Pdf Files/WHA58-REC1/ English/Resolutions.Pdf More Restrictive Than Necessary to Achieve the Desired Level 2

Total Page:16

File Type:pdf, Size:1020Kb

Pdf Files/WHA58-REC1/ English/Resolutions.Pdf More Restrictive Than Necessary to Achieve the Desired Level 2 A Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 1051–1184 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Founding Editor Dennis Alexander, Addlestone Surrey, United Kingdom Joseph E. McDade, Rome, Georgia, USA Michael Apicella, Iowa City, Iowa, USA Managing Senior Editor Paul Arguin, Atlanta, Georgia, USA Barry J. Beaty, Ft. Collins, Colorado, USA Polyxeni Potter, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA Associate Editors David Brandling-Bennet, Washington, D.C., USA Charles Ben Beard, Ft. Collins, Colorado, USA Donald S. Burke, Baltimore, Maryland, USA David Bell, Atlanta, Georgia, USA Arturo Casadevall, New York, New York, USA Jay C. Butler, Anchorage, Alaska, USA Kenneth C. Castro, Atlanta, Georgia, USA Charles H. Calisher, Ft. Collins, Colorado, USA Thomas Cleary, Houston, Texas, USA Stephanie James, Bethesda, Maryland, USA Anne DeGroot, Providence, Rhode Island, USA Vincent Deubel, Shanghai, China Brian W.J. Mahy, Atlanta, Georgia, USA Ed Eitzen, Washington, D.C., USA Nina Marano, Atlanta, Georgia, USA Duane J. Gubler, Honolulu, Hawaii, USA Martin I. Meltzer, Atlanta, Georgia, USA Richard L. Guerrant, Charlottesville, Virginia, USA David Morens, Bethesda, Maryland, USA Scott Halstead, Arlington, Virginia, USA J. Glenn Morris, Baltimore, Maryland, USA David L. Heymann, Geneva, Switzerland Marguerite Pappaioanou, St. Paul, Minnesota, USA Sakae Inouye, Tokyo, Japan Tanja Popovic, Atlanta, Georgia, USA Charles King, Cleveland, Ohio, USA Keith Klugman, Atlanta, Georgia, USA Patricia M. Quinlisk, Des Moines, Iowa, USA Takeshi Kurata, Tokyo, Japan Gabriel Rabinovich, Buenos Aires, Argentina S.K. Lam, Kuala Lumpur, Malaysia Jocelyn A. Rankin, Atlanta, Georgia, USA Bruce R. Levin, Atlanta, Georgia, USA Didier Raoult, Marseilles, France Myron Levine, Baltimore, Maryland, USA Pierre Rollin, Atlanta, Georgia, USA Stuart Levy, Boston, Massachusetts, USA David Walker, Galveston, Texas, USA John S. MacKenzie, Perth, Australia J. Todd Weber, Atlanta, Georgia, USA Tom Marrie, Edmonton, Alberta, Canada Ban Mishu-Allos, Nashville, Tennessee, USA Henrik C. Wegener, Copenhagen, Denmark John E. McGowan, Jr., Atlanta, Georgia, USA Copy Editors Philip P. Mortimer, London, United Kingdom Thomas Gryczan, Ronnie Henry, Anne Mather, Fred A. Murphy, Galveston, Texas, USA Carol Snarey, P. Lynne Stockton Barbara E. Murray, Houston, Texas, USA Production P. Keith Murray, Geelong, Australia Reginald Tucker, Ann Jordan, Maureen Marshall Stephen Ostroff, Honolulu, Hawaii, USA Editorial Assistant Rosanna W. Peeling, Geneva, Switzerland David H. Persing, Seattle, Washington, USA Susanne Justice Richard Platt, Boston, Massachusetts, USA www.cdc.gov/eid Mario Raviglione, Geneva, Switzerland Leslie Real, Atlanta, Georgia, USA Emerging Infectious Diseases David Relman, Palo Alto, California, USA Emerging Infectious Diseases is published monthly by the Nancy Rosenstein, Atlanta, Georgia, USA National Center for Infectious Diseases, Centers for Disease Connie Schmaljohn, Frederick, Maryland, USA Control and Prevention, 1600 Clifton Road, Mailstop D61, Tom Schwan, Hamilton, Montana, USA Atlanta, GA 30333, USA. Telephone 404-639-1960, Ira Schwartz, Valhalla, New York, USA fax 404-639-1954, email [email protected]. Tom Shinnick, Atlanta, Georgia, USA Bonnie Smoak, Bethesda, Maryland, USA The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the Centers for Disease Rosemary Soave, New York, New