Phylogeny of Lamiidae Reveals Increased Resolution and Support for Internal Relationships That Have Remained Elusive

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of Lamiidae Reveals Increased Resolution and Support for Internal Relationships That Have Remained Elusive American Journal of Botany 101(2): 287–299. 2014. P HYLOGENY OF LAMIIDAE 1 N ANCY F . R EFULIO-RODRIGUEZ 2 AND R ICHARD G. OLMSTEAD 2,3 2 Department of Biology, Box 355325, University of Washington, Seattle, Washington 98195 USA • Premise of the study: The Lamiidae, a clade composed of approximately 15% of all fl owering plants, consists of fi ve orders: Boraginales, Gentianales, Garryales, Lamiales, and Solanales; and four families unplaced in an order: Icacinaceae, Metteniusi- aceae, Oncothecaceae, and Vahliaceae. Our understanding of the phylogenetic relationships of Lamiidae has improved signifi - cantly in recent years, however, relationships among the orders and unplaced families of the clade remain partly unresolved. Here, we present a phylogenetic analysis of the Lamiidae based on an expanded sampling, including all families together, for the fi rst time, in a single phylogenetic analyses. • Methods: Phylogenetic analyses were conducted using maximum parsimony, maximum likelihood, and Bayesian approaches. Analyses included nine plastid regions ( atpB , matK , ndhF , psbBTNH , rbcL , rps4 , rps16 , trnL - F , and trnV - atpE ) and the mitochondrial rps3 region, and 129 samples representing all orders and unplaced families of Lamiidae. • Key results: Maximum Likelihood (ML) and Bayesian trees provide good support for Boraginales sister to Lamiales, with successive outgroups (Solanales + Vahlia) and Gentianales, together comprising the core Lamiidae. Early branching patterns are less well supported, with Garryales only poorly supported as sister to the above ‘core’ and a weakly supported clade composed of Icacinaceae, Metteniusaceae, and Oncothecaceae sister to all other Lamiidae. • Conclusions: Our phylogeny of Lamiidae reveals increased resolution and support for internal relationships that have remained elusive. Within Lamiales, greater resolution also is obtained, but some family interrelationships remain a challenge. Key words: Boraginales; chloroplast; Garryales; Gentianales; Lamiales; Lamiidae; mitochondrial; Solanales. Current understanding of Lamiidae phylogeny comes from been unable to establish precise sister group relationships two decades of molecular phylogenetic research aimed at un- among major clades within Lamiidae, beyond fi nding that Gar- derstanding the phylogeny of Asteridae and angiosperms in ryales, Icacinaceae, Oncothecaceae, and Metteniusiaceae repre- general ( Olmstead et al., 1992 , 1993 , 2000 ; Chase et al., 1993 ; sent basal lineages, and that Lamiales, Gentianales, Solanales, Soltis et al., 2000 , 2011 ; Albach et al., 2001 ; Kårehed, 2001 ; Boraginales, and Vahliaceae form a well-supported clade. Bremer et al., 2002 ; González et al., 2007 ). Through these stud- Lamiidae are one of two major clades, along with Campanu- ies, the monophyly of Lamiidae is well established, and in- lidae ( Cantino et al., 2007 ; Tank and Donoghue, 2010 ), com- cludes four large clades: (1) Boraginales (forget-me-nots, prising the core asterids (sensu the Angiosperm Phylogeny heliotropes); (2) Gentianales (coffee, gentians, milkweeds); (3) Group (APG), 1998 ; APG II, 2003 ; APG III, 2009 ; Soltis et al., Lamiales (African violets, foxglove, mint, olives, sesame, trum- 2011 ). Lamiidae (sensu Olmstead et al., 1992 ) are roughly pet creeper, verbena); and (4) Solanales (morning glory, petu- equivalent to the subclass Lamiidae of Takhtajan (1987, but not nia, potato, tomato), as well as a series of smaller clades of less 1997). In several early studies Lamiidae were referred to as as- well-known plants that mostly form a basal-grade relative to the terids I ( Chase et al., 1993 ), euasterids