Phylogeny of Lamiidae Reveals Increased Resolution and Support for Internal Relationships That Have Remained Elusive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. -
New Species and Combinations of Apocynaceae, Bignoniaceae, Clethraceae, and Cunoniaceae from the Neotropics
Anales del Jardín Botánico de Madrid 75 (2): e071 https://doi.org/10.3989/ajbm.2499 ISSN: 0211-1322 [email protected], http://rjb.revistas.csic.es/index.php/rjb Copyright: © 2018 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 4.0 License. New species and combinations of Apocynaceae, Bignoniaceae, Clethraceae, and Cunoniaceae from the Neotropics Juan Francisco Morales 1,2,3 1 Missouri Botanical Garden 4344 Shaw Blvd. St. Louis, MO 63110, USA. 2 Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany. 3 Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Universidad Estatal a Distancia, 474–2050 Montes de Oca, Costa Rica. [email protected], https://orcid.org/0000-0002-8906-8567 Abstract. Mandevilla arenicola J.F.Morales sp. nov. from Brazil, Clethra Resumen. Se describen e ilustran Mandevilla arenicola J.F.Morales secazu J.F.Morales sp. nov. from Costa Rica, and Weinmannia abstrusa sp. nov. de Brasil, Clethra secazu J.F.Morales sp. nov. de Costa Rica y J.F.Morales sp. nov. from Honduras are described and illustrated and Weinmannia abstrusa J.F.Morales sp. nov. de Honduras y se discuten their relationships with morphologically related species are discussed. sus relaciones con otras especies de morfología semejante. Se designan Lectotypes are designated for Anemopaegma tonduzianum Kraenzl., lectotipos para Anemopaegma tonduzianum Kraenzl., Bignonia Bignonia sarmentosa var. hirtella Benth. and Paragonia pyramidata var. sarmentosa var. hirtella Benth. and Paragonia pyramidata var. tomentosa tomentosa Bureau & K. Schum., as well as these last two names have Bureau & K.Schum., así como también se combinan estos dos últimos been combined. -
Fair Use of This PDF File of Herbaceous
Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut. -
Playing with Extremes Origins and Evolution of Exaggerated Female
Molecular Phylogenetics and Evolution 115 (2017) 95–105 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Playing with extremes: Origins and evolution of exaggerated female forelegs MARK in South African Rediviva bees ⁎ Belinda Kahnta,b, , Graham A. Montgomeryc, Elizabeth Murrayc, Michael Kuhlmannd,e, Anton Pauwf, Denis Michezg, Robert J. Paxtona,b, Bryan N. Danforthc a Institute of Biology/General Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany c Department of Entomology, Cornell University, 3124 Comstock Hall, Ithaca, NY 14853-2601, USA d Zoological Museum, Kiel University, Hegewischstr. 3, 24105 Kiel, Germany e Dept. of Life Sciences, Natural History Museum, Cromwell Rd., London SW7 5BD, UK f Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa g Laboratoire de Zoologie, Research institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ARTICLE INFO ABSTRACT Keywords: Despite close ecological interactions between plants and their pollinators, only some highly specialised polli- Molecular phylogenetics nators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution Plant-pollinator interaction of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in Ecological adaptation which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Greater cape floristic region Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred Trait evolution an origin of Rediviva at around 29 MYA (95% HPD = 19.2–40.5), concurrent with the origin and radiation of the Melittidae Succulent Karoo flora. -
Native Plants for Your Backyard
U.S. Fish & Wildlife Service Native Plants for Your Backyard Native plants of the Southeastern United States are more diverse in number and kind than in most other countries, prized for their beauty worldwide. Our native plants are an integral part of a healthy ecosystem, providing the energy that sustains our forests and wildlife, including important pollinators and migratory birds. By “growing native” you can help support native wildlife. This helps sustain the natural connections that have developed between plants and animals over thousands of years. Consider turning your lawn into a native garden. You’ll help the local environment and often use less water and spend less time and money maintaining your yard if the plants are properly planted. The plants listed are appealing to many species of wildlife and will look attractive in your yard. To maximize your success with these plants, match the right plants with the right site conditions (soil, pH, sun, and moisture). Check out the resources on the back of this factsheet for assistance or contact your local extension office for soil testing and more information about these plants. Shrubs Trees Vines Wildflowers Grasses American beautyberry Serviceberry Trumpet creeper Bee balm Big bluestem Callicarpa americana Amelanchier arborea Campsis radicans Monarda didyma Andropogon gerardii Sweetshrub Redbud Carolina jasmine Fire pink Little bluestem Calycanthus floridus Cercis canadensis Gelsemium sempervirens Silene virginica Schizachyrium scoparium Blueberry Red buckeye Crossvine Cardinal flower -
Presence of the Indole Alkaloid Reserpine in Bignonia Capreolata L
