zijn tegenoverstaand, vaak zittend en Het zijn struiken of klim en op onderaan met elkaar verbonden, waarbij tegenoverstaande blade wordt een steunblaadjes ontbreken. De bloemen zijn 4-5-tallig, elkaar verbonden zijn do regelmatig, met een opvallende, vergroeidbladige of die 2 steunblaadjes he kroon. Ze hebben meestal geen haren, en vaak een De bloemen zijn regelma bittere smaak. De vrucht is meestal een doosvrucht. en opvallend, en lijken Uit de Gentiaan (Gentiana) en Canscora worden wel wel op die van Jasmijn. medicijnen gemaakt. De Gentiaan en Exacum zijn Misschien hoort ook bekende sierplanten. Ook in Nederland zijn er Pteleocarpa in deze fam vertegenwoordigers van de Gentiaanfamilie: of anders in de Gentiaan (Gentiana), Duizendguldenkruid Ruwbladigenfamilie (Bor (Centaurium), Bitterling (Blackstonia),
Recommended publications
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • BM CC EB What Can We Learn from a Tree?
    Introduction to Comparative Methods BM CC EB What can we learn from a tree? Net diversification (r) Relative extinction (ε) Peridiscaceae Peridiscaceae yllaceae yllaceae h h atop atop Proteaceae Proteaceae r r Ce Ce Tr oc T ho r M M o de c y y H H C C h r r e e a D D a o o nd o e e G G a a m m t t a a d r P r P h h e e u u c c p A p A r e a a e e a a a c a c n n a i B i B h h n d m d l m a l a m m e a e a e e t t n n c u u n n i i d i i e e e e o n o n p n p n a e a S e e S e e n n x x i i r c c a a n o n o p p h g e h g ae e l r a l r a a a a a a i i a a a e a e i b i b h y d c h d c i y i c a a c x c x c c G I a G I a n c n c c c y l y l t a a t a a e e e e e i l c i l c m l m l e c e c f a e a a f a e a a l r r l c c a i i r l e t e t a a r l a a e e u u u u o a o a a a c a c a a l a l e e e b b a a a a e e c e e c a a s c s c c e l c e l e e g e g e a a a a e e n n s e e s e e e e a a a P a P e e N N u u u S u S a e a e a a e e c c l n a l n e e a e e a e a e a e a e r a r a c c C i C i R R a e a e a e a e r c r c A A a d a a d a e i e i phanopetalaceae s r e ph s r e a a s e c s e c e e u u b a a b a e e P P r r l l e n e a a a a m m entho e e e Ha a H o a c r e c r e nt B B e p e e e c e e c a c c h e a p a a p a lo lo l l a a e s o t e s i a r a i a r r r r r a n e a n e a b a l b t a t gaceae e g e ceae a c a s c s a z e z M i a e M i a c a d e a d e ae e ae r e r a e a e a a a c c ce r e r L L i i ac a Vitaceae Vi r r C C e e ta v e v e a a c a a e ea p e ap c a c a e a P P e e l l e Ge G e e ae a t t e e p p r r ce c an u an
    [Show full text]
  • Supplementary Information
    Supporting Information for Cornwell et al. 2014. Functional distinctiveness of major 1 plant lineages. doi: 10.1111/1365-2745.12208. SUPPORTING INFORMATION Summary In this Supporting Information, we report additional methods details with respect to the trait data, the climate data, and the analysis. In addition, to more fully explain the method, we include several additional figures. We show the top-five lineages, including the population of lineages from which they were selected, for five important traits (Figure S1 on five separate pages); the bivariate distribution of three selected clades with respect to SLA and leaf N, components of the leaf economic spectrum (Figure S2), the geographic distribution of the clades where this proved useful for interpretation (Figure S3); the procedure for selecting the top six nodes in the leaf N trait, to illustrate the internal behavior of our new comparative method, especially the relative contribution of components of extremeness and the sample size weighting to the results (Figure S4). Finally, we provide references for data used in analyses. SUPPORTING METHODS TRAITS DATABASE We compiled a database for five plant functional traits. Each of these traits is the result of a separate research initiative in which data were gathered directly from researchers leading those efforts and/or the literature; in most, but not all cases, these data have been published elsewhere. Detailed methods for data collection and assembly for each trait are available in the original publications; further data were added for some traits from the primary literature (for references see description of individual traits and Supporting References below). For our compilation, all data were brought to common units for a given trait and thoroughly error checked.
    [Show full text]
  • Download PDF 'Evolutionary Diversification of the Flowers in Angiosperms'
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 Evolutionary diversification of the flowers in angiosperms Endress, P K Abstract: Angiosperms and their flowers have greatly diversified into an overwhelming array of forms in the past 135 million years. Diversification was shaped by changes in climate and the biological environ- ment (vegetation, interaction with other organisms) and by internal structural constraints and potentials. This review focuses on the development and structural diversity of flowers and structural constraints. It traces floral diversification in the different organs and organ complexes (perianth, androecium, gynoe- cium) through the major clades of extant angiosperms. The continuously improved results of molecular phylogenetics provide the framework for this endeavor, which is necessary for the understanding of the biology of the angiosperms and their flowers. Diversification appears to work with innovations and mod- ifications of form. Many structural innovations originated in several clades and in special cases could become key innovations, which likely were hot spots of diversification. Synorganization between organs was an important process to reach new structural levels, from which new diversifications originated. Com- plexity of synorganization reached peaks in Orchidaceae and Apocynaceae with the independent evolution of pollinaria. Such a review throughout the major clades of angiosperms also shows how superficial and fragmentary our knowledge on floral structure in many clades is. Fresh studies and a multidisciplinary approach are needed. DOI: https://doi.org/10.3732/ajb.1000299 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-51351 Journal Article Published Version Originally published at: Endress, P K (2011).
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Table S1. Taxa and Genbank Accession Numbers Included in the Phylogenomic Analyses
    Table S1. Taxa and GenBank accession numbers included in the phylogenomic analyses. Classification Taxon GenBank Accession No. Acorales/Acoraceae Acorus calamus NC_007407 Amborellales/Amborellaceae Amborella trichopoda NC_005086 Asterales/Compositae Artemisia annua NC_034683 Lactuca sativa NC_007578 Brassicales/Brassicaceae Arabidopsis lyrata NC_031186 Arabidopsis thaliana NC_030789 Capsella rubella NC_026839 Brassicales/Caricaceae Carica papaya NC_010323 Chloranthales/Chloranthaceae Chloranthus japonicus NC_026565 Dipsacales/Caprifoliaceae Lonicera japonica NC_026839 Ericales/Actinidiaceae Actinidia arguta NC_031186 Ericales/Ebenaceae Diospyros kaki NC_030789 Fabales/Fabaceae Glycine max NC_007942 Phaseolus vulgaris NC_009259 Garryales/Eucommiaceae Eucommia ulmoides a MF766010 E. ulmoides KU204775 Garryales/Garryaceae Aucuba japonica GQ997049-GQ997131 Gentianales/Apocynaceae Nerium oleander NC_025656 Laurales/Lauraceae Cinnamomum camphora NC_035882 Magnoliales/Magnoliaceae Magnolia denudata NC_018357 Malpighiales/Euphorbiaceae Manihot esculenta NC_010433 Ricinus communis NC_016736 Malpighiales/Salicaceae Populus trichocarpa NC_009143 Malvales/Malvaceae Hibiscus syriacus NC_026909 Theobroma cacao NC_014676 Myrtales/Myrtaceae Eucalyptus grandis NC_014570 Poales/Poaceae Brachypodium distachyon NC_011032 Rosales/Rosaceae Fragaria vesca NC_015206 Prunus persica NC_014697 Sapindales/Rutaceae Citrus sinensis NC_008334 Solanales/Convolvulaceae Ipomoea nil NC_031159 Solanales/Solanaceae Solanum lycopersicum NC_007898 Solanum tuberosum NC_008096
    [Show full text]
  • Bremer Et Al. 2001
    Plant Syst. Evol. 229: 137±169 <2001) A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies K. Bremer1, A. Backlund2, B. Sennblad3, U. Swenson4, K. Andreasen5, M. Hjertson1, J. Lundberg1, M. Backlund1, and B. Bremer1 1Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 2Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden 3Stockholm Bioinformatics Center, Stockholm University, Stockholm, Sweden 4Department of Botany, University of Stockholm, Stockholm, Sweden 5Molecular Systematics Laboratory, Swedish Museum of Natural History, Stockholm, Sweden Received August 28, 2000 Accepted August 7, 2001 Abstract. A data matrix of 143 morphological and epigynous ¯owers, ``late sympetaly'' with distinct chemical characters for 142 genera of euasterids petal primordia, free stamen ®laments, and indehi- according to the APG system was compiled and scent fruits. It is unclear which of these characters complemented with rbcL and ndhF sequences for represent synapomorphies and symplesiomorphies most of the genera. The data were subjected to for the two groups, respectively, and there are parsimony analysis and support was assessed by numerous expections to be interpreted as reversals bootstrapping. Strict consensus trees from analyses and parallelisms. of morphology alone and morphology + rbcL+ ndhF are presented. The morphological data re- Key words: Angiosperms, asterids, euasterids, cover several groups supported by molecular data Asteridae, Apiales, Aquifoliales, Asterales, but at the level of orders and above relationships Dipsacales, Garryales, Gentianales, Lamiales, are only super®cially in agreement with molecular Solanales, Adoxaceae. Cladistics, phylogeny, studies. The analyses provide support for mono- morphology, rbcL, ndhF.
    [Show full text]
  • Evolutionary Network Genomics of Wood Formation in a Phylogenetic Survey of Angiosperm Forest Trees
    Research Evolutionary network genomics of wood formation in a phylogenetic survey of angiosperm forest trees Matthew Zinkgraf1,2* , Shu-Tang Zhao3*, Courtney Canning1, Suzanne Gerttula1, Meng-Zhu Lu3 , Vladimir Filkov4 and Andrew Groover1,5 1USDA Forest Service, Pacific Southwest Research Station, Davis, CA 95618, USA; 2College of Science and Engineering, Western Washington University, Bellingham, WA 98225-9063, USA; 3State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; 4Computer Science, University of California Davis, Davis, CA 95618, USA; 5Department of Plant Biology, University of California Davis, Davis, CA 95616, USA Summary Authors for correspondence: Wood formation was present in early angiosperms, but has been highly modified through Andrew Groover evolution to generate the anatomical diversity seen in extant angiosperm lineages. In this pro- Tel: +1 530 759 1738 ject, we modeled changes in gene coexpression relationships associated with the evolution of Email: [email protected] wood formation in a phylogenetic survey of 13 angiosperm tree species. Vladimir Filkov Gravitropic stimulation was used as an experimental treatment to alter wood formation and Tel: +1 530 752 8393 also perturb gene expression. Gene transcript abundances were determined using RNA Email: fi[email protected] sequencing of developing wood tissues from upright trees, and from the top (tension wood) and bottom (opposite wood) tissues of gravistimulated trees. Meng-Zhu Lu Tel: +86 571 6383 9132 A network-based approach was employed to align gene coexpression networks across Email: [email protected] species based on orthologous relationships. A large-scale, multilayer network was modeled Received: 20 May 2020 that identified both lineage-specific gene coexpression modules and modules conserved Accepted: 6 July 2020 across multiple species.
    [Show full text]
  • La Flora Vascolare Della Penisola Del Sinis (Sardegna Occidentale)
    AFlcotraa Bvaostcaonliacrae MPeanliascoiltaa ndael 3S3i.n 9is1-124 Málaga, 209018 LA FLORA VASCOLARE DELLA PENISOLA DEL SINIS (SARDEGNA OCCIDENTALE) Giuseppe FENU & Gianluigi BACCHETTA* Centro Conservazione Biodiversità (CCB). Dipartimento di Scienze Botaniche. Università degli Studi di Cagliari v.le Sant’Ignazio da Laconi, 13. 09123 Cagliari (Italia) *Corresponding author: [email protected] Recibido el 17 de noviembre de 2007, aceptado para su publicación el 18 de febrero de 2008 Publicado "on line" en marzo de 2008 RIASSUNTO. La flora vascolare della Penisola del Sinis (Sardegna Occidentale). Viene presentato lo studio della flora vascolare della Penisola del Sinis; in totale sono state rinvenute 760 unità tassonomiche e in particolare 615 specie, 134 sottospecie, 10 varietà e 1 ibrido, riferibili a 365 generi e 87 famiglie. Le Eudicots sono risultate il gruppo sistematico dominante. Le famiglie più rappresentate sono: Poaceae (99 unità tassonomiche), Fabaceae e Asteraceae (85), Caryophyllaceae (33), Apiaceae (27) e Orchidaceae (24). I generi con maggior numero di taxa sono: Trifolium (19), Silene (14), Limonium e Medicago (13), Ophrys (12), Euphorbia e Vicia (10), Plantago (9), Allium (8) e infine Lotus, Ranunculus e Vulpia (7). Il contingente delle endemiche (54 unità tassonomiche) è risultato pari al 8,97% della componente mediterranea e mostra una dominanza degli elementi sardo-corsi (33,33%) e secondariamente sardi (24,10%), i quali unitamente raggiungono il 57,43% del totale. La flora endemica è costituita da 31 specie, 17 sottospecie e 6 varietà, inquadrati in 38 generi e 22 famiglie. Le famiglie più rappresentate sono risultate le Plumbaginaceae (10), Asteraceae e Lamiaceae (5), Fabaceae (4), Alliaceae, Euphorbiaceae e Ranunculaceae (3); il genere più ricco è risultato Limonium (10), seguito da Allium, Delphinium, Euphorbia, Scrophularia, Silene e Teucrium (2).
    [Show full text]
  • 2 ANGIOSPERM PHYLOGENY GROUP (APG) SYSTEM History Of
    ANGIOSPERM PHYLOGENY GROUP (APG) SYSTEM The Angiosperm Phylogeny Group, or APG, refers to an informal international group of systematic botanists who came together to try to establish a consensus view of the taxonomy of flowering plants (angiosperms) that would reflect new knowledge about their relationships based upon phylogenetic studies. As of 2010, three incremental versions of a classification system have resulted from this collaboration (published in 1998, 2003 and 2009). An important motivation for the group was what they viewed as deficiencies in prior angiosperm classifications, which were not based on monophyletic groups (i.e. groups consisting of all the descendants of a common ancestor). APG publications are increasingly influential, with a number of major herbaria changing the arrangement of their collections to match the latest APG system. Angiosperm classification and the APG Until detailed genetic evidence became available, the classification of flowering plants (also known as angiosperms, Angiospermae, Anthophyta or Magnoliophyta) was based on their morphology (particularly that of the flower) and their biochemistry (what kinds of chemical compound they contained or produced). Classification systems were typically produced by an individual botanist or by a small group. The result was a large number of such systems (see List of systems of plant taxonomy). Different systems and their updates tended to be favoured in different countries; e.g. the Engler system in continental Europe; the Bentham & Hooker system in Britain (particularly influential because it was used by Kew); the Takhtajan system in the former Soviet Union and countries within its sphere of influence; and the Cronquist system in the United States.
    [Show full text]
  • The Woody Planet: from Past Triumph to Manmade Decline
    plants Review The Woody Planet: From Past Triumph to Manmade Decline Laurence Fazan 1, Yi-Gang Song 2,3 and Gregor Kozlowski 1,3,4,* 1 Department of Biology and Botanical Garden, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; [email protected] 2 Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Chenhua Road No.3888, Songjiang, Shanghai 201602, China; [email protected] 3 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenhua Road No.3888, Songjiang, Shanghai 201602, China 4 Natural History Museum Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland * Correspondence: [email protected]; Tel.: +41-26-300-88-42 Received: 6 November 2020; Accepted: 16 November 2020; Published: 17 November 2020 Abstract: Woodiness evolved in land plants approximately 400 Mya, and very soon after this evolutionary invention, enormous terrestrial surfaces on Earth were covered by dense and luxurious forests. Forests store close to 80% of the biosphere’s biomass, and more than 60% of the global biomass is made of wood (trunks, branches and roots). Among the total number of ca. 374,000 plant species worldwide, approximately 45% (138,500) are woody species—e.g., trees, shrubs or lianas. Furthermore, among all 453 described vascular plant families, 191 are entirely woody (42%). However, recent estimations demonstrate that the woody domination of our planet was even greater before the development of human civilization: 1.4 trillion trees, comprising more than 45% of forest biomass, and 35% of forest cover disappeared during the last few thousands of years of human dominance on our planet.
    [Show full text]