I ( APG, 1998 ; APG III, large clades (Garryales, Icacinaceae, Metteniusiaceae, Oncoth- 2009 ), or lamiids ( Bremer et al., 2002 ; Judd and Olmstead, ecaceae, and Vahliaceae). Despite a progressive increment in 2004 ). Adding to this confusion, Cantino et al. (2007) used the number of genes and/or taxa sampled, these studies have Lamiidae for the smaller, less-inclusive clade (Lamiales, Genti- anales, Solanales, and Boraginales.), coining a new name, Gar- ryidae, for the clade recognized here as Lamiidae. This stemmed 1 Manuscript received 6 November 2013; revision accepted 7 January from the exclusion of Garryales from Lamiidae because of poor 2014. resolution in an early paper based on rbcL ( Olmstead et al., The authors thank Doug and Pam Soltis for coordinating the Angiosperm Tree of Life Project; Mike Schoenborn for his help with the sequencing of the 1993 ). Priority, and common, informal recognition under the rps3 mitochondrial region; Bruce Godfrey (Director of the Comparative variety of names listed above, suggests that Lamiidae is best Genomics Center-University of Washington) for assistance in the sequencing used to refer to the more inclusive clade. facility; and Yin-Long Qiu and D. Tank for sharing primers information. We Within Lamiidae, the largest and most intractable clade is La- are grateful to the following colleagues: Mark Chase, Laszlo Csiba, Claude miales (sensu Olmstead et al., 1993 , 2000 , 2001 ; Soltis et al., dePamphillis, Barry Hammel, Maribeth Latvis, Jeffrey Paul Benca, Jim Smith, 2000 , 2011 ; Bremer et al., 2002 ; Schäferhoff et al., 2010 ). Sasa Stefanović, Lena Struwe, Eva Wallander, Alexandra Wortley, Gregory As currently delimited, Lamiales is composed of 25 families Young, Andrea D. Wolfe, and Dave Tank; as well as the Missouri Botanical (Acanthaceae, Bignoniaceae, Byblidaceae, Calceolariaceae, Garden, Rancho Santa Ana Botanic Garden, Royal Botanic GardensUK), and Carlemanniaceae, Gesneriaceae, Lamiaceae, Lentibulari- the Smithsonian Institution (US) for providing DNA or leaf tissue for DNA aceae, Linderniaceae, Martyniaceae, Mazaceae, Oleaceae, extraction. This study was supported by a National Science Foundation (NSF) Assembling the Tree of Life grant EF-0431184 to RGO, and NSF Systematics Orobanchaceae, Paulowniaceae, Pedaliaceae, Phrymaceae, Plan- grants DEB-0542493 and DEB 1020369 to RGO. taginaceae sensu APG, Plocospermataceae, Rehmanniaceae, 3 Author for correspondence (e-mail: [email protected]) Schlegeliaceae, Scrophulariaceae, Stilbaceae, Tetrachondraceae, Thomandersiaceae, and Verbenaceae), and over 20 000 species doi:10.3732/ajb.1300394 ( Olmstead et al., 2000 ; Olmstead, 2012, http://depts.washington. American Journal of Botany 101(2): 287–299, 2014 ; http://www.amjbot.org/ © 2014 Botanical Society of America 287 288 AMERICAN JOURNAL OF BOTANY [Vol. 101 edu/phylo/Classifi cation.pdf). Lamiales phylogeny has proven similarity criterion ( Simmons et al., 2004 ) using the program Se-Al (vers. diffi cult to resolve ( Wortley et al., 2005 ). Even though it is 2.0a11; Rambaut, 1996–2002). Gaps were treated as missing data. Ambigu- strongly supported as a monophyletic group, analyses of up to 17 ously aligned regions ( matK ~450 nt; psbBTNH ~175 nt; trnV ~525 nt; trnL-F ~430 nt; rps16 ~1100 nt; rps3 ~300 nt; ndhF ~30 nt) were excluded from genes ( Soltis et al., 2011 ) have failed to provide a fully resolved analyses. phylogeny. The recent study of Schäferhoff et al. (2010) , with three chloroplast gene regions, included the broadest taxon sam- Maximum parsimony— Maximum parsimony (MP) analyses were per- pling to date, but also left many relationships among core fami- formed for each marker separately (results not shown) and combining all 10 lies poorly resolved. genes using PAUP* (version 4.0b10; Swofford, 2002 ). Heuristic searches were Here, we provide a Lamiidae phylogeny with the broadest performed with 100 random stepwise-addition replicates, using tree bisection- taxon sampling to date. Ten gene regions (~17 214 bp) were reconnection branch swapping (TBR), and with MULTREES on and 10 trees sequenced, including both chloroplast and mitochondrial ge- held at each step. This was followed by a second set of searches using the con- sensus of the trees obtained as a reverse constraint and 1000 replicates to search nomes. Within Lamiidae, we specifi cally focused on Lamiales, for other islands of equal or shorter trees ( Catalan et al., 1997 ). Bootstrap values because of the lack of resolution in previous studies. (BP) for clades were obtained using similar settings described above, but sav- ing no more than fi ve trees and with MULTREES off ( DeBry and Olmstead, 2000 ). Gaps were treated as missing data. MATERIALS AND METHODS Model selection— Nucleotide substitution models for each gene were deter- Taxon sampling — Taxon sampling consisted of 129 samples representing mined by the program jModelTest ( Posada, 2008 ) using the Akaike information all four orders and the fi ve additional families unplaced to order in Lamiidae. criterion (AIC). The nucleotide substitution models obtained for each gene are Sampling was concentrated on resolving family relationships within Lamiales. as follows: atpB (TVM + I + G), matK (GTR + G), ndhF (GTR + I + G), Six taxa were chosen as the outgroups based on previous studies (e.g., psbBTNH (TVM + I + G), rbcL (TVM + I + G), rps3 (TVM + G), rps4 (TVM + G), Olmstead et al., 2000 ; Bremer et al., 2002 ; Soltis et al., 2011 ). Because it has rps16 (GTR + G), trnL - F (TVM + G), and trnV - atpE (TVM + G). been shown that Campanulidae are sister to Lamiidae (together forming the core Asteridae, Judd and Olmstead, 2004 ), four taxa were selected representing Bayesian analysis— Bayesian Markov Chain Monte Carlo (MCMC, Yang the main clades of campanulids, Helwingia (Aquifoliales), Aralia (Apiales), and Rannala, 1997 ) posterior probabilities (PP) were calculated
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • New Species and Combinations of Apocynaceae, Bignoniaceae, Clethraceae, and Cunoniaceae from the Neotropics
    Anales del Jardín Botánico de Madrid 75 (2): e071 https://doi.org/10.3989/ajbm.2499 ISSN: 0211-1322 [email protected], http://rjb.revistas.csic.es/index.php/rjb Copyright: © 2018 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 4.0 License. New species and combinations of Apocynaceae, Bignoniaceae, Clethraceae, and Cunoniaceae from the Neotropics Juan Francisco Morales 1,2,3 1 Missouri Botanical Garden 4344 Shaw Blvd. St. Louis, MO 63110, USA. 2 Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany. 3 Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Universidad Estatal a Distancia, 474–2050 Montes de Oca, Costa Rica. [email protected], https://orcid.org/0000-0002-8906-8567 Abstract. Mandevilla arenicola J.F.Morales sp. nov. from Brazil, Clethra Resumen. Se describen e ilustran Mandevilla arenicola J.F.Morales secazu J.F.Morales sp. nov. from Costa Rica, and Weinmannia abstrusa sp. nov. de Brasil, Clethra secazu J.F.Morales sp. nov. de Costa Rica y J.F.Morales sp. nov. from Honduras are described and illustrated and Weinmannia abstrusa J.F.Morales sp. nov. de Honduras y se discuten their relationships with morphologically related species are discussed. sus relaciones con otras especies de morfología semejante. Se designan Lectotypes are designated for Anemopaegma tonduzianum Kraenzl., lectotipos para Anemopaegma tonduzianum Kraenzl., Bignonia Bignonia sarmentosa var. hirtella Benth. and Paragonia pyramidata var. sarmentosa var. hirtella Benth. and Paragonia pyramidata var. tomentosa tomentosa Bureau & K. Schum., as well as these last two names have Bureau & K.Schum., así como también se combinan estos dos últimos been combined.
    [Show full text]
  • Fair Use of This PDF File of Herbaceous
    Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut.
    [Show full text]
  • Playing with Extremes Origins and Evolution of Exaggerated Female
    Molecular Phylogenetics and Evolution 115 (2017) 95–105 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Playing with extremes: Origins and evolution of exaggerated female forelegs MARK in South African Rediviva bees ⁎ Belinda Kahnta,b, , Graham A. Montgomeryc, Elizabeth Murrayc, Michael Kuhlmannd,e, Anton Pauwf, Denis Michezg, Robert J. Paxtona,b, Bryan N. Danforthc a Institute of Biology/General Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany c Department of Entomology, Cornell University, 3124 Comstock Hall, Ithaca, NY 14853-2601, USA d Zoological Museum, Kiel University, Hegewischstr. 3, 24105 Kiel, Germany e Dept. of Life Sciences, Natural History Museum, Cromwell Rd., London SW7 5BD, UK f Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa g Laboratoire de Zoologie, Research institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ARTICLE INFO ABSTRACT Keywords: Despite close ecological interactions between plants and their pollinators, only some highly specialised polli- Molecular phylogenetics nators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution Plant-pollinator interaction of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in Ecological adaptation which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Greater cape floristic region Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred Trait evolution an origin of Rediviva at around 29 MYA (95% HPD = 19.2–40.5), concurrent with the origin and radiation of the Melittidae Succulent Karoo flora.
    [Show full text]
  • Native Plants for Your Backyard
    U.S. Fish & Wildlife Service Native Plants for Your Backyard Native plants of the Southeastern United States are more diverse in number and kind than in most other countries, prized for their beauty worldwide. Our native plants are an integral part of a healthy ecosystem, providing the energy that sustains our forests and wildlife, including important pollinators and migratory birds. By “growing native” you can help support native wildlife. This helps sustain the natural connections that have developed between plants and animals over thousands of years. Consider turning your lawn into a native garden. You’ll help the local environment and often use less water and spend less time and money maintaining your yard if the plants are properly planted. The plants listed are appealing to many species of wildlife and will look attractive in your yard. To maximize your success with these plants, match the right plants with the right site conditions (soil, pH, sun, and moisture). Check out the resources on the back of this factsheet for assistance or contact your local extension office for soil testing and more information about these plants. Shrubs Trees Vines Wildflowers Grasses American beautyberry Serviceberry Trumpet creeper Bee balm Big bluestem Callicarpa americana Amelanchier arborea Campsis radicans Monarda didyma Andropogon gerardii Sweetshrub Redbud Carolina jasmine Fire pink Little bluestem Calycanthus floridus Cercis canadensis Gelsemium sempervirens Silene virginica Schizachyrium scoparium Blueberry Red buckeye Crossvine Cardinal flower
    [Show full text]
  • Presence of the Indole Alkaloid Reserpine in Bignonia Capreolata L
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2012; 4(3); 89-91 ISSN: 0975-4873 Research Article Presence of the Indole Alkaloid Reserpine in Bignonia Capreolata L. Clark. T1, *Lund. K.C.1,2 1Department of Botanical Medicine, Bastyr University, Kenmore WA, USA 2Bastyr University Research Institute, Kenmore WA, USA ABSTRACT Bignonia capreolatais a perennial semi-evergreen vine from the Southeast United States that was used as a medicine by the Native Americans but has since fallen out of use. A preliminary screen of B. capreolata suggested the presence of the indole alkaloid reserpine. This analysis was undertaken to 1) verify the presence reserpine using LC-MS referenced with an analytical standard of reserpine; and 2) if verified, quantitate the level of reserpine in B. capreolata leaf. LC-MS analysis has confirmed the presence of reserpine in B. capreolata, which makes this the only known plant outside the Apocynaceae family to contain this indole alkaloid. INTRODUCTION MATERIALS AND METHODS