ESCCAR International Congress on Rickettsiae and Other Intracellular Bacteria Pierre-Edouard Fournier, Carole Kebbi-Beghdadi, Gilbert Greub

Total Page:16

File Type:pdf, Size:1020Kb

ESCCAR International Congress on Rickettsiae and Other Intracellular Bacteria Pierre-Edouard Fournier, Carole Kebbi-Beghdadi, Gilbert Greub ESCCAR international congress on Rickettsiae and other intracellular bacteria Pierre-Edouard Fournier, Carole Kebbi-Beghdadi, Gilbert Greub To cite this version: Pierre-Edouard Fournier, Carole Kebbi-Beghdadi, Gilbert Greub. ESCCAR international congress on Rickettsiae and other intracellular bacteria. Microbes and Infection, Elsevier, 2018, 20 (7-8, SI), pp.392-400. 10.1016/j.micinf.2018.08.001. hal-01935339 HAL Id: hal-01935339 https://hal.archives-ouvertes.fr/hal-01935339 Submitted on 11 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Microbes and Infection 20 (2018) 392e400 Contents lists available at ScienceDirect Microbes and Infection journal homepage: www.elsevier.com/locate/micinf Meeting report ESCCAR international congress on Rickettsiae and other intracellular bacteria * Pierre-Edouard Fournier a, Carole Kebbi-Beghdadi b, Gilbert Greub b, a URMITE, UniversitedelaMediterranee, Institut Hospitalo-Universitaire Mediterranee-Infection, Marseille, France b Institute of Microbiology, University of Lausanne and University Hospital, Faculty of Biology and Medicine, Lausanne, Switzerland article info Article history: broaden our knowledge and that technology-based research that Received 10 July 2018 allows to fish for new pathogens is also very important, despite Accepted 10 August 2018 being until recently not recognized by most funding agencies. Available online 10 October 2018 Nevertheless, as exemplified by Rickettsia felis culture in frog cell lines, to recover a new species in culture may rely on hypothesis, i.e. that an arthropod-associated bacteria likely grows at a lower temperature (28 C) than mammals associated-rickettsia. R. felis is also a nice example of genes exchange, this bacterium exhibiting a very high level of mosaicism, explaining its larger genome as The ESCCAR international congress on Rickettsia and other compared to other rickettsial species. Finally, he showed that in intracellular bacteria is a meeting jointly organized by the Amer- research we have to expect the unexpected. As an example, R. felis is ican Society of Rickettsiology and the European Society of Chla- likely also transmitted by mosquito (and not only by cat fleas) and mydia, Coxiella, Aanaplasma and Rickettsia (ESCCAR). Noteworthy, may cause in Africa a common skin eruption (called “yaaf”) asso- the first rickettsial meeting was organized in Smolenice (Slovakia) ciated with fever and headaches [1]. already 50 years ago by N. Kordova in 1967 whereas the first ESC- CAR meeting was organized in Marseille (France) in 2008 by Phil- 1.1. SESSION 1 and 6 ter: Rickettsia epidemiology ippe Brouqui. The 2nd ESCCAR meeting was then held in Heraklion (Greece) The last ESCCAR meeting took place in Lausanne In session 1, Maureen Laroche (France) described the use of (Switzerland) two years ago, from 13th to 16th June 2015. PE Matrix-Assisted Laser Desorption/Ionization-Time Of Flight mass Fournier and G Greub were the president and vice-president of spectrometry (MALDI-TOF MS) for arthropod identification. Spe- ESCCAR during last two years and have been the major organizers cific peptide extraction protocols were developed and a spectrum of the present Marseille meeting. database implemented for arthropods. The arthropod legs are The Marseille meeting held during the first week of June, was a usually used for MALDI-TOF MS identification to preserve the rest great success, with 254 participants from 33 different countries, of the insect body for culture of bacterial symbionts and DNA originating from all 5 continents. There was a total of 107 oral extraction. To date, MALDI-TOF MS is used to efficiently identify presentations including 13 invited talk on Chlamydia or chlamydia- hard ticks, cat fleas and mosquitoes. In addition, MALDI-TOF MS related bacteria, 11 invited talk on Rickettsia, 22 invited talks on spectra from Rickettsia-infected insects were added to