Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material 361 Index a – PCR 224 abdominal and intestinal anthrax 14 – – virus culture and antigen testing 224 abscesses 40 – prevention 340–341 acid-fast bacilli (AFB) 151 – protection 338–339 activated partial thromboplastin time (APTT) – treatment 342 219 Argentinian hemorrhagic fever (AHF) 213, Advisory Committee on Immunization 217, 219, 220 Practices (ACIP) 203 ‘‘Army Vaccine’’ 97 African tick bite fever (ATBF) 124, 129, 142 arthropod-borne infections 124, 125, 127, agar gel immunodiffusion (AGID) 181 128, 129, 139, 142 Agrobacterium 20 avian influenza viruses (AIVs) 177, 178 Alphaproteobacteria 124 Amblyomma hebraeum 129 b Amblyomma variegatum 129 bacille Calmette–Guerin´ (BCG) 150, 153, amplified fragment length polymorphism 155 (AFLP) 159 Bacillus anthracis 5, 159 Anaplasmataceae 124, 126 – characteristics 5–6 Andes virus (ANDV) 273, 276, 277 – clinical and pathological findings anthrax. See Bacillus anthracis 13–14 antibiotic resistance 7–8 – – abdominal and intestinal anthrax 14 antigen detection 8 – – inhalation and pulmonary anthrax 14 Antiqua biovar 93 – – oropharyngeal anthrax 14 Arenaviridae 253 – clinical guidelines 297 arenaviruses 211–212 – decontamination 296 – clinical signs – diagnosis – – New World hemorrhagic fevers 214–215 – – antibiotic resistance 7–8 – – Old World hemorrhagic fevers 214 – – antigen detection 8 – decontamination 340 – – chromosome 10–11 – diagnostics COPYRIGHTED– – growth characteristics MATERIAL 6–7 – – serological tests 223 – – MLVA, SNR, and SNP typing 11 – disinfection 339–340 – – molecular identification 8–10 – epidemiology – – phage testing and biochemistry 8 – – New World 213–214 – – phenotypical identification 6 – – Old World 212–213 – – serological investigations 11 – pathogenesis 218–223 – disinfection 295, 296 – pathological signs – epidemiology 15 – – New World hemorrhagic fevers 217–218 – pathogenesis – – Old World hemorrhagic fevers 215–216 – – animals 12 BSL3 and BSL4 Agents: Epidemiology, Microbiology, and Practical Guidelines, First Edition. Edited by Mandy C. Elschner, Sally J. Cutler, Manfred Weidmann, and Patrick Butaye. 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA. 362 Index Bacillus anthracis (contd.) ––animals 41–42 – – humans 12–13 – – human 40 – prevention 296 – clinical guidelines 302 – prophylaxis 296 – decontamination 301 – protection 295 – diagnosis 38 – treatment 297 – – antigen detection 39 Bacillus cereus 6, 8, 9, 10, 16 – – cultural identification 38 Bacillus mycoides 6 – – molecular based methods 39 Bacillus pseudomycoides 6 – – serology 39–40 Bacillus thuringiensis 6 – disinfection 301 Bacillus weihenstephanensis 6 – epidemiology 42–43 bacterial typing 160 – molecular typing 43 Bartonella 20, 62 – prophylaxis 302 Bartonellaceae 126 – protection 301 BCSP31 protein 26 – treatment 302 biofilm 91 Burkholderia oklahomensis 48 biovars 87, 92 Burkholderia pseudomallei 38, 39, 47–48 bluetongue virus 263 – clinical and pathological findings Bolivian hemorrhagic fever (BHF) 213 ––animals 50–51 botonneuse fever. See Mediterranean spotted – – humans 50 fever (MSF) – clinical guidelines 304 Brill–Zinsser disease 127, 137 – decontamination 303 Brucella abortus 26, 27, 30, 31 – diagnosis 48 Brucella canis 25, 27, 30, 31 – – antigen detection 49 Brucella inopinata 28 – – cultural identification 48–49 Brucella melitensis 20, 21, 22, 26, 27, 30, 31 – – molecular based methods 49 Brucella neotomae 30 – – serology 49–50 Brucella ovis 25, 30 – disinfection 303 Brucella species 19 – epidemiology 52 – characteristics 20–21 – molecular typing 52 – clinical and pathological findings 27–29 – prophylaxis 304 – clinical guidelines 300 – protection 303 – control strategies 31 – treatment 304 – diagnosis 22–25 – – immunological approaches 25 c – – polymerase chain reaction (PCR) assays caf1 gene 91 25–26 Callithrix jacchus 216, 243 – disinfection 298–299 Calomys callosus 213 – epidemiology 29 Calomys musculinus 213 – molecular typing methods 29–31 capA gene 10 – pathogenesis 26–27 capB gene 10 – prevention 299 capC gene 10 – prophylaxis 299 Cavia porcellus 216 – protection 298 Centers for Disease Control (CDC) 155 – treatment 300 Chapare virus (CHAPV) 213 Brucella suis 27, 30, 31 Chlamydiaceae 62 brucellosis. See Brucella species Chlamydia pneumoniae 63 bubonic plague 94 Chlorocebus aethiops 242 Bundibugyo ebolavirus 237 Chordopoxvirinae 205 Bundibugyo virus (BDBV) 237, 242, 243 Clinical and Laboratory Standards Institute Bunyaviridae 253, 255, 256, 273, 274 (CLSI) 8 Burkholderia cepacia 48 clustered regularly interspaced short Burkholderia mallei 37–38 palindromic repeats (CRISPRs) 93 – clinical and pathological findings coagulase 91 Index 363 complement fixation test (CFT) 39, 40 Dermacentor andersoni 125, 139 Corynebacterium 149 Dermacentor-borne necrosis erythema and cowpox virus 201, 203 lymphadenopathy (DEBONEL) 137 Coxiella burnetii 57–58 Dermacentor marginatus 138 – characteristics 58 Dermacentor reticularis 138 – clinical and pathological findings 63 Dermacentor variabilis 139 – – acute Q fever 63 Didelphis virginiana 140 – – chronic Q fever 64 discrimination index (DI) 161 – clinical guidelines 308 disseminated intravascular coagulation (DIC) – decontamination 307 219, 245, 258 – diagnosis 59 dksA-xerC intergenic spacer 134 – – cultivation 59–60 Dobrava virus (DOBV) 273, 276, 277 – – direct detection 59 – – serology 61–62 e – – specific DNA detection 60–61 Ebola virus (EBOV) 237, 239, 240, 242, 243 – disinfection 306, 307 Ebola virus disease (EVD) 239, 242–243, – epidemiology and molecular typing 64 245, 246 – – IS1111 typing 65 Echidnophaga gallinacea 106 – – MLVA typing 66 Eclipse probes 209 – – multispacer sequence typing 65 Ehrlichieae 126 – – plasmid types 64–65 endospores 58 ––RFLP 65 Enterobacteriaceae 58 – pathogenesis 62–63 Enterococcus species 11 – prevention 307 enzootic state 86 – prophylaxis 307 enzyme-linked immunosorbent assay (ELISA) – protection 306 11, 39, 49, 72, 95, 96, 182, 223, 246, 279, 280 – treatment 308 epizootic hosts 102, 108 Coxiella species 124, 126 epizootic state 86 Crabtreella 20 escaro-nodular fever. See Mediterranean Crimean Congo hemorrhagic fever virus spotted fever (MSF) (CCHFV) 255 eschar 136 – characteristics 256 – clinical and pathological findings 257 f – clinical guidelines 353 farcy 37 – decontamination 351 farcy buds 37 – diagnosis 258 Felis canadensis 109 – – antigen detection 259 Felis concolor 109 – – molecular methods 259 Fibrin degradation products (FDPs) 219 – – serology 259 Filoviridae 237, 253 – – virus isolation 259 filoviruses – disinfection 351 – characteristics 237–239 – epidemiology 256 – clinical signs 242–243 – pathogenesis 257–258 – decontamination 344–345 – prevention 352 – diagnostic procedures 246 – protection 351 – disease outbreaks 241 – treatment 352 – disease survivors, symptoms and clinical Ctenocephalides felis 140 signs of 244 Ctenocephalides felis strongylus 109 – disinfection 344–345 culling policy 39 – epidemiology 239–242 cutaneous anthrax 13 – pathogenesis 245–246 – pathological findings 243–245 d – prevention 345 Daeguia 20 – prophylaxis 345 decay-accelerating factor (DAF) 275 – protection 344 364 Index filoviruses (contd.) hantavirus 273 – taxonomy 238 – characteristics 274–275 – treatment 346 – clinical findings 277 Flaviviridae 253 ––HCPS 278 fleas 124, 128, 129, 130, 134, 136, 139, 140, – – HFRS 277–278 142 – clinical guidelines 359–360 Fleckfieber 126 – decontamination 358 fliCgene 49 – diagnosis 279 fluorescence melting curve analysis (FMCA) – – serology 279–280 206, 207 – – virus detection 280–281 focus reduction neutralization test (FRNT) – disinfection 358 280 – epidemiology 276–277 fopA gene 73 – pathogenesis 279 fowl plague 179 – prevention 359 Francisella novicida 71, 77, 78 – protection 358 Francisella tularensis 71 – treatment 359 – characteristics 72 hantavirus cardiopulmonary syndrome – clinical and pathological findings (HCPS) 273, 274, 276, 277, 278, 279, 280 – – animals 74 hemagglutination inhibition test (HAI) – – humans 74, 76–77 181–182 – clinical guidelines 311 hemagglutinin (HA) protein 176, 181 – decontamination 309 hemorrhagic fevers. See arenaviruses; – diagnosis filoviruses – – direct isolation 72–73 hemorrhagic fever with renal syndrome – – molecular biology tools for identification (HFRS) 273, 274, 276, 277–278, 279, 280 73 highly pathogenic avian influenza (HPAI) – – phenotypical characteristics 73 175, 177, 178, 182 – – serology 72 – infection in animals 179–180 – disinfection 309 – epidemiology in H5N1 viruses in Africa – epidemiology and molecular typing 77–79 186 – pathogenesis 73–74 – genetic diversity of H5N1 virus 184 – prevention 310 – H5N1 virus chronology – prophylaxis 310 – – first wave 182–183 – protection 309 – – in Africa 185–187 – treatment 311 ––secondwave 183 – – third wave 183–185 g – infection in humans 180 glanders. See Burkholderia mallei – virus outbreaks 187–188 gltA sequences 132 high performance liquid chromatography GP genes 237 (HPLC) 153, 154 Guanarito virus (GTOV) 213–214, 218 hms gene 91, 106 guinea pig model 216, 223 holarctica 71, 77, 78, 79 Holosporaceae 124 h human leukocyte antigen (HLA) 277 H5N1 virus 178 Hyalomma genus 255, 256 – chronology Hyalomma marginatum marginatum 255 – – first wave 182–183 hypervariable octameric oligonucleotide finger – – in Africa 185–187 prints (Hoof Prints) 30 – – second wave 183 – – third wave 183–185 i – infection in animals 179–180 immunefluorescence assay (IFA) 280 – infection in humans 180 indirect hemagglutination assay (IHA) 50 Haemophilus influenzae 26 indirect immunofluorescence
Recommended publications
  • Community Analysis of Microbial Sharing and Specialization in A
    Downloaded from http://rspb.royalsocietypublishing.org/ on March 15, 2017 Community analysis of microbial sharing rspb.royalsocietypublishing.org and specialization in a Costa Rican ant–plant–hemipteran symbiosis Elizabeth G. Pringle1,2 and Corrie S. Moreau3 Research 1Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Cite this article: Pringle EG, Moreau CS. 2017 Reno, NV 89557, USA 2Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA Community analysis of microbial sharing and 3Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, specialization in a Costa Rican ant–plant– Chicago, IL 60605, USA hemipteran symbiosis. Proc. R. Soc. B 284: EGP, 0000-0002-4398-9272 20162770. http://dx.doi.org/10.1098/rspb.2016.2770 Ants have long been renowned for their intimate mutualisms with tropho- bionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of Received: 14 December 2016 microbes between interacting macroorganisms, affects the composition and Accepted: 17 January 2017 function of symbiotic microbial communities. Here we approached this ques- tion by investigating symbiosis within symbiosis. Ant–plant–hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and Subject Category: quantitative PCR to examine community structure of both bacteria and Ecology fungi in a Neotropical ant–plant–scale-insect symbiosis. Both phloem-feed- ing scale insects and honeydew-feeding ants make use of microbial Subject Areas: symbionts to subsist on phloem-derived diets of suboptimal nutritional qual- ecology, evolution, microbiology ity.
    [Show full text]
  • Distribution of Tick-Borne Diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2*
    Wu et al. Parasites & Vectors 2013, 6:119 http://www.parasitesandvectors.com/content/6/1/119 REVIEW Open Access Distribution of tick-borne diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2* Abstract As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. Keywords: Ticks, Tick-borne diseases, Epidemic, China Review (Table 1) [2,4]. Continuous reports of emerging tick-borne Ticks can carry and transmit viruses, bacteria, rickettsia, disease cases in Shandong, Henan, Hebei, Anhui, and spirochetes, protozoans, Chlamydia, Mycoplasma,Bartonia other provinces demonstrate the rise of these diseases bodies, and nematodes [1,2].
    [Show full text]
  • Characterization of the Interaction Between R. Conorii and Human
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 4-5-2018 Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis Abigail Inez Fish Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Bacteria Commons, Bacteriology Commons, Biology Commons, Immunology of Infectious Disease Commons, and the Pathogenic Microbiology Commons Recommended Citation Fish, Abigail Inez, "Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis" (2018). LSU Doctoral Dissertations. 4566. https://digitalcommons.lsu.edu/gradschool_dissertations/4566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF THE INTERACTION BETWEEN R. CONORII AND HUMAN HOST VITRONECTIN IN RICKETTSIAL PATHOGENESIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Biomedical and Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Abigail Inez
    [Show full text]
  • Sanguineus Bacterial Communities Rhipicephalus
    Composition and Seasonal Variation of Rhipicephalus turanicus and Rhipicephalus sanguineus Bacterial Communities Itai Lalzar, Shimon Harrus, Kosta Y. Mumcuoglu and Yuval Gottlieb Appl. Environ. Microbiol. 2012, 78(12):4110. DOI: 10.1128/AEM.00323-12. Published Ahead of Print 30 March 2012. Downloaded from Updated information and services can be found at: http://aem.asm.org/content/78/12/4110 These include: SUPPLEMENTAL MATERIAL Supplemental material http://aem.asm.org/ REFERENCES This article cites 44 articles, 17 of which can be accessed free at: http://aem.asm.org/content/78/12/4110#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on June 10, 2013 by guest Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Composition and Seasonal Variation of Rhipicephalus turanicus and Rhipicephalus sanguineus Bacterial Communities Itai Lalzar,a Shimon Harrus,a Kosta Y. Mumcuoglu,b and Yuval Gottlieba Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,a and Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hadassah Medical School, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israelb A 16S rRNA gene approach, including 454 pyrosequencing and quantitative PCR (qPCR), was used to describe the bacterial com- munity in Rhipicephalus turanicus and to evaluate the dynamics of key bacterial tenants of adult ticks during the active questing season.
    [Show full text]
  • Case Report: Coinfection with Rickettsia Monacensis and Orientia Tsutsugamushi
    Am. J. Trop. Med. Hyg., 101(2), 2019, pp. 332–335 doi:10.4269/ajtmh.18-0631 Copyright © 2019 by The American Society of Tropical Medicine and Hygiene Case Report: Coinfection with Rickettsia monacensis and Orientia tsutsugamushi Seok Won Kim,1† Choon-Mee Kim,2† Dong-Min Kim,3* and Na Ra Yun3 1Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea; 2Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea; 3Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea Abstract. Rickettsia monacensis and Orientia tsutsugamushi are bacteria of the family Rickettsiaceae, which causes fever, rash, and eschar formation; outdoor activities are a risk factor for Rickettsiaceae infection. A 75-year-old woman presented with fever, rash, and eschar and was confirmed as being scrub typhus based on a nested-polymerase chain reaction (N-PCR) test for a 56-kDa gene of O. tsutsugamushi; the genome was identified as the Boryong genotype. In addition, a pan-Rickettsia real-time PCR test was positive and a N-PCR test using a Rickettsia-specific partial outer membrane protein A (rOmpA) confirmed R. monacensis. This is the first case wherein a patient suspected of having scrub typhus owing to the presence of rash and eschar was also found to be coinfected with O. tsutsugamushi and R. monacensis based on molecular testing. INTRODUCTION leukocyte count, 7,200/mm3; hemoglobin, 11.6 g/dL; platelet count, 232,000/mm3; and erythrocyte sedimentation rate, 31 Rickettsia monacensis is a pathogen that causes spotted mm/hours. C-reactive protein and procalcitonin levels were fever group rickettsial infection; the main symptoms of in- elevated at 9.26 mg/dL and 0.836 ng/mL (0–0.5 ng/mL), re- fection include fever, headache, and myalgia, as well as es- 1 spectively.
    [Show full text]
  • (Chiroptera: Vespertilionidae) and the Bat Soft Tick Argas Vespe
    Zhao et al. Parasites Vectors (2020) 13:10 https://doi.org/10.1186/s13071-020-3885-x Parasites & Vectors SHORT REPORT Open Access Rickettsiae in the common pipistrelle Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) and the bat soft tick Argas vespertilionis (Ixodida: Argasidae) Shuo Zhao1†, Meihua Yang2†, Gang Liu1†, Sándor Hornok3, Shanshan Zhao1, Chunli Sang1, Wenbo Tan1 and Yuanzhi Wang1* Abstract Background: Increasing molecular evidence supports that bats and/or their ectoparasites may harbor vector-borne bacteria, such as bartonellae and borreliae. However, the simultaneous occurrence of rickettsiae in bats and bat ticks has been poorly studied. Methods: In this study, 54 bat carcasses and their infesting soft ticks (n 67) were collected in Shihezi City, north- western China. The heart, liver, spleen, lung, kidney, small intestine and large= intestine of bats were dissected, followed by DNA extraction. Soft ticks were identifed both morphologically and molecularly. All samples were examined for the presence of rickettsiae by amplifying four genetic markers (17-kDa, gltA, ompA and ompB). Results: All bats were identifed as Pipistrellus pipistrellus, and their ticks as Argas vespertilionis. Molecular analyses showed that DNA of Rickettsia parkeri, R. lusitaniae, R. slovaca and R. raoultii was present in bat organs/tissues. In addition, nine of the 67 bat soft ticks (13.43%) were positive for R. raoultii (n 5) and R. rickettsii (n 4). In the phylo- genetic analysis, these bat-associated rickettsiae clustered together with conspecifc= sequences reported= from other host and tick species, confrming the above results. Conclusions: To the best of our knowledge, DNA of R. parkeri, R. slovaca and R.
    [Show full text]
  • Genome Project Reveals a Putative Rickettsial Endosymbiont
    GBE Bacterial DNA Sifted from the Trichoplax adhaerens (Animalia: Placozoa) Genome Project Reveals a Putative Rickettsial Endosymbiont Timothy Driscoll1,y, Joseph J. Gillespie1,2,*,y, Eric K. Nordberg1,AbduF.Azad2, and Bruno W. Sobral1,3 1Virginia Bioinformatics Institute at Virginia Polytechnic Institute and State University 2Department of Microbiology and Immunology, University of Maryland School of Medicine 3Present address: Nestle´ Institute of Health Sciences SA, Campus EPFL, Quartier de L’innovation, Lausanne, Switzerland *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: March 1, 2013 Abstract Eukaryotic genome sequencing projects often yield bacterial DNA sequences, data typically considered as microbial contamination. However, these sequences may also indicate either symbiont genes or lateral gene transfer (LGT) to host genomes. These bacterial sequences can provide clues about eukaryote–microbe interactions. Here, we used the genome of the primitive animal Trichoplax adhaerens (Metazoa: Placozoa), which is known to harbor an uncharacterized Gram-negative endosymbiont, to search for the presence of bacterial DNA sequences. Bioinformatic and phylogenomic analyses of extracted data from the genome assembly (181 bacterial coding sequences [CDS]) and trace read archive (16S rDNA) revealed a dominant proteobacterial profile strongly skewed to Rickettsiales (Alphaproteobacteria) genomes. By way of phylogenetic analysis of 16S rDNA and 113 proteins conserved across proteobacterial genomes, as well as identification of 27 rickettsial signature genes, we propose a Rickettsiales endosymbiont of T. adhaerens (RETA). The majority (93%) of the identified bacterial CDS belongs to small scaffolds containing prokaryotic-like genes; however, 12 CDS were identified on large scaffolds comprised of eukaryotic-like genes, suggesting that T.
    [Show full text]
  • Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
    Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup
    [Show full text]
  • Expansion of Tick-Borne Rickettsioses in the World
    microorganisms Review Expansion of Tick-Borne Rickettsioses in the World Mariusz Piotrowski * and Anna Rymaszewska Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century. Keywords: Tick-borne rickettsioses; Tick-borne diseases; Rickettsiales 1. Introduction Tick-borne rickettsioses are caused by obligate intracellular Gram-negative bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia.
    [Show full text]
  • Rickettsia Monacensis As a Cause of a Tick Bite
    a nonpruritic, disseminated maculopapular rash, with no Rickettsia inoculation eschar, of the trunk and lower extremities, in- cluding palms and soles. Other than a slightly low plate- monacensis let count (82,000/mm3), examination fi ndings were within normal limits. MSF was diagnosed, and serum and defi - and Human brinated blood samples were taken before a course of oral doxycycline (100 mg/12 h for 10 d) was initiated. Three Disease, Spain days later, fever and rash were gone without sequelae. Ad- Isabel Jado,* José A. Oteo,† Mikel Aldámiz,‡ ditional serial serum samples were taken during weeks 4, Horacio Gil,* Raquel Escudero,* 13, and 26 after onset and reserved for serologic analysis Valvanera Ibarra,† Joseba Portu,‡ (Table). Aranzazu Portillo,† María J. Lezaun,‡ Patient 2 was a 59-year-old woman from Basque Cristina García-Amil,* Isabel Rodríguez-Moreno,* Country, who sought medical attention on September 20, and Pedro Anda* 2003, 4 days after onset of fever (38ºC), headache, and an erythematous rash, with no inoculation eschar, at the site of We identifi ed Rickettsia monacensis as a cause of a tick bite. The patient reported a history of tick bites, most acute tickborne rickettsiosis in 2 humans. Its pathogenic recently 1 week before symptom onset. Blood cell counts role was assessed by culture and detection of the organism and other blood chemistry values were normal. MSF was in patients’ blood samples. This fi nding increases the num- ber of recognized human rickettsial pathogens and expands diagnosed, and oral doxycycline (100 mg/12 h for 10 d) the known geographic distribution of Mediterranean spotted was prescribed.
    [Show full text]
  • Molecular Detection and Identification of Rickettsiales Pathogens in Dog Ticks from Costa Rica
    Accepted Manuscript Title: Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Author: Liliana Campos-Calderon´ Leyda Abrego-S´ anchez´ Antony Solorzano-Morales´ Alberto Alberti Gessica Tore Rosanna Zobba Ana E. Jimenez-Rocha´ Gaby Dolz PII: S1877-959X(16)30120-0 DOI: http://dx.doi.org/doi:10.1016/j.ttbdis.2016.07.015 Reference: TTBDIS 700 To appear in: Received date: 29-2-2016 Revised date: 1-7-2016 Accepted date: 24-7-2016 Please cite this article as: Campos-Calderon,´ Liliana, Abrego-S´ anchez,´ Leyda, Solorzano-Morales,´ Antony, Alberti, Alberto, Tore, Gessica, Zobba, Rosanna, Jimenez-Rocha,´ Ana E., Dolz, Gaby, Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.Ticks and Tick-borne Diseases http://dx.doi.org/10.1016/j.ttbdis.2016.07.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Liliana Campos-Calderóna, Leyda Ábrego-Sánchezb, Antony Solórzano- Moralesa, Alberto Albertic, Gessica Torec, Rosanna Zobbac, Ana E. Jiménez- Rochaa, Gaby Dolza,b,* aEscuela de Medicina Veterinaria, Universidad Nacional, Campus Benjamín Núñez, Barreal de Heredia, Costa Rica ([email protected], [email protected], [email protected]).
    [Show full text]
  • Rickettsia Spp. in Bats of Romania: High Prevalence of Rickettsia Monacensis in Two Insectivorous Bat Species Ioana A
    Matei et al. Parasites Vectors (2021) 14:107 https://doi.org/10.1186/s13071-021-04592-x Parasites & Vectors RESEARCH Open Access Rickettsia spp. in bats of Romania: high prevalence of Rickettsia monacensis in two insectivorous bat species Ioana A. Matei1*† , Alexandra Corduneanu2†, Attila D. Sándor2,3, Angela Monica Ionica2,4, Luciana Panait2, Zsuzsa Kalmár2, Talida Ivan5, Ionel Papuc5, Cosmina Bouari1, Nicodim Fit1 and Andrei Daniel Mihalca2 Abstract Background: Spotted fever group rickettsiae represent one of the most diverse groups of vector-borne bacteria, with several human pathogenic species showing an emerging trend worldwide. Most species are vectored by ticks (Ixodidae), with many zoonotic reservoir species among most terrestrial vertebrate groups. While the reservoir compe- tence of many diferent vertebrate species is well known (e.g. birds, rodents and dogs), studies on insectivorous bats have been rarely performed despite their high species diversity, ubiquitous urban presence and importance in har- boring zoonotic disease agents. Romania has a high diversity and ubiquity of bats. Moreover, seven out of eight SFG rickettsiae species with zoonotic potential were previously reported in Romania. Based on this, the aim of this study was to detect Rickettsia species in tissue samples in bats. Methods: Here we report a large-scale study (322 bats belonging to 20 species) on the presence of Rickettsia spp. in Romanian bat species. Tissue samples from insectivorous bats were tested for the presence of Rickettsia DNA using PCR detection amplifying a 381 bp fragment of the gltA gene. Positive results were sequenced to confrm the results. The obtained results were statistically analyzed by chi-squared independence test.
    [Show full text]