Bignonia capreolata(crossvine)is a perennial semi- Plant Material: Leaf and stem of Bignonia capreolataL. evergreen vine native to the Eastern United States. It is a were collected in near Shelby, Alabama (USA). A member of the Bignoniaceae family, a plant family sample of the plant material used for testing was predominately found in tropical and subtropical regions. authenticated by a botanist (George Yatskievych, PhD) It is known by the common name crossvine and has and submitted to the Missouri Botanical Gardens become a popular ornamental plant due to its showy herbarium (voucher #6257878). clusters of orange to red trumpet flowers1.Ethnobotanical Sample Preparation: Plant material was dried whole and use in North Americahas been documented for the leaves removed for processing.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • Growild, Inc. June 2020 Retail Availability
    GroWild, Inc. June 2020 Retail Availability Description Quantity size Price FERNS Adiatum pedatum - Maidenhair Fern 3 1 gal. 15.00 Athyrium felix femina - Lady Fern 24 1 gal 15.00 Cheilanthes lanosa - Hairy Lip Fern 7 1 qt 10.00 Dennstaedtia punctilobula - Hay Scented Fern 156 1 gal 15.00 Diplazium pycnocarpon - Glade Fern 9 1 gal 15.00 Dryopteris filix-mas 'Dactyl' - Male Fern 27 1 gal 15.00 Dryopteris goldiana - Goldies Wood Fern 7 1 gal 15.00 Dryopteris marginalis - Wood Fern 2 1 gal 15.00 Lygodium palmatum - American Climbing Fern 64 1 Qt 10.50 Matteuccia struthiopteris v. pensylvanica - Ostrich Fern 2 1 gal. 15.00 Metteuccia struthiopteris v. pensylvanica - Ostrich Fern 12 3 gRM 28.00 Onoclea sensibilis - Sensative Fern 1 1 gal 15.00 Osmunda cinnamomea - Cinnamon Fern 3 1 gal 15.00 Osmunda regalis - Royal Fern 1 3 gal 25.00 Osmunda regalis v. spectabilis- Royal Fern 53 1 gal. 15.00 Polystichum acrostichoides - Christmas Fern 458 1 gal. 15.00 Pteridium aquilinum - Bracken Fern 51 1 QT 10.00 Thelypteris noveboracensis - New York Fern 5 1 gal 15.00 Unidentified Fern 10 1 g 10.00 Unidentified Fern 93 quart 8.00 GRASSES Andropogan gerardii - Big Blue Stem 7 quart 5.00 Androgogon glomeratus - Bushy Blue Stem 1 1gal 11.00 Andropogon g. 'Red October' - Big Bluestem PP26283 35 1 gal 15.00 Andropogon g. 'Red October' - Big Bluestem PP26283 29 3 gal 30.00 Andropogon ternarius - Split-beard Broomsedge 86 1 gal 12.50 Andropogon ternarius 'Black Mountain' - 62 3 gal 30.00 Andropogon virginicus - Broomsedge 1 1 gal 11.00 Andropogon virginicus - Broomsedge 61 3 gal 21.00 Andropogon virginicus var glaucus 55 1 gal 12.50 Bouteloua curtipedula - Side Oat Grama (syn.
    [Show full text]
  • The Acanthaceae, Derived from Acanthus Are
    Vol. 7(36), pp. 2707-2713, 25 September, 2013 DOI: 10.5897/JMPR2013.5194 ISSN 1996-0875 ©2013 Academic Journals Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Ethnobotany of Acanthaceae in the Mount Cameroon region Fongod A.G.N*, Modjenpa N.B. and Veranso M.C Department of Botany Plant Physiology, University of Buea, P.O Box 63, Buea. Cameroon. Accepted 2 September, 2013 An ethnobotanical survey was carried out in the Mount Cameroon area, southwest region of Cameroon to determine the uses of different species of the Acanthaceae. An inventory of identified Acanthaceaes used by different individuals and traditional medical practitioners (TMPs) was established from information gathered through the show-and-tell/semi-structured method and interviews during field expeditions. Sixteen villages were selected for this research: Munyenge, Mundongo, Ekona, Lelu, Bokoso, Bafia. Bakingili, Ekonjo, Mapanja, Batoke, Wututu, Idenau, Njongi, Likoko, Bokwango and Upper farms. The study yielded 18 plant species used for treating twenty five different diseases and 16 species with ornamental potentials out of the Acanthaceaes identified. Results revealed that 76% of species are used medicinally, while 34% are employed or used for food, rituals, forage and hunting. The leaves of these species are the most commonly used plant parts. The species with the highest frequency of use was Eremomastax speciosa (Hotsch.) with 29 respondents followed by Acanthus montanus (Nes.) T. Anders. The study reveals the medicinal and socio-cultural uses of the Acanthaceaes in the Mount Cameroon Region and a need for proper investigation of the medicinal potentials of these plants.
    [Show full text]