October 1998 Volume 3, Issue 4

Total Page:16

File Type:pdf, Size:1020Kb

October 1998 Volume 3, Issue 4 A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 1998 Volume 3, Issue 4. NEWS Imagery Survey of the Hubble Space Telescope During the second servicing mission of the measurements of the impact features. expected exponential increase down to a size Hubble Space Telescope (HST) by the STS-82 of 0.4-0.5 cm, where sensitivity limits of the mission in February 1997, an extensive Over 500 of the impacts were found on the aft imagery apparently lead to a reduced count. imagery survey was performed covering shroud and equipment section where highly The distribution of impacts around the aft approximately 97% of the HST surface. The reflective surfaces facilitated detection of shroud suggest a real difference in the number results of a dedicated study to of particle impacts on the +V3 and identify and to characterize the –V3 sides. apparent micrometoeoroid and orbital debris (M/OD) impacts An attempt was also made to have been recently documented compare the number of impacts in a new NASA JSC report, seen on the first servicing mission "Survey of the Hubble Space in December 1993 (after 44 months Telescope Micrometeoroid and exposure in LEO) and the second Orbital Debris Impacts from servicing mission (after an Service Mission 2 Imagery," by additional 38 months exposure in G. J. Byrne, D. R. Bretz, M. H. LEO). A limited comparison of the Holly, M. T. Gaunce, and C.A. +V3 quadrant showed an increase in Sapp. the density of observed strikes from approximately 5 impacts per square Employing video, photography, meter to approximately 20 impacts and electronic still imagery (a per square meter. While some of total of 2500 still frames and 17 this increase is undoubtedly due to hours of video), the analysis Figure 1. Hubble Space Telescope, Major Components, the superior quality of the imagery team was able to identify 788 and Coordinate Systems obtained during the second potential impacts on the HST aft servicing mission, a change in the shroud, equipment section, aft bulkhead, impact features. Approximately 80% of the environment may also be indicated. grapple fixtures, aperture door, and solar impact zones measured less than 0.8 cm, arrays. The analysis process involved first although the largest was 4.7 cm in diameter. The next servicing mission to HST is screening and categorizing the images, then scheduled for May 2000, and an additional imagery review and M/OD impact A plot of the number of impacts of a given imagery survey is planned. identification, followed by mapping and outer diameter size range illustrates the (Figures continued on page 2) Inside... Solitary Breakup and Anomalous Events in Third Quarter are Familiar .............................................3 New Report on Historical Satellite Fragmentations ................................................................................4 Post-flight Examination of the STS-87 Orbiter ......................................................................................5 Breakup Model Update: Part II, Delta Velocity Distribution ................................................................6 JSC IAF Abstracts ............................................................................................................................. 7 1 The Orbital Debris Quarterly News Project Reviews, Continued Imagery Survey of the Hubble Space Telescope, Continued (Continued from page 1) Figure 2. EVA Camera Image of MMOD Strike on -V2 Aft Shroud Door Figure 3. Size Distribution of Impact Primary Outer Diameters 2 The Orbital Debris Quarterly News NEWS, Continued Solitary Breakup and Anomalous Events in Third Quarter are Familiar During July and August Naval Space posigrade and retrograde pieces could easily be fragments on two different occasions in 1995. Operations Center personnel identified one hours apart. Within a week preliminary The orbit at the time of the event was satellite breakup and found evidence of three element sets had been generated on 40 objects, approximately 535 km by 650 km with an anomalous events. The breakup was but none had been officially cataloged. inclination of 100 degrees. Since 1985 at least discovered on 3 August when more than 110 three other debris from the original breakup debris from a Proton fourth stage ullage motor This ullage motor had been in orbit for 9 years have also fragmented with multiple new debris (Russian designation SOZ) penetrated the and 7 months before the event, a record period being produced each time. Navy’s electronic fence which spans the of dormancy for this object class. In fact, the southern United States. Launched in last four such breakups (one in 1996, one in On 1 August the PARCS radar in North Dakota conjunction with a GLONASS high altitude 1997, and two in 1998) had been in orbit longer detected a new piece of debris which mission on 10 January 1989, the unit (Satellite than any of their fragmenting predecessors with apparently originated from the old U.S. Number 19755, International Designator 1989- an average age of 9.0 years compared to the 3.6 SEASAT spacecraft (Satellite Number 10967, 001G) was in an orbit of 340 km by 19,055 km year average for the earlier 13 breakups. No International Designator 1978-064A). Since with an inclination of 64.9 degrees at the time Proton ullage motor breakups have yet been 1983 SEASAT, which is currently in a nearly of the event. This was the 17th known breakup identified with missions flown after 1994. A circular 765 km orbit with an inclination of 108 of a Proton SOZ ullage motor since the first total of 73 intact ullage motors (60 from 1994 degrees, had previously spawned eight one exploded in 1984. or earlier) were still in orbit during July. In cataloged debris on various occasions with only addition, despite the fact that two ullage motors three still remaining in orbit. Debris detections began late on 3 August and are released on each mission, no two of the 17 continued steadily for over two hours. The breakups to date have involved motors from the Finally, a 17-year-old Soviet rocket body figure below identifies 81 objects believed same flight, possibly suggesting a difference in (Satellite Number 12519, International associated with this event. The change in design or operation. Designator 1981-054E) may have shed a piece longitude simply corresponds to the rotation of of debris in late July. The Molniya upper stage the Earth as the debris plane passes through the Three anomalous events associated with old was in a highly elliptical orbit with a perigee wide sensor fence. The quick spread of the resident space objects were also noted during below 100 km and an inclination of 62 degrees. debris along the orbit plane was made possible the quarter. A fragment (Satellite Number The very low perigee suggests that the piece by the large semi-major axis. Orbital period 4869, International Designator 1970-025EZ) separation may have been induced by differences of as much as 45 minutes were associated with the 1970 Nimbus 4 upper stage aerodynamic stresses. An element set was possible with less than 200 m/s ejection breakup apparently broke into two pieces on 2 created on the new piece, but the object may velocity. Thus, after a very short time July. This object had previously shed have decayed rapidly. Detections of debris from Satellite No. 19755 by Naval radar surveillance system, 3 August 1998. 3 The Orbital Debris Quarterly News News, Continued New Report on Historical Satellite Fragmentations The 11th edition of the History of On-Orbit contains information on 152 known breakups new edition which is now available to the Satellite Fragmentations (JSC-28383) was and 33 anomalous events. Debris from these orbital debris community. released in August. The cut-off date for events 152 events accounts for 41% of the total was June 30, 1998. This is the 1st edition cataloged on-orbit Earth satellite population of The current authors would also like to thank the compiled and published by the Orbital Debris 8575 objects. Just 10 of more than 3900 Space authors of the previous editions of this Program Office at the NASA JSC, with support missions flown since 1957 are responsible for document for making their input data available. from Lockheed Martin Space Mission Systems 25% of all cataloged artificial Earth satellites In addition, the assistance of personnel of U.S. and Services. Previous editions were prepared presently in orbit (Figure 1). Moreover, the Space Command, Air Force Space Command, by Teledyne Brown Engineering (TBE), under sources of 9 of these 10 fragmentations were Naval Space Command, and Teledyne Brown the sponsorship of the NASA JSC. discarded rocket bodies which had operated as Engineering has been vital to the present work. designed but later broke-up. Rocket bodies are This document, often used by orbital debris the primary sources for debris in orbit today. modelers as a database and reference, now This and other information can be found in the 400 355 350 300 275 273 250 212 200 200 190 178 153 150 142 129 100 Number of remaining In-Orbit Debris 50 0 1994-029B 1981-053A 1970-025C 1992-093B 1961-015C 1975-052B 1973-086B 1976-077B 1978-026C 1974-089D Mission International Designator Figure 1. Magnitude of the ten largest debris clouds in orbit as of June 30, 1998. The Reentry of Potential Risk Objects In 1997 the Inter-Agency Space Debris 1991, but the possibility of debris surviving The largest object currently in Earth orbit is the Coordination Committee (IADC) adopted an reentry warrants special international attention. Mir space station with a mass of more than 120 action item to establish an informational metric tons without crew and cargo resupply network for the timely exchange of data on the In September 1998 the main node for this new vehicles. Russian officials have announced orbital parameters and impact predictions for communications network, located at ESA's their intention to deorbit Mir in a controlled space objects assessed to pose potential risks to European Space Operations Center, was tested manner on 8 June 1999.