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2012; 4(3); 89-91 ISSN: 0975-4873 Research Article Presence of the Indole Alkaloid Reserpine in Bignonia Capreolata L. Clark. T1, *Lund. K.C.1,2 1Department of Botanical Medicine, Bastyr University, Kenmore WA, USA 2Bastyr University Research Institute, Kenmore WA, USA ABSTRACT Bignonia capreolatais a perennial semi-evergreen vine from the Southeast United States that was used as a medicine by the Native Americans but has since fallen out of use. A preliminary screen of B. capreolata suggested the presence of the indole alkaloid reserpine. This analysis was undertaken to 1) verify the presence reserpine using LC-MS referenced with an analytical standard of reserpine; and 2) if verified, quantitate the level of reserpine in B. capreolata leaf. LC-MS analysis has confirmed the presence of reserpine in B. capreolata, which makes this the only known plant outside the Apocynaceae family to contain this indole alkaloid. INTRODUCTION MATERIALS AND METHODS Bignonia capreolata(crossvine)is a perennial semi- Plant Material: Leaf and stem of Bignonia capreolataL. evergreen vine native to the Eastern United States. It is a were collected in near Shelby, Alabama (USA). A member of the Bignoniaceae family, a plant family sample of the plant material used for testing was predominately found in tropical and subtropical regions. authenticated by a botanist (George Yatskievych, PhD) It is known by the common name crossvine and has and submitted to the Missouri Botanical Gardens become a popular ornamental plant due to its showy herbarium (voucher #6257878). clusters of orange to red trumpet flowers1.Ethnobotanical Sample Preparation: Plant material was dried whole and use in North Americahas been documented for the leaves removed for processing. -
Towards an Updated Checklist of the Libyan Flora
Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
Growild, Inc. June 2020 Retail Availability
GroWild, Inc. June 2020 Retail Availability Description Quantity size Price FERNS Adiatum pedatum - Maidenhair Fern 3 1 gal. 15.00 Athyrium felix femina - Lady Fern 24 1 gal 15.00 Cheilanthes lanosa - Hairy Lip Fern 7 1 qt 10.00 Dennstaedtia punctilobula - Hay Scented Fern 156 1 gal 15.00 Diplazium pycnocarpon - Glade Fern 9 1 gal 15.00 Dryopteris filix-mas 'Dactyl' - Male Fern 27 1 gal 15.00 Dryopteris goldiana - Goldies Wood Fern 7 1 gal 15.00 Dryopteris marginalis - Wood Fern 2 1 gal 15.00 Lygodium palmatum - American Climbing Fern 64 1 Qt 10.50 Matteuccia struthiopteris v. pensylvanica - Ostrich Fern 2 1 gal. 15.00 Metteuccia struthiopteris v. pensylvanica - Ostrich Fern 12 3 gRM 28.00 Onoclea sensibilis - Sensative Fern 1 1 gal 15.00 Osmunda cinnamomea - Cinnamon Fern 3 1 gal 15.00 Osmunda regalis - Royal Fern 1 3 gal 25.00 Osmunda regalis v. spectabilis- Royal Fern 53 1 gal. 15.00 Polystichum acrostichoides - Christmas Fern 458 1 gal. 15.00 Pteridium aquilinum - Bracken Fern 51 1 QT 10.00 Thelypteris noveboracensis - New York Fern 5 1 gal 15.00 Unidentified Fern 10 1 g 10.00 Unidentified Fern 93 quart 8.00 GRASSES Andropogan gerardii - Big Blue Stem 7 quart 5.00 Androgogon glomeratus - Bushy Blue Stem 1 1gal 11.00 Andropogon g. 'Red October' - Big Bluestem PP26283 35 1 gal 15.00 Andropogon g. 'Red October' - Big Bluestem PP26283 29 3 gal 30.00 Andropogon ternarius - Split-beard Broomsedge 86 1 gal 12.50 Andropogon ternarius 'Black Mountain' - 62 3 gal 30.00 Andropogon virginicus - Broomsedge 1 1 gal 11.00 Andropogon virginicus - Broomsedge 61 3 gal 21.00 Andropogon virginicus var glaucus 55 1 gal 12.50 Bouteloua curtipedula - Side Oat Grama (syn. -
The Acanthaceae, Derived from Acanthus Are
Vol. 7(36), pp. 2707-2713, 25 September, 2013 DOI: 10.5897/JMPR2013.5194 ISSN 1996-0875 ©2013 Academic Journals Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Ethnobotany of Acanthaceae in the Mount Cameroon region Fongod A.G.N*, Modjenpa N.B. and Veranso M.C Department of Botany Plant Physiology, University of Buea, P.O Box 63, Buea. Cameroon. Accepted 2 September, 2013 An ethnobotanical survey was carried out in the Mount Cameroon area, southwest region of Cameroon to determine the uses of different species of the Acanthaceae. An inventory of identified Acanthaceaes used by different individuals and traditional medical practitioners (TMPs) was established from information gathered through the show-and-tell/semi-structured method and interviews during field expeditions. Sixteen villages were selected for this research: Munyenge, Mundongo, Ekona, Lelu, Bokoso, Bafia. Bakingili, Ekonjo, Mapanja, Batoke, Wututu, Idenau, Njongi, Likoko, Bokwango and Upper farms. The study yielded 18 plant species used for treating twenty five different diseases and 16 species with ornamental potentials out of the Acanthaceaes identified. Results revealed that 76% of species are used medicinally, while 34% are employed or used for food, rituals, forage and hunting. The leaves of these species are the most commonly used plant parts. The species with the highest frequency of use was Eremomastax speciosa (Hotsch.) with 29 respondents followed by Acanthus montanus (Nes.) T. Anders. The study reveals the medicinal and socio-cultural uses of the Acanthaceaes in the Mount Cameroon Region and a need for proper investigation of the medicinal potentials of these plants.