York, USA Control and Prevention or the institutions with which the authors P. Frederick Sparling, Chapel Hill, North Carolina, USA are affiliated. Jan Svoboda, Prague, Czech Republic Bala Swaminathan, Atlanta, Georgia, USA All material published in Emerging Infectious Diseases is in Robert Swanepoel, Johannesburg, South Africa the public domain and may be used and reprinted without special Phillip Tarr, St. Louis, Missouri, USA permission; proper citation, however, is required. Timothy Tucker, Cape Town, South Africa Use of trade names is for identification only and does not Elaine Tuomanen, Memphis, Tennessee, USA imply endorsement by the Public Health Service or by the U.S. John Ward, Atlanta, Georgia, USA Department of Health and Human Services. David Warnock, Atlanta, Georgia, USA ∞ Emerging Infectious Diseases is printed on acid-free paper that meets Mary E. Wilson, Cambridge, Massachusetts, USA the requirements of ANSI/NISO 239.48-1992 (Permanence of Paper) Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 7, July 2006 July 2006 On the Cover Migratory Birds as Reservoirs Alfons Mucha (1860–1939). Zodiac (1896). of Lyme Borreliosis . .1087 Color lithograph (46 cm × 35 cm) P. Comstedt et al. Copyright 2006 Mucha Trust/ Birds host vector ticks and diverse Borrelia species ADAGP, Paris/ARS, New York, USA and vary in effectiveness as reservoirs. Photo, The Bridgeman Art Library, New York , USA Triatoma infestans Reinfestation, Argentina . .1096 About the Cover p. 1182 M.C. Cecere et al. Treating all communities within 1,500 m of a target community may reduce reinfestation risk. Rickettsia sibirica Isolation, Portugal . .1103 R. de Sousa et al. First R. sibirica–related strain is detected. Perspectives Orientia tsutsugamushi in Eschars . .1109 Infectious Determinants Y.-X. Liu et al. of Chronic Diseases . .1051 Eschars can be used for genetic characterization S.M. O’Connor et al. during convalescent phase. Infectious agents, often through complex systems, likely determine more chronic diseases than is Human Tularemia, currently appreciated. United States, 1964–2004 . .1113 J. E. Staples et al. Surveillance under International p. 1111 Distinct subpopulations of Francisella tularensis Health Regulations . .1058 differ in their clinical manifestations, geographic M.G. Baker and D.P. Fidler distribution, and likely modes of transmission. IHR 2005 establishes a global surveillance system for public health emergencies of international concern. Dispatches 1119 Smallpox during Pregnancy and Research Maternal Outcomes Neisseria meningitidis and H. Nishiura Risk for Death, Iceland . .1066 1122 Japanese Spotted Fever, M. Gottfreðsson et al. South Korea Age and infection with unique sequence type were p. 1122 M.-H. Chung et al. associated with risk for death. 1125 Transmission of New Bovine Prion Tickborne Arbovirus to Mice Surveillance, Kenya . .1074 T.G.M. Baron et al. R. Sang et al. 1129 Follow-up of Human West Nile Numerous tickborne viruses, including Dhori virus Virus Infections, Colorado and foot-and-mouth disease virus, were isolated. J.L. Patnaik et al. Rodent-associated 1132 Triple Reassortant H3N2 Bartonella Illness . .1081 Influenza A Viruses J. Iralu et al. C.W. Olsen et al. Patients showed seroconversion to rodent- 1136 Tickborne Encephalitis Virus, associated Bartonella antigens, but not to Norway and Denmark Bartonella pathogenic for humans. T. Skarpaas et al. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 7, July 2006 1139 Detection of Infectious Poxvirus Particles A. Nitsche et al. July 2006 1142 European Bat Lyssavirus Type 2 1167 H5N1 Influenza Virus, Domestic N. Johnson et al. Birds, Western Siberia 1145 Replicon Typing of Plasmids A. Carattoli et al. 1169 Leishmaniasis among Gold Miners, French Guiana 1149 Azithromycin Failure in Mycoplasma genitalium Urethritis 1170 Mycobacterium tuberculosis Drug C.S. Bradshaw et al. Resistance, Ghana 1153 Leptospirosis in Squirrels 1172 Avian Influenza Risk Imported to Japan Communication, Thailand T. Masuzawa et al. 1174 Panton-Valentine Leukocidin 1156 Tuberculosis in Marijuana Users, Genes in Staphylococcus aureus Seattle 1175 Small Anellovirus in Hepatitis C J.E. Oeltmann et al. Patients and Healthy Controls p. 1127 1177 Lyme Borreliosis and Borrelia Commentary spielmanii 1160 60 Years of Progress—CDC and 1178 Feral Cats and Risk for Nipah Infectious Diseases Virus Transmission T. Popovic and D.E. Snider, Jr. Books & Media Letters p. 1161 1180 Gastroenteritis at a University in 1162 Influenzalike Illness among Texas: An Epidemiologic Case Homeless Persons Study 1163 Human West Nile Virus Infection, 1180 Antimicrobial Resistance in Catalonia, Spain Bacteria of Animal Origin 1164 Shigellosis and Cryptosporidiosis, Baltimore, Maryland News & Notes 1165 Human Hantavirus Infection, Brazilian Amazon About the Cover 1182 Fine Art and Good Health for the Masses Full text free online at www.cdc.gov/eid The print journal is available at no charge to public health professionals YES, I would like to receive Emerging Infectious Diseases. Please print your name and business address in the box and return by fax to 404-639-1954 or mail to EID Editor CDC/NCID/MS D61 1600 Clifton Road, NE Atlanta, GA 30333 Moving? Please give us your new address (in the box) and print the number of your old mailing label here_________________________________________ Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 12, No. 7, July 2006 Emerging Infectious Determinants of Chronic Diseases Siobhán M. O’Connor,* Christopher E. Taylor,† and James M. Hughes‡ Evidence now confirms that noncommunicable chron- nicity, socioeconomic status, or culture. Expectations are ic diseases can stem from infectious agents. Furthermore, that additional etiologic relationships will emerge over the at least 13 of 39 recently described infectious agents coming decades, influenced by ever-evolving populations, induce chronic syndromes. Identifying the relationships can ecology, and economies as well as by advances in science affect health
Recommended publications
  • Distribution of Tick-Borne Diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2*
    Wu et al. Parasites & Vectors 2013, 6:119 http://www.parasitesandvectors.com/content/6/1/119 REVIEW Open Access Distribution of tick-borne diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2* Abstract As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. Keywords: Ticks, Tick-borne diseases, Epidemic, China Review (Table 1) [2,4]. Continuous reports of emerging tick-borne Ticks can carry and transmit viruses, bacteria, rickettsia, disease cases in Shandong, Henan, Hebei, Anhui, and spirochetes, protozoans, Chlamydia, Mycoplasma,Bartonia other provinces demonstrate the rise of these diseases bodies, and nematodes [1,2].
    [Show full text]
  • Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
    Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup
    [Show full text]
  • Expansion of Tick-Borne Rickettsioses in the World
    microorganisms Review Expansion of Tick-Borne Rickettsioses in the World Mariusz Piotrowski * and Anna Rymaszewska Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century. Keywords: Tick-borne rickettsioses; Tick-borne diseases; Rickettsiales 1. Introduction Tick-borne rickettsioses are caused by obligate intracellular Gram-negative bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia.
    [Show full text]
  • Rickettsia Sibirica Subsp. Mongolitimonae Infection And
    LETTERS 8. Pawlotsky JM, Belec L, Gresenguet G, were otherwise within normal limits. for 10 days, under close surveillance. Deforges L, Bouvier M, Duval J, et al. No tick bite was reported by the pa- After 2 days of treatment, she was afe- High prevalence of hepatitis B, C and E markers in young sexually active adults tient, although she had been walking a brile and the rash completely resolved. from the Central African Republic. J Med few days before in Camargue (south- No obstetric complications occurred Virol. 1995;46:269–72. ern France). Serologic results for R. and she gave birth to a healthy boy at 9. Guthmann JP, Klovstad H, Boccia D, conorii, R. typhi, Brucella spp., Bor- term. Two years later, the right sco- Hamid N, Pinoges L, Nizou J, et al. A large outbreak of hepatitis E among dis- relia spp., and Coxiella burnetii were toma remained unchanged. placed population in Darfur, Sudan, 2004: negative. Serologic tests for rickettsiosis The role of water treatment methods. Clin One day after admission, she re- were performed with an acute-phase Infect Dis. 2006;42:1685–91. ported loss of vision (scotoma) in her serum sample and a convalescent- 10. Bile K, Isse A, Mohamud O, Allebeck P, Nilsson L, Norder H, et al. Contrasting right eye. She underwent a complete phase serum sample (1 month after roles of rivers and wells as sources of ophthalmic evaluation. Measurement onset of symptoms). Samples were drinking water on attack and fatality rates of visual acuity and results of a slit- sent to the World Health Organization in hepatitis E epidemic in Somalia.
    [Show full text]
  • Intraspecies Comparative Genomics of Rickettsia
    AIX ͲMARSEILLE UNIVERSITÉ FACULTÉ DE MÉDECINE DE MARSEILLE ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ T H È S E Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 13 décembre 2013 Par M. Erwin SENTAUSA Né le 16 décembre 1979 àMalang, Indonésie INTRASPECIES COMPARATIVE GENOMICS OF RICKETTSIA Pour obtenir le grade de DOCTORAT d’AIX ͲMARSEILLE UNIVERSITÉ SPÉCIALITÉ :PATHOLOGIE HUMAINE Ͳ MALADIES INFECTIEUSES Membres du Jury de la Thèse : Dr. Patricia RENESTO Rapporteur Pr. Max MAURIN Rapporteur Dr. Florence FENOLLAR Membre du Jury Pr. Pierre ͲEdouard FOURNIER Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes UM63, CNRS 7278, IRD 198, Inserm 1095 Avant Propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master de Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené àrespecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre àl’étudiant de le commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Detecting Phylogenetic Signals from Deep Roots of the Tree of Life
    UNIVERSITY OF CALIFORNIA,MERCED Detecting Phylogenetic Signals From Deep Roots of the Tree of Life A dissertation submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy in Quantitative and Systems Biology by Katherine Colleen Harris Amrine Committee in charge: Professor Carolin Frank, Chair Professor David Ardell Professor Meng-Lin Tsao Professor Suzanne Sindi August 2013 Copyright Katherine C. Amrine All Rights Reserved UNIVERSITY OF CALIFORNIA,MERCED Graduate Division The Dissertation of Katherine Colleen Harris Amrine is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Faculty Advisor: David H. Ardell Committee Members: Chair: Carolin Frank Meng-Lin Tsao Suzanne Sindi Date iii Contents List of Figures ................................................................. vi List of Tables .................................................................. ix Acknowledgements ............................................................. x Vita ........................................................................... xi Abstract ...................................................................... xii 1 Shifting focus in evolutionary biology – identifying a new signal for phylogenetic tree reconstruction and taxonomic classification 1 1.1 The evolution of bacterial classification and phylogeny . .1 1.2 The historical marker – 16S . .2 1.3 Complications in bacterial classification and phylogeny . .2 1.3.1 Horizontal gene transfer . .2 1.3.2 Does a true tree exist? . .3 1.4 Methods for phylogenetic tree reconstruction . .3 1.4.1 DNA . .3 1.4.2 RNA . .4 1.4.3 Proteins . .4 1.4.4 Data compilation . .5 1.5 Bias in tree-building . .5 1.6 Biological bias in biological data . .6 1.7 The tRNA interaction network . .6 1.8 Information theory . .8 1.9 Machine Learning for bacterial classification . .9 2 tRNA signatures reveal polyphyletic origins of streamlined SAR11 genomes among the Alphaproteobacteria 12 2.1 Abstract .
    [Show full text]
  • Emerging Spotted Fever Group Rickettsiae in Ticks, Northwestern China
    Ticks and Tick-borne Diseases 7 (2016) 1146–1150 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases j ournal homepage: www.elsevier.com/locate/ttbdis Emerging spotted fever group rickettsiae in ticks, northwestern China a,1 a,b,1 c d c Li-Ping Guo , Su-Hua Jiang , Dan Liu , Shi-Wei Wang , Chuang-Fu Chen , a,∗ Yuan-Zhi Wang a School of Medicine, Shihezi University, Shihezi 832000, Xinjiang Uygur Autonomous Region, China b Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 Hubei, China c School of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China d School of Animal Science and Technology, Tarim University, Aral 843300, Xinjiang, China a r t i c l e i n f o a b s t r a c t Article history: We report Rickettsia conorii subsp. indica, Candidatus R. barbariae and R. massiliae in Rhipicephalus turan- Received 9 March 2016 icus from sheep around the Taklamakan desert, northwestern China. The topology of the phylogenetic Received in revised form 5 August 2016 trees produced from the maximum likelihood (ML) analyses of the ompA-gltA-rrs-geneD-ompB concate- Accepted 15 August 2016 nated sequence data was very similar to that of the neighbor joining (NJ) tree, and with total support Available online 16 August 2016 of 69%–100% bootstrap values for the inclusion of the rickettsiae in Rh. turanicus within the clade that contained R. conorii subsp. indica; Candidatus R. barbariae and Rickettsia sp. Tselentii; R. massiliae str. Keywords: AZT80; and R. massiliae MTU5, respectively. Studies suggest that the co-existence of these spotted fever Rickettsia conorii group rickettsiae is a threat to public health in China.
    [Show full text]
  • Estimated Seroprevalence of Anaplasma Spp. and Spotted Fever Group MARK Rickettsia Exposure Among Herders and Livestock in Mongolia ⁎ Michael E
    Acta Tropica 177 (2018) 179–185 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Estimated seroprevalence of Anaplasma spp. and spotted fever group MARK Rickettsia exposure among herders and livestock in Mongolia ⁎ Michael E. von Frickena,b, , Sukhbaatar Lkhagvatserenc, Bazartseren Boldbaatarc, Pagbajab Nymadawad, Thomas A. Weppelmanne, Bekh-Ochir Baigalmaaf, Benjamin D. Andersonb,g, Megan E. Rellerb,g, Paul M. Lantosh, Gregory C. Grayb,g a Department of Global and Community Health, George Mason University, Fairfax, VA, USA b Division of Infectious Diseases, Duke Global Health Institute, Duke University, Durham, NC, USA c Institute of Veterinary Medicine, Ulaanbaatar, Mongolia d Mongolian Academy of Medical Sciences, Ulaanbaatar, Mongolia e Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA f National Center for Zoonotic Diseases, Ulaanbaatar, Mongolia g Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC, USA h Divisions of Pediatric Infectious Diseases and General Internal Medicine, and Duke Global Health Institute, Duke University, Durham, NC, USA ARTICLE INFO ABSTRACT Keywords: Background: To better understand the epidemiology of tick-borne disease in Mongolia, a comprehensive ser- Rickettsia oprevalence study was conducted investigating exposure to Anaplasma spp. and spotted fever group (SFG) Anaplasma Rickettsia spp. in nomadic herders and their livestock across three provinces from 2014 to 2015. Mongolia Methods: Blood was collected from 397 herders and 2370 livestock, including sheep, goats, cattle, horses and Seroprevalence camels. Antibodies against Anaplasma spp. and SFG Rickettsia were determined by indirect immunofluorescence Tick-borne disease using commercially available slides coated with Anaplasma phagocytophilum and Rickettsia rickettsii antigens.
    [Show full text]
  • Tick-Borne Pathogens and Diseases in Greece
    microorganisms Review Tick-Borne Pathogens and Diseases in Greece Artemis Efstratiou 1,†, Gabriele Karanis 2 and Panagiotis Karanis 3,4,* 1 National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; [email protected] 2 Orthopädische Rehabilitationsklinik, Eisenmoorbad Bad Schmiedeberg Kur GmbH, 06905 Bad Schmiedeberg, Germany; [email protected] 3 Medical Faculty and University Hospital, The University of Cologne, 50923 Cologne, Germany 4 Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi. P.O. Box 24005, Nicosia CY-1700, Cyprus * Correspondence: [email protected] † Current address: Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany. Abstract: Tick-borne diseases (TBDs) are recognized as a serious and growing public health epidemic in Europe, and are a cause of major losses in livestock production worldwide. This review is an attempt to present a summary of results from studies conducted over the last century until the end of the year 2020 regarding ticks, tick-borne pathogens, and tick-borne diseases in Greece. We provide an overview of the tick species found in Greece, as well as the most important tick-borne pathogens (viruses, bacteria, protozoa) and corresponding diseases in circulation. We also consider prevalence data, as well as geographic and climatic conditions. Knowledge of past and current situations of TBDs, as well as an awareness of (risk) factors affecting future developments will help to find approaches to integrated tick management as part of the ‘One Health Concept’; it will assist in avoiding the possibility of hotspot disease emergencies and intra- and intercontinental transmission.
    [Show full text]
  • Using Core Genome Alignments to Assign Bacterial Species 2
    bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Using Core Genome Alignments to Assign Bacterial Species 2 3 Matthew Chunga,b, James B. Munroa, Julie C. Dunning Hotoppa,b,c,# 4 a Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA 5 b Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 6 21201, USA 7 c Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, 8 USA 9 10 Running Title: Core Genome Alignments to Assign Bacterial Species 11 12 #Address correspondence to Julie C. Dunning Hotopp, [email protected]. 13 14 Word count Abstract: 371 words 15 Word count Text: 4,833 words 16 1 bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 17 ABSTRACT 18 With the exponential increase in the number of bacterial taxa with genome sequence data, a new 19 standardized method is needed to assign bacterial species designations using genomic data that is 20 consistent with the classically-obtained taxonomy.
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • Copyrighted Material
    361 Index a – PCR 224 abdominal and intestinal anthrax 14 – – virus culture and antigen testing 224 abscesses 40 – prevention 340–341 acid-fast bacilli (AFB) 151 – protection 338–339 activated partial thromboplastin time (APTT) – treatment 342 219 Argentinian hemorrhagic fever (AHF) 213, Advisory Committee on Immunization 217, 219, 220 Practices (ACIP) 203 ‘‘Army Vaccine’’ 97 African tick bite fever (ATBF) 124, 129, 142 arthropod-borne infections 124, 125, 127, agar gel immunodiffusion (AGID) 181 128, 129, 139, 142 Agrobacterium 20 avian influenza viruses (AIVs) 177, 178 Alphaproteobacteria 124 Amblyomma hebraeum 129 b Amblyomma variegatum 129 bacille Calmette–Guerin´ (BCG) 150, 153, amplified fragment length polymorphism 155 (AFLP) 159 Bacillus anthracis 5, 159 Anaplasmataceae 124, 126 – characteristics 5–6 Andes virus (ANDV) 273, 276, 277 – clinical and pathological findings anthrax. See Bacillus anthracis 13–14 antibiotic resistance 7–8 – – abdominal and intestinal anthrax 14 antigen detection 8 – – inhalation and pulmonary anthrax 14 Antiqua biovar 93 – – oropharyngeal anthrax 14 Arenaviridae 253 – clinical guidelines 297 arenaviruses 211–212 – decontamination 296 – clinical signs – diagnosis – – New World hemorrhagic fevers 214–215 – – antibiotic resistance 7–8 – – Old World hemorrhagic fevers 214 – – antigen detection 8 – decontamination 340 – – chromosome 10–11 – diagnostics COPYRIGHTED– – growth characteristics MATERIAL 6–7 – – serological tests 223 – – MLVA, SNR, and SNP typing 11 – disinfection 339–340 – – molecular identification 8–10 – epidemiology – – phage testing and biochemistry 8 – – New World 213–214 – – phenotypical identification 6 – – Old World 212–213 – – serological investigations 11 – pathogenesis 218–223 – disinfection 295, 296 – pathological signs – epidemiology 15 – – New World hemorrhagic fevers 217–218 – pathogenesis – – Old World hemorrhagic fevers 215–216 – – animals 12 BSL3 and BSL4 Agents: Epidemiology, Microbiology, and Practical Guidelines, First Edition.
    [Show full text]