the database, other intracellular bacteria and 61 oral presentation selected from making this method an efficient, rapid and inexpensive method for abstracts. In addition, 102 posters were presented during three human-biting athropods. specific interactive poster sessions. Then, Christopher D. Paddock (USA) made a nice overview of the currentknowledge on rickettsioses in theUSA, starting with thebelief, 1. Scientific lectures at the turn of the third millennium, that only one of these infections, Rocky Mountain spotted fever (RMSF), was endemic in the country. The ESCCAR-ASR meeting started by Didier Raoult's keynote on However, in the past 15 years, another two rickettsioses were detec- rickettsial major discoveries in the past 3 decades. He nicely ted, including those caused by R. parkeri and Rickettsia philipii in the showed that hypothesis-based research is not the only way to southeastern, southwestern and western states. In addition, the epidemiology of RMSF changed, the disease being responsible for outbreaks in impoverished populations of southwestern states were it * Corresponding author. Institute of Microbiology, University of Lausanne, Bug- non 48, 1011 Lausanne, Switzerland. Fax: þ(00) 41 21 314 40 60. is transmitted by Rhipicephalus sanguineus instead of Dermacentor E-mail address: [email protected] (G. Greub). ticks in other areas. Dr Paddock highlighted the need to keep https://doi.org/10.1016/j.micinf.2018.08.001 1286-4579/© 2018 The Authors. Published by Elsevier Masson SAS on behalf of Institut Pasteur. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). P.-E. Fournier et al. / Microbes and Infection 20 (2018) 392e400 393 surveying tick-borne rickettsioses whose epidemiology might change following respiratory tract infection. Indeed, several hints supports rapidly according to climate and/or demographic changes. the role of this bacterial species as an agent of lower respiratory tract Four short presentations were also part of session 1. Silke infections, at least in immunocompromised subjects. Wolfel (Germany) reported the presence of Rickettsia monacensis in Since ticks were recently shown to be infected by different Ixodes ricinus ticks from northern Denmark. Using multi locus chlamydia related-bacteria [8], Ludovic Pilloux (Switzerland) sequence typing, she detected the bacterium in 4.9% of 367 tested investigated whether tick cell lines may be used to grow these strict tick pools and found no difference between German and Danish intracellular bacteria. He demonstrated the ability of Estrella and strains. Michelle Allerdice (USA) delivered a talk on the prevalence Waddlia to grow in tick cell lines. The subsequent talk, given by of R. parkeri in Amblyomma maculatum ticks in southern Arizona. By Delaney Burnard (Australia) was about an interesting documen- studying 182 ticks collected at three locations in national parks, she tation of Rhabdochlamydiaceae in both ticks and exposed marsu- detected the bacterium using 23S rRNA and ompA PCRs in 41 ticks. pials. This report confirms the occurrence of Rhabdochlamydiaceae Depending on locations, the prevalence of the bacterium ranged in ticks, previously documented in Switzerland and Algeria [9] and from 21 to 40%, thus representing a risk for people visiting national might provide a first hint on tick to mammal transmission of this parks. Then, Dalyte Mordosaite-Busaitiene (Lithuania) reported family-level lineage, if MLST or genomics demonstrate that clones the results of a study on rodents in the Curonian Spit, a region of from ticks are similar to the strains from mammals. Finally, this Lithuania located by the Baltic Sea. On the 238 captured rodents, a session was concluded by a very nice talk from Manon Vouga total of 1226 ectoparasites were collected. 16.3%, 7.9% and 43.5% of (Switzerland) on the antibiotic susceptibility of Simkania nege- ticks, mites and fleas were positive for rickettsiae, respectively. R. vensis, a chlamydia-related bacterium of unknown pathogenicity. helvetica was detected in ticks, mites and fleas, R. felis in mites and fleas and R. monacensis in fleas. Other uncharacterized species were 1.3. Parallel SESSION 2 bis: pathophysiology of Anaplasmataceae also detected in mites. Finally, Ilaria Pascucci (Italy) detailed the results of a study aiming at evaluating the diversity of Rickettsia Jere McBride (USA) first described how ehrlichiae subvert species in ticks in the Abruzzo and Molise regions of central Italy. A innate host defenses to escape destruction. For this, they possess total of 603 ticks were collected and tested in 178 pools. Using 23S tandem repeat effectors (TRPs), major immune-reactive proteins rRNA, gltA and ompA PCR, they found 93/178 pools (52%) to be that interact with a diverse array of host cell targets, notably the positive. Eight Rickettsia species were identified, mainly R. slovaca Notch signaling pathway that is activated by TRP120. TRPs stimu- and R. aeschlimannii, but also R. conorii, R. felis, R. helvetica, R. late phagocytosis in macrophages as well as cytoskeletal reorga- massiliae, R. monacensis and R. raoultii. nization/cell
Recommended publications
  • Distribution of Tick-Borne Diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2*
    Wu et al. Parasites & Vectors 2013, 6:119 http://www.parasitesandvectors.com/content/6/1/119 REVIEW Open Access Distribution of tick-borne diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2* Abstract As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. Keywords: Ticks, Tick-borne diseases, Epidemic, China Review (Table 1) [2,4]. Continuous reports of emerging tick-borne Ticks can carry and transmit viruses, bacteria, rickettsia, disease cases in Shandong, Henan, Hebei, Anhui, and spirochetes, protozoans, Chlamydia, Mycoplasma,Bartonia other provinces demonstrate the rise of these diseases bodies, and nematodes [1,2].
    [Show full text]
  • University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich
    Bertelli, C; Collyn, F; Croxatto, A; Rückert, C; Polkinghorne, A; Kebbi-Beghdadi, C; Goesmann, A; Vaughan, L; Greub, G (2010). The Waddlia genome: a window into chlamydial biology. PloS one, 5(5):e10890. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: PloS one 2010, 5(5):e10890. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2010 The Waddlia genome: a window into chlamydial biology Bertelli, C; Collyn, F; Croxatto, A; Rückert, C; Polkinghorne, A; Kebbi-Beghdadi, C; Goesmann, A; Vaughan, L; Greub, G Bertelli, C; Collyn, F; Croxatto, A; Rückert, C; Polkinghorne, A; Kebbi-Beghdadi, C; Goesmann, A; Vaughan, L; Greub, G (2010). The Waddlia genome: a window into chlamydial biology. PloS one, 5(5):e10890. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: PloS one 2010, 5(5):e10890. The Waddlia Genome: A Window into Chlamydial Biology Claire Bertelli1., Franc¸ois Collyn1., Antony Croxatto1, Christian Ru¨ ckert2, Adam Polkinghorne3,4, Carole Kebbi-Beghdadi1, Alexander Goesmann2, Lloyd Vaughan4, Gilbert Greub1* 1 Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland, 2 Center for Biotechnology, Bielefeld University, Bielefeld, Germany, 3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia, 4 Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland Abstract Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants.
    [Show full text]
  • Case Report: Coinfection with Rickettsia Monacensis and Orientia Tsutsugamushi
    Am. J. Trop. Med. Hyg., 101(2), 2019, pp. 332–335 doi:10.4269/ajtmh.18-0631 Copyright © 2019 by The American Society of Tropical Medicine and Hygiene Case Report: Coinfection with Rickettsia monacensis and Orientia tsutsugamushi Seok Won Kim,1† Choon-Mee Kim,2† Dong-Min Kim,3* and Na Ra Yun3 1Department of Neurosurgery, College of Medicine, Chosun University, Gwangju, Republic of Korea; 2Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea; 3Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea Abstract. Rickettsia monacensis and Orientia tsutsugamushi are bacteria of the family Rickettsiaceae, which causes fever, rash, and eschar formation; outdoor activities are a risk factor for Rickettsiaceae infection. A 75-year-old woman presented with fever, rash, and eschar and was confirmed as being scrub typhus based on a nested-polymerase chain reaction (N-PCR) test for a 56-kDa gene of O. tsutsugamushi; the genome was identified as the Boryong genotype. In addition, a pan-Rickettsia real-time PCR test was positