Emerging Tick-Borne Infections in Mainland China: an Increasing Public Health Threat

Total Page:16

File Type:pdf, Size:1020Kb

Emerging Tick-Borne Infections in Mainland China: an Increasing Public Health Threat View metadata, citation and similar papers at core.ac.uk brought to you by CORE HHS Public Access provided by IUPUIScholarWorks Author manuscript Author ManuscriptAuthor Manuscript Author Lancet Infect Manuscript Author Dis. Author Manuscript Author manuscript; available in PMC 2016 May 18. Published in final edited form as: Lancet Infect Dis. 2015 December ; 15(12): 1467–1479. doi:10.1016/S1473-3099(15)00177-2. Emerging tick-borne infections in mainland China: an increasing public health threat Li-Qun Fang#, Kun Liu#, Xin-Lou Li, Song Liang, Yang Yang, Hong-Wu Yao, Ruo-Xi Sun, Ye Sun, Wan-Jun Chen, Shu-Qing Zuo, Mai-Juan Ma, Hao Li, Jia-Fu Jiang, Wei Liu, X Frank Yang, Gregory C Gray, Peter J Krause, and Wu-Chun Cao State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China (L-Q Fang PhD, K Liu MS, X-L Li MS, H-W Yao MS, R-X Sun BS, Y Sun BS, W-J Chen BS, S-Q Zuo PhD, M-J Ma PhD, H Li PhD, J-F Jiang PhD, Prof W Liu PhD, Prof W-C Cao PhD); College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA (S Liang PhD, Y Yang PhD); Department of Microbiology and Immunology, Indiana University School of Medicine, Barnhill, IN, USA (Prof X F Yang PhD); Duke University School of Medicine, Durham, NC, USA (Prof G C Gray MD); and Department of Epidemiology of Microbial Diseases, Yale School of Public Health, and Department of Medicine and Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA (P J Krause MD) # These authors contributed equally to this work. Abstract Since the beginning of the 1980s, 33 emerging tick-borne agents have been identified in mainland China, including eight species of spotted fever group rickettsiae, seven species in the family Anaplasmataceae, six genospecies in the complex Borrelia burgdorferi sensu lato, 11 species of Babesia, and the virus causing severe fever with thrombocytopenia syndrome. In this Review we have mapped the geographical distributions of human cases of infection. 15 of the 33 emerging tick-borne agents have been reported to cause human disease, and their clinical characteristics have been described. The non-specific clinical manifestations caused by tick-borne pathogens present a major diagnostic challenge and most physicians are unfamiliar with the many tick-borne diseases that present with non-specific symptoms in the early stages of the illness. Advances in and application of modern molecular techniques should help with identification of emerging tick- borne pathogens and improve laboratory diagnosis of human infections. We expect that more novel tick-borne infections in ticks and animals will be identified and additional emerging tick- borne diseases in human beings will be discovered. Correspondence to: Prof Wu-Chun Cao, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing 100071, China [email protected]. Contributors L-QF, SL, XFY, GCG, PJK, and W-CC initiated the original ideas for the review. KL, X-LL, H-WY, RXS, YS, and W-JC contributed to the literature search and extracted data. KL, X-LL, H-WY, YY, SL, S-QZ, M-JM, HL, J-FJ, and WL assessed the data. L-QF, KL, X-LL, H-WY, R-XS, YS, W-JC, and W-CC created the figures. L-QF, GCG, and W-CC wrote the draft, and all authors contributed to the review and revision of the paper. Declaration of interests We declare no competing interests. Fang et al. Page 2 Author ManuscriptAuthor Introduction Manuscript Author Manuscript Author Manuscript Author Ticks were the first arthropods to be recognised as vectors that can transmit pathogens to human beings and are second only to mosquitoes as vectors of infectious diseases in the world.1 Tick-borne infections are zoonoses with pathogens maintained in natural cycles involving tick vectors and animal hosts. Human beings are occasional hosts for ticks and are usually viewed as dead-end hosts that have no role in maintaining tick-borne agents in nature.2 Different tick species favour distinct biotopes or environments, which define their geographical distribution and, consequently, the areas of risk for human tick-borne infections. In the past three decades, tick-borne pathogens have emerged worldwide and become a great threat to human health.1,3 China is the largest developing country in the world and has made tremendous progress in the control and prevention of infectious diseases; however, emerging infectious diseases are the new challenge now facing China.4 Although outbreaks of severe acute respiratory syndrome and H5N1 and H7N9 avian influenza virus infections have attracted great attention, emerging tick-borne diseases have generally been neglected by primary health- care providers and clinicians. Although an increasing number of tick-borne infections have been reported in mainland China, no comprehensive review of this substantial public health problem has been undertaken. We will provide an overview of the type and distribution of emerging tick-borne infections in tick vectors, animal hosts, and human beings. We will describe the clinical characteristics of human tick-borne diseases, and discuss possible factors contributing to their emergence. Emergence of tick-borne infections in mainland China Since 1982, 33 emerging tick-associated agents have been identified in mainland China, including eight species of spotted fever group rickettsiae (SFGR);5–11 three species of Ehrlichia,12–14 three species of Anaplasma,15–17 and Candidatus Neoehrlichia mikurensis18 in the family Anaplasmataceae; six genospecies in the complex Borrelia burgdorferi sensu lato;19–23 11 species of Babesia;24–33 and severe fever with thrombocytopenia syndrome virus (SFTSV).34 The location and year in which each emerging tick-borne agent was first identified are shown in the appendix. Most (19 of 33) were initially detected in ticks; however, six were identified in domestic animals (sheep, goat, buffalo, and dog), two in wild animals (Chinese white-bellied rat and Chinese hare), and six in people. Detailed information regarding the identification of these emerging tick-borne infections is summarised in table 1. Among the 33 newly recognised tick-associated agents, 15 have been reported to cause human infection, including: four species of SFGR;11,35,46,48 an Ehrlichia species,53 two Anaplasma species,17,53 and Candidatus N mikurensis;18 three genospecies of B burgdorferi sensu lato;19,21,78 three species of Babesia;33,104,108 and SFTSV (table 2).34 Six of the tick- borne pathogens were first identified in febrile patients (Candidatus Rickettsia tarasevichiae, Candidatus N mikurensis, Borrelia garinii, Borrelia afzelii, Babesia venatorum [not yet formally described], and SFTSV) and then shown to be associated with ticks (table 1). The other nine human pathogens were initially detected in ticks or animals and subsequently Lancet Infect Dis. Author manuscript; available in PMC 2016 May 18. Fang et al. Page 3 shown to infect human beings (Rickettsia heilongjiangiensis, Rickettsia sibirica sp BJ-90, Author ManuscriptAuthor Manuscript Author Manuscript Author Manuscript Author Rickettsia raoultii, Ehrlichia chaffeensis, Anaplasma phagocytophilum, Anaplasma capra, Borrelia valaisiana-related genospecies, Babesia microti, and Babesia divergens). Among these 15 emerging tick-borne diseases, severe fever with thrombocytopenia syndrome (SFTS) was first identified in mainland China34 and subsequently reported in South Korea and Japan.134,135 A disease similar to SFTS has been reported in the USA.136 Human infections with R sibirica sp BJ-90, Candidatus R tarasevichiae, A capra, and B valaisiana- related genospecies have been exclusively diagnosed in mainland China.11,17,46,78 Human infections of Candidatus N mikurensis, Ba venatorum, and R raoultii, which have been detected in China, were first identified in Europe.18,33,48 Five tick-borne pathogens have been detected in ticks or reservoir hosts, or both, but have not yet been reported to cause infection in human beings in China. They include Rickettsia monacensis, Rickettsia slovaca, Rickettsia sibirica sp mongolotimonae, B valaisiana, and B burgdorferi sensu stricto.137–141 Additionally, a Rickettsia species (Candidatus Rickettsia hebeiii), two Ehrlichia species (Ehrlichia canis and Ehrlichia sp Tibet), an Anaplasma species (Anaplasma platys), a genospecies of B burgdorferi sensu lato (Borrelia sinica), and eight Babesia species (Babesia ovis, Babesia ovata, Babesia orientalis, Babesia major, Babesia motasi, Babesia caballi, Babesia sp Kashi, and Babesia sp Xinjiang) have been identified in ticks or animals, but their pathogenicity to human beings is unknown. Emerging SFGR infections Eight novel species of SFGR have been recorded in mainland China since 1982 (table 1).5–11 These species are mainly distributed in northern China (north of 36° north latitude). Tick and animal infections The eight emerging species and uncharacterised species of SFGR have been shown to be associated with 16 tick species (figure 1). R heilongjiangiensis has been proven to infect a range of tick species, three rodent species, and goats (appendix). In northeastern China, R heilongjiangiensis was detected in nine tick species and two rodent species from Heilongjiang Province,36–38 and in Haemaphysalis spp ticks from Jilin Province.38 In Inner Mongolia, R heilongjiangiensis has been reported in Haemaphysalis verticalis, Detmacentor niveus, Hyalomma asiaticum kozlovi, Rhipicephalus pumilio, and Detmacentor
Recommended publications
  • Distribution of Tick-Borne Diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2*
    Wu et al. Parasites & Vectors 2013, 6:119 http://www.parasitesandvectors.com/content/6/1/119 REVIEW Open Access Distribution of tick-borne diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2* Abstract As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. Keywords: Ticks, Tick-borne diseases, Epidemic, China Review (Table 1) [2,4]. Continuous reports of emerging tick-borne Ticks can carry and transmit viruses, bacteria, rickettsia, disease cases in Shandong, Henan, Hebei, Anhui, and spirochetes, protozoans, Chlamydia, Mycoplasma,Bartonia other provinces demonstrate the rise of these diseases bodies, and nematodes [1,2].
    [Show full text]
  • (Batch Learning Self-Organizing Maps), to the Microbiome Analysis of Ticks
    Title A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Nakao, Ryo; Abe, Takashi; Nijhof, Ard M; Yamamoto, Seigo; Jongejan, Frans; Ikemura, Toshimichi; Sugimoto, Author(s) Chihiro The ISME Journal, 7(5), 1003-1015 Citation https://doi.org/10.1038/ismej.2012.171 Issue Date 2013-03 Doc URL http://hdl.handle.net/2115/53167 Type article (author version) File Information ISME_Nakao.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Ryo Nakao1,a, Takashi Abe2,3,a, Ard M. Nijhof4, Seigo Yamamoto5, Frans Jongejan6,7, Toshimichi Ikemura2, Chihiro Sugimoto1 1Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan 2Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan 3Graduate School of Science & Technology, Niigata University, 8050, Igarashi 2-no-cho, Nishi- ku, Niigata 950-2181, Japan 4Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany 5Miyazaki Prefectural Institute for Public Health and Environment, 2-3-2 Gakuen Kibanadai Nishi, Miyazaki 889-2155, Japan 6Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands 7Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa aThese authors contributed equally to this work. Keywords: BLSOMs/emerging diseases/metagenomics/microbiomes/symbionts/ticks Running title: Tick microbiomes revealed by BLSOMs Subject category: Microbe-microbe and microbe-host interactions Abstract Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic.
    [Show full text]
  • Ecology of the Morgan Creek and East Fork of the Salmon River Bighorn Sheep Herds and Management of Bighorn Sheep in Idaho
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1971 Ecology of the Morgan Creek and East Fork of the Salmon River Bighorn Sheep Herds and Management of Bighorn Sheep in Idaho James K. Morgan Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Other Life Sciences Commons Recommended Citation Morgan, James K., "Ecology of the Morgan Creek and East Fork of the Salmon River Bighorn Sheep Herds and Management of Bighorn Sheep in Idaho" (1971). All Graduate Theses and Dissertations. 1593. https://digitalcommons.usu.edu/etd/1593 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Frontispiece Adult ewe, lamb, and adult ram ECOLOGY Of THE MORGAN CREEK AND EAST FORK OF · T~ SALMON Rl VER . BIGHORN SHEEP HERDS AND MANAGEMENT OFBIGHQRN SHEEP IN IDAHO by James K. Morgan A thesis submitted in partial fulfi Ilment of the requirements for the degree of MASTER OF SCIENCE in Wi I d I i fa B i 0 logy App rov..ed: ~~jo7 Professor' Coi{m 11teec Memt5'#"r Gomm i ttee Merrfber . DeW &r Graduate Stud i es UTAH STATE UNIV~RSITY Logan, utah 1971 ACKNOWLEDGEMENTS Errol Nielson, Big Game Supervisor for the Idaho Fish and Game Department, deserves my warmest thanks for the patience and under­ standing that encouraged me during difficult times.
    [Show full text]
  • First Report of Rickettsia Raoultii and R. Slovaca in Melophagus Ovinus, The
    Liu et al. Parasites & Vectors (2016) 9:600 DOI 10.1186/s13071-016-1885-7 SHORT REPORT Open Access First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked Dan Liu1†, Yuan-Zhi Wang2†, Huan Zhang1†, Zhi-Qiang Liu3†, Ha-zi Wureli1, Shi-Wei Wang4, Chang-Chun Tu5 and Chuang-Fu Chen1* Abstract Background: Melophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. Methods: In this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA). Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa), 16S rRNA gene (rrs),surfacecellantigen4gene(sca4),citratesynthasegene(gltA), and outer membrane protein A and B genes (ompA and ompB). The amplified products were confirmed by sequencing and BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_ LOC=blasthome). Results: According to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus,with100%identitytoM.
    [Show full text]
  • Arthropod Parasites in Domestic Animals
    ARTHROPOD PARASITES IN DOMESTIC ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Metazoa Arthropoda Insecta Siphonaptera INS:Sip Mallophaga INS:Mal Anoplura INS:Ano Diptera INS:Dip Arachnida Ixodida ARA:Ixo Mesostigmata ARA:Mes Prostigmata ARA:Pro Astigmata ARA:Ast Crustacea Pentastomata CRU:Pen References Ashford, R.W. & Crewe, W. 2003. The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis. Taylor, M.A., Coop, R.L. & Wall, R.L. 2007. Veterinary Parasitology. 3rd edition, Blackwell Pub. HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus, 1758 [man] ARA:Ast Sarcoptes bovis, ectoparasite (‘milker’s itch’)(mange mite) ARA:Ast Sarcoptes equi, ectoparasite (‘cavalryman’s itch’)(mange mite) ARA:Ast Sarcoptes scabiei, skin (mange mite) ARA:Ixo Ixodes cornuatus, ectoparasite (scrub tick) ARA:Ixo Ixodes holocyclus, ectoparasite (scrub tick, paralysis tick) ARA:Ixo Ornithodoros gurneyi, ectoparasite (kangaroo tick) ARA:Pro Cheyletiella blakei, ectoparasite (mite) ARA:Pro Cheyletiella parasitivorax, ectoparasite (rabbit fur mite) ARA:Pro Demodex brevis, sebacceous glands (mange mite) ARA:Pro Demodex folliculorum, hair follicles (mange mite) ARA:Pro Trombicula sarcina, ectoparasite (black soil itch mite) INS:Ano Pediculus capitis, ectoparasite (head louse) INS:Ano Pediculus humanus, ectoparasite (body
    [Show full text]
  • Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
    Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup
    [Show full text]
  • Expansion of Tick-Borne Rickettsioses in the World
    microorganisms Review Expansion of Tick-Borne Rickettsioses in the World Mariusz Piotrowski * and Anna Rymaszewska Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century. Keywords: Tick-borne rickettsioses; Tick-borne diseases; Rickettsiales 1. Introduction Tick-borne rickettsioses are caused by obligate intracellular Gram-negative bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia.
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Rickettsia Sibirica Subsp. Mongolitimonae Infection And
    LETTERS 8. Pawlotsky JM, Belec L, Gresenguet G, were otherwise within normal limits. for 10 days, under close surveillance. Deforges L, Bouvier M, Duval J, et al. No tick bite was reported by the pa- After 2 days of treatment, she was afe- High prevalence of hepatitis B, C and E markers in young sexually active adults tient, although she had been walking a brile and the rash completely resolved. from the Central African Republic. J Med few days before in Camargue (south- No obstetric complications occurred Virol. 1995;46:269–72. ern France). Serologic results for R. and she gave birth to a healthy boy at 9. Guthmann JP, Klovstad H, Boccia D, conorii, R. typhi, Brucella spp., Bor- term. Two years later, the right sco- Hamid N, Pinoges L, Nizou J, et al. A large outbreak of hepatitis E among dis- relia spp., and Coxiella burnetii were toma remained unchanged. placed population in Darfur, Sudan, 2004: negative. Serologic tests for rickettsiosis The role of water treatment methods. Clin One day after admission, she re- were performed with an acute-phase Infect Dis. 2006;42:1685–91. ported loss of vision (scotoma) in her serum sample and a convalescent- 10. Bile K, Isse A, Mohamud O, Allebeck P, Nilsson L, Norder H, et al. Contrasting right eye. She underwent a complete phase serum sample (1 month after roles of rivers and wells as sources of ophthalmic evaluation. Measurement onset of symptoms). Samples were drinking water on attack and fatality rates of visual acuity and results of a slit- sent to the World Health Organization in hepatitis E epidemic in Somalia.
    [Show full text]
  • Intraspecies Comparative Genomics of Rickettsia
    AIX ͲMARSEILLE UNIVERSITÉ FACULTÉ DE MÉDECINE DE MARSEILLE ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ T H È S E Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 13 décembre 2013 Par M. Erwin SENTAUSA Né le 16 décembre 1979 àMalang, Indonésie INTRASPECIES COMPARATIVE GENOMICS OF RICKETTSIA Pour obtenir le grade de DOCTORAT d’AIX ͲMARSEILLE UNIVERSITÉ SPÉCIALITÉ :PATHOLOGIE HUMAINE Ͳ MALADIES INFECTIEUSES Membres du Jury de la Thèse : Dr. Patricia RENESTO Rapporteur Pr. Max MAURIN Rapporteur Dr. Florence FENOLLAR Membre du Jury Pr. Pierre ͲEdouard FOURNIER Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes UM63, CNRS 7278, IRD 198, Inserm 1095 Avant Propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master de Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené àrespecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre àl’étudiant de le commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Control of Sheep Keds
    Extension Bulletin 1389 insect answers CONTROL OF SHEEP KEDS The sheep ked or sheep “tick,” Melophagus ovinus, Sheep keds that become dislodged do not usually pose is found on sheep in most sheep-raising areas of the a threat of reinfestation to other sheep. Dislodged keds world. In the United States it is most abundant in the only live about 4 days off their hosts. Spread is al- west. most entirely from sheep to sheep, although people (shearers, etc.) can help to spread them. Symptomology and Economics The ked is ticklike in appearance, about 1/4 inch long, The sheep ked is a pest only of domestic or mountain and reddish or gray-brown in color. It is unusual in sheep and goats. There are no alternate host animals not laying eggs. Eggs, produced singly, are retained and no free-living stages. in the uterus and hatch there. The young larva re- mains within the female ked, feeding from special Keds generally infest the neck, breast, shoulders, nutritive glands until it is fully developed. Only one belly, and thighs, and can be easily detected by part- develops at a time. When full development is reached, ing the wool. They pierce the skin and suck blood, each larva is expelled almost immediately, forming a causing irritation to the sheep and forcing them to puparium that attaches to the wool. scratch and bite at themselves. Scratching results in wool tags left on fence wires. Heavily infested animals may become weak and un- thrifty and show weight loss, anemia, wool staining, reduced resistance to disease, and a condition called “cockle.” Cockles are raised bumplike skin blemishes caused by ked bites.
    [Show full text]
  • Detecting Phylogenetic Signals from Deep Roots of the Tree of Life
    UNIVERSITY OF CALIFORNIA,MERCED Detecting Phylogenetic Signals From Deep Roots of the Tree of Life A dissertation submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy in Quantitative and Systems Biology by Katherine Colleen Harris Amrine Committee in charge: Professor Carolin Frank, Chair Professor David Ardell Professor Meng-Lin Tsao Professor Suzanne Sindi August 2013 Copyright Katherine C. Amrine All Rights Reserved UNIVERSITY OF CALIFORNIA,MERCED Graduate Division The Dissertation of Katherine Colleen Harris Amrine is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Faculty Advisor: David H. Ardell Committee Members: Chair: Carolin Frank Meng-Lin Tsao Suzanne Sindi Date iii Contents List of Figures ................................................................. vi List of Tables .................................................................. ix Acknowledgements ............................................................. x Vita ........................................................................... xi Abstract ...................................................................... xii 1 Shifting focus in evolutionary biology – identifying a new signal for phylogenetic tree reconstruction and taxonomic classification 1 1.1 The evolution of bacterial classification and phylogeny . .1 1.2 The historical marker – 16S . .2 1.3 Complications in bacterial classification and phylogeny . .2 1.3.1 Horizontal gene transfer . .2 1.3.2 Does a true tree exist? . .3 1.4 Methods for phylogenetic tree reconstruction . .3 1.4.1 DNA . .3 1.4.2 RNA . .4 1.4.3 Proteins . .4 1.4.4 Data compilation . .5 1.5 Bias in tree-building . .5 1.6 Biological bias in biological data . .6 1.7 The tRNA interaction network . .6 1.8 Information theory . .8 1.9 Machine Learning for bacterial classification . .9 2 tRNA signatures reveal polyphyletic origins of streamlined SAR11 genomes among the Alphaproteobacteria 12 2.1 Abstract .
    [Show full text]