Recommended publications
  • A B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
    A B 1 Name of Satellite, Alternate Names Country of Operator/Owner 2 AcrimSat (Active Cavity Radiometer Irradiance Monitor) USA 3 Afristar USA 4 Agila 2 (Mabuhay 1) Philippines 5 Akebono (EXOS-D) Japan 6 ALOS (Advanced Land Observing Satellite; Daichi) Japan 7 Alsat-1 Algeria 8 Amazonas Brazil 9 AMC-1 (Americom 1, GE-1) USA 10 AMC-10 (Americom-10, GE 10) USA 11 AMC-11 (Americom-11, GE 11) USA 12 AMC-12 (Americom 12, Worldsat 2) USA 13 AMC-15 (Americom-15) USA 14 AMC-16 (Americom-16) USA 15 AMC-18 (Americom 18) USA 16 AMC-2 (Americom 2, GE-2) USA 17 AMC-23 (Worldsat 3) USA 18 AMC-3 (Americom 3, GE-3) USA 19 AMC-4 (Americom-4, GE-4) USA 20 AMC-5 (Americom-5, GE-5) USA 21 AMC-6 (Americom-6, GE-6) USA 22 AMC-7 (Americom-7, GE-7) USA 23 AMC-8 (Americom-8, GE-8, Aurora 3) USA 24 AMC-9 (Americom 9) USA 25 Amos 1 Israel 26 Amos 2 Israel 27 Amsat-Echo (Oscar 51, AO-51) USA 28 Amsat-Oscar 7 (AO-7) USA 29 Anik F1 Canada 30 Anik F1R Canada 31 Anik F2 Canada 32 Apstar 1 China (PR) 33 Apstar 1A (Apstar 3) China (PR) 34 Apstar 2R (Telstar 10) China (PR) 35 Apstar 6 China (PR) C D 1 Operator/Owner Users 2 NASA Goddard Space Flight Center, Jet Propulsion Laboratory Government 3 WorldSpace Corp. Commercial 4 Mabuhay Philippines Satellite Corp. Commercial 5 Institute of Space and Aeronautical Science, University of Tokyo Civilian Research 6 Earth Observation Research and Application Center/JAXA Japan 7 Centre National des Techniques Spatiales (CNTS) Government 8 Hispamar (subsidiary of Hispasat - Spain) Commercial 9 SES Americom (SES Global) Commercial
    [Show full text]
  • Uncontrolled Re-Entries of Spacecraft and Rocket Bodies: a Statistical Overview Over the Last Decade
    Uncontrolled Re-Entries of Spacecraft and Rocket Bodies: A Statistical Overview over the Last Decade Carmen Pardinia1*, Luciano Anselmoa2 a Space Flight Dynamics Laboratory, Institute of Information Science and Technologies (ISTI), National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy 1 [email protected]; 2 [email protected] * Corresponding Author Abstract More than 24,400 catalogued orbiting objects have re-entered so far into the Earth’s atmosphere since the beginning of the space age. The associated returning mass, close to 30,000 metric tons, was mainly concentrated in intact objects, i.e. payloads and spent upper stages, accounting for nearly 29% of the re- entered objects. During the 10 years from 2008 to 2017, almost 450 large intact objects have re-entered without control, with a total returning mass of approximately 900 metric tons. Since the beginning of 2018 until mid-November, nearly 86 metric tons of returned materials were associated with almost 65 uncontrolled re-entries of large intact objects, three of which with a mass exceeding 5 metric tons: the Zenit-3F second stage 2017-086D, the C-25 cryogenic upper stage 2017-031B, and the Chinese space station Tiangong-1. After an overview of the most critical historic re-entry events, the attention will be focused on the re- entries of massive objects occurred without control from 2008 to 2017, by categorizing them in terms of relevance, re-entry frequency, returned mass, distribution in inclination, overflown latitude bands, eccentricity and perigee/apogee altitudes before re-entry. Cases in which spacecraft and rocket bodies components were retrieved, and eyewitnesses sightings were reported, will be presented as well.
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]
  • Orbitando Satélites Orbitando Satélites Este Es Un Manual De Nuestro Taller, Orbitando Satélites
    orbitando satélites orbitando satélites Este es un manual de nuestro taller, Orbitando satélites. En él queremos of“recer id”eas, recursos, técnicas e inspiración. Nuestro deseo es que sea utilizado también como guía para acercarnos a un procomún de cielo y ondas. Creemos que las tecnologías del espacio y del espectro electromagnético están impulsando una cultura limitada a intereses corporativos y de control, y en consecuencia, a un empobrecimiento de posibles matices y provocaciones en nuestras relaciones con los cielos y las frecuencias. Proponemos aquí algunas vías alternativas. A lo largo de cinco días, nos convertimos en una Agencia Espacial Autónoma Temporal . Este manual es una hoja d“e ruta de vuelo espacial y comunica”ciones no gubernamentales, no comerciales. Nuestro taller se articuló en tres bloques: Escucha y avistamiento aislamiento, se convierte en una poderosa metáfora. Nuestro de satélites, Poéticas de los satélites y Construcción de un satélite. trabajo con los satélites creó un imaginario de asociaciones y Al intentar escuchar y avistar satélites, encontramos nuevas formas apegos. A veces nos sentíamos abrumados, y otras teníamos que de utilizar los ya existentes, los que están ahí arriba ahora mismo obligarnos a despegarnos de las máquinas para reflexionar sobre en órbita. Por ejemplo, descubrimos que hacía falta paciencia los cambios que se estaban produciendo en nuestra forma de para localizar correctamente su ubicación y poder así apuntar pensar. El satélite en su órbita es materia y narrativa al mismo nuestras antenas para escucharlos cuando nos sobrevolaban. tiempo. Su existencia material, sus intenciones y su propiedad se Comprendimos que hay que superar varios niveles de dificultad pueden transformar a través de la narrativa.
    [Show full text]
  • Proton (UR-500) Family Home Launch Vehicles USSR / Russia
    Please make a donation to support Gunter's Space Page. Thank you very much for visiting Gunter's Space Page. I hope that this site is useful a nd informative for you. If you appreciate the information provided on this site, please consider supporting my work by making a simp le and secure donation via PayPal. Please help to run the website and keep everything free of charge. Thank you very much. Proton (UR-500) family Home Launch Vehicles USSR / Russia Proton Proton-K Proton-K Blok-D (Zond L1) Proton-K Blok-D-1 (Granat) [ILS] Proton-K Blok-DM-2 Proton-K Blok-DM1 (Inmarsat-3 F3) similar: Proton-K Blok-D, Proton-K Blok-D-2 Proton-K Blok-DM2 Proton-K Blok-DM3 Proton-M Briz-M (Thor 5) [ILS] similar: Proton-K Blok-DM-5 similar: Proton-K Blok-DM4, similar: Proton-K Briz-M Proton-K Blok-DM-2M Version Stage 1 Stage 2 Stage 3 Stage 4 Proton (8K82) 8S810 / 6 × RD-253 8S811 / 3 × RD-0208 + 1 × RD-0209 - - Proton-K (8K82K) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 - Proton-K Blok-D (8K82K 11S824) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-D / RD-58 Proton-K Blok-D-1 (8K82K 11S824M) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-D-1 / RD-58M Proton-K Blok-D-2 (8K82K 11S824F) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-D-2 / RD-58M Proton-K Blok-DM (8K82K 11S86) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812 / RD-0212 Blok-DM / RD-58M Proton-K Blok-DM-2 (8K82K 11S861) 8S810 / 6 × RD-253 8S811 / 3 × RD-0210 + 1 × RD-0211 8S812
    [Show full text]
  • Changes to the Database for May 1, 2021 Release This Version of the Database Includes Launches Through April 30, 2021
    Changes to the Database for May 1, 2021 Release This version of the Database includes launches through April 30, 2021. There are currently 4,084 active satellites in the database. The changes to this version of the database include: • The addition of 836 satellites • The deletion of 124 satellites • The addition of and corrections to some satellite data Satellites Deleted from Database for May 1, 2021 Release Quetzal-1 – 1998-057RK ChubuSat 1 – 2014-070C Lacrosse/Onyx 3 (USA 133) – 1997-064A TSUBAME – 2014-070E Diwata-1 – 1998-067HT GRIFEX – 2015-003D HaloSat – 1998-067NX Tianwang 1C – 2015-051B UiTMSAT-1 – 1998-067PD Fox-1A – 2015-058D Maya-1 -- 1998-067PE ChubuSat 2 – 2016-012B Tanyusha No. 3 – 1998-067PJ ChubuSat 3 – 2016-012C Tanyusha No. 4 – 1998-067PK AIST-2D – 2016-026B Catsat-2 -- 1998-067PV ÑuSat-1 – 2016-033B Delphini – 1998-067PW ÑuSat-2 – 2016-033C Catsat-1 – 1998-067PZ Dove 2p-6 – 2016-040H IOD-1 GEMS – 1998-067QK Dove 2p-10 – 2016-040P SWIATOWID – 1998-067QM Dove 2p-12 – 2016-040R NARSSCUBE-1 – 1998-067QX Beesat-4 – 2016-040W TechEdSat-10 – 1998-067RQ Dove 3p-51 – 2017-008E Radsat-U – 1998-067RF Dove 3p-79 – 2017-008AN ABS-7 – 1999-046A Dove 3p-86 – 2017-008AP Nimiq-2 – 2002-062A Dove 3p-35 – 2017-008AT DirecTV-7S – 2004-016A Dove 3p-68 – 2017-008BH Apstar-6 – 2005-012A Dove 3p-14 – 2017-008BS Sinah-1 – 2005-043D Dove 3p-20 – 2017-008C MTSAT-2 – 2006-004A Dove 3p-77 – 2017-008CF INSAT-4CR – 2007-037A Dove 3p-47 – 2017-008CN Yubileiny – 2008-025A Dove 3p-81 – 2017-008CZ AIST-2 – 2013-015D Dove 3p-87 – 2017-008DA Yaogan-18
    [Show full text]
  • Energiya BURAN the Soviet Space Shuttle.Pdf
    Energiya±Buran The Soviet Space Shuttle Bart Hendrickx and Bert Vis Energiya±Buran The Soviet Space Shuttle Published in association with Praxis Publishing Chichester, UK Mr Bart Hendrickx Mr Bert Vis Russian Space Historian Space¯ight Historian Mortsel Den Haag Belgium The Netherlands SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, M.Sc., B.Sc., Ph.D. ISBN978-0-387-69848-9 Springer Berlin Heidelberg NewYork Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2007929116 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2007 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a speci®c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project management: Originator Publishing Services Ltd, Gt Yarmouth, Norfolk, UK Printed on acid-free paper Contents Ooedhpjmbhe ........................................ xiii Foreword (translation of Ooedhpjmbhe)........................ xv Authors' preface ....................................... xvii Acknowledgments ...................................... xix List of ®gures ........................................ xxi 1 The roots of Buran .................................
    [Show full text]
  • Astronautique 1998
    ~ _.. -,, ~ ~,-.,~. Astronautique 1998 J. Vercheval et A. Steegmans Ilnstitut dAeronomie Spatiale Bilan general • 10 microsatellites; en cours d'assemblage comporte • 20 satellites d'applications militai- deja, en realite, deux modules (Zarya L'annee 1998 a connu 77 lancements res. et Unity). reussis de satellites artificiels: 33 par Le developpement des constellations Le tableau 1 reprend les anciens les Etats-Unis, 25 par la Russie, 11 "Iridium", "Orbcom" et "Globalstar" satellites retombes depuis la paru­ par l'Agence Spatiale Europeenne, 6 explique Ie nombre particulierement tion de "Astronautique 1997" (voir par la Republique Populaire de eleve de satellites de telecommuni­ Ciel et Terre, 1998, vol. 114 (4), 129- Chine et 2 par Ie Japon. Cela porte a cations. D'autre part, la station ISS 135 et (6), 179-187). 3973 Ie nombre de lancements depuis Ie debut de l' ere spatiale pour Tableau 1 la mise sur orbite de 5148 satellites Anciens satellites retombes et sondes spatiales. Les 155 satellites repertories se Nom Designation Date de retomMe repartissent en: Meteor 6 1970-85A 8 janvier 1999 • 7 satellites scientifiques; Meteor 8 1971-31A 10 janvier 1998 • 4 sondes spatiales; Cosmos 1043 1978-94A 27 fevrier 1998 • 7 vaisseaux habites; Molniya 3-11 1979-04A 2 decembre 1998 • 3 vaisseaux de ravitaillement; Cosmos 1172 1980-28A 26 decembre 1997 Molniya 3-16 1981-54A • 1 module de la Station Spatiale 10 fevrier 1998 Cosmos 1456 1983-38A 11 mai 1998 Intemationale ISS (Zarya); Cosmos 1518 1983-126A 19 septembre 1998 • 93 satellites de telecommunica­ Molniya 1-65 1985-99A 13 fevrier 1999 tions; Molniya 3-28 1986-31A 25 fevrier 1999 • 2 satellites de teledetection et Molniya 1-74 1988-115A 31 juillet 1998 d'observation de la Terre; Pegsat 1990-28A 14 novembre 1998 • 4 satellites de navigation; MSTI2 1994-28A 28 novembre 1998 • 4 satellites technologiques; Cosmos 2335 1996-69A 1 janvier 1999 Waler Ice Signalure Les elements de l'orbite initiale ou lonh EO Solllh operationnelle des satellites lan<;es en 1998 sont donnes dans Ie tableau MIn 2.
    [Show full text]
  • SAT - TV Koju! Huviringis Ulo-D
    ISSN 0134-2282 horisont SAT - TV koju! Huviringis Ulo-d J V Kusmoselendurid 1961-1988 4 Eesti NSV ühingu «Teadus» populaarteaduslik ajakiri Asutatud 1967. a. Ilmub kord kuus EKP Keskkomitee Kirjastus, Tallinn Ultraviolettfoto Maast. (lk. 35). «Buran» stardi ootel (algus Sisukord lk'w>' AASTA MOSAIIK ’88 Uno Veismann 1 Toimetuse kolleegium: Ustus Agur, Harri Jänes, Priit Järve, PROJEKT «FOBOS» 5 Juhan Kivi, Endel Lippmaa, Viktor KAS LEND MARSILE SAAB REAAL­ Maamägi, Uno Mereste, Charles Vill­ SUSEKS? Juri Zaitsev 6 mann. MAAVÄLISTE TSIVILISATSIOONI­ DE OTSIMISE PROGRAMMIST 9 ORBIIDILE «BURANIL» Irina Jegorova 11 Peatoimetaja 43 77 71 INDREK ROHTMETS AEROKOSMILISED LENNUKID 12 Peatoimetaja asetäitja 44 33 70 KUI PALJU ÕN MAA TEHIS- JUHAN KIVI KAASLASI? 13 Vastutav sekretär 43 77 22 SN 1987A MÕISTATUSED LAHENE­ ÜLLAR LEHTMETS VAD Peep Kaiv 15 Ühiskonnateadused 44 50 06 MARTIN ROOGNA SUPERNOOVA ÜLETAS VALGUSE ILMAR PALLI KIIRUSE? 17 Reaalteadused 44 43 85 KOSMOS LOODUSLIKU PLASMA- REIN VESKIMÄE LABORATOORIUMINA Tamara Breus 18 Kunstiline toimetaja 44 43 85 NEMAD OLID KOSMOSES 21 EPP MARGUSTE Tehniline toimetaja UFOd: OLETUSED JA PÕHJEN­ ja korrektor 44 43 85 DUSED (Intervjuu Vsevolod Troitskiga) 25 TIIU KUKK KOSMOS PANEB PROOVILE 31 PÜÜDKEM AKENT AVADA Peeter Vilborn 33 Temaatilise numbri koostas REIN VIRMALISTE OVAAL JA AUGUD VESKIMÄE. MAA ATMOSFÄÄRIS 35 Lühiuudiseid vahendasid PEEP LÜHIDALT KOSMOSEST 30, 36, 37 KALV, JURI ZAITSEV ja UNO VEISMANN. Ladumisele antud 20. 02. 1989. Trükkimisele antud 17. 03. 1989. Tiraaž 39 000. Paber 60X84/8. Tingtrükip. 4,67. Trükipoognaid 5. Tingvärvipoognaid 14,88. Arves- tuspoognaid 6,90. MB-04054. Teil. nr. 863. EKP Keskkomitee Kirjastuse trükikoda. Tallinn, Pärnu mnt.
    [Show full text]
  • Successful Launches to Orbit on U.S. Launch Vehicles on U.S
    66 APPENDIX B Successful Launches to Orbit on U.S. Launch Vehicles October 1, 1997–September 30, 1998 Launch Date Apogee and Spacecraft Name Perigee (km), COSPAR Designation Period (min), Launch Vehicle Mission Objectives Inclination to Equator (°) Remarks Oct. 5, 1997 Communications satellite Geosynchronous EchoStar 3 59A Atlas IIAS* Oct. 15, 1997 Interplanetary spacecraft Cassini to orbit Saturn 61A Titan IVB Oct. 22, 1997 Military satellite 495 km Space Test Experimental STEP-4 429 km Program 4 63A 1 hour 34 minutes Pegasus XL 44.9˚ Oct. 24, 1997 Military satellite Orbital parameters USA 133 unavailable 64A Atlas IIA Oct. 25, 1997 Military satellite Orbital parameters Defense Satellite Communications DSCS 3 unavailable System 3 65A Atlas IIA Nov. 6, 1997 GPS satellite 20,644 km Navstar 38 (USA 135) 19,923 km 67A 12 hours 2 minutes Aeronautics and Space Report of the President Delta II 54.9˚ Nov. 7, 1997 Military satellite Orbital parameters USA 136 unavailable 68A Titan IVA Nov. 8, 1997 Communications satellite 650 km Iridium 38–41, 43 635 km 69A–E 1 hour 37 minutes Delta II* 86.6˚ Nov. 19, 1997 Carry out EVA’s as training 286 km Payloads included USMP-4, Space Shuttle Columbia for ISS spacewalks 280 km SPARTAN 201-04 free- flyer, (STS-87) 1 hour 30 minutes CUE in space biology, and several 73A 28.4˚ other “hitchhiker” payloads. Space Shuttle Nov. 21, 1997 Reusable solar observatory Orbital parameters similar Recaptured manually by SPARTAN 201-04 to those of STS-87 spacewalking astronauts 73B Space Shuttle APPENDIX B (Continued) 67 Successful Launches to Orbit on U.S.
    [Show full text]
  • WORLD SPACECRAFT DIGEST by Jos Heyman 1998 Version: 10 July 2016 © Copyright Jos Heyman
    WORLD SPACECRAFT DIGEST by Jos Heyman 1998 Version: 10 July 2016 © Copyright Jos Heyman 1998 001A (25131) Name: Lunar Prospector Country: USA Launch date: 7 January 1998 Re-entry: 31 July 1999 Launch site: Cape Canaveral Launch vehicle: Athena 2 Orbit: 99 x 100 km, inclination: 90.1 ° The Lunar Prospector was the third mission in NASA's Discovery series of spacecraft and was built by Lockheed Martin. The mission objective was to place the spacecraft in a lunar orbit from which it spend a year mapping the surface of the Moon whilst at the same time looking for reservoirs of water which might be in the polar caps. The 126 kg spacecraft carried a series of instruments which evolved from Apollo instrumentation from the seventies: 1. the Gamma Ray Spectrometer (GSR) which provided global maps of the elemental composition of the surface layer of the Moon; 2. the Alpha Particle Spectrometer (APS) to detect radon outgassing on the lunar surface; 3. the Neutron Spectrometer (NS) to detect water ice; 4. the Electron Reflectometer (ER) to map the lunar magnetic fields; 5. the Magnetometer (MAG), another instrument to map the lunar magnetic fields; 6. the Doppler Gravity Experiment (DGE) to determine the lunar gravity field. Also carried was a small container with the ashes of Eugene Shoemaker, a famous discoverer of comets who had passed away in 1997. This container was designated as Celestis-2 and the payload was also known as Luna 1 flight. The spacecraft did not carry a control computer, instead it was fully controlled by a team on Earth.
    [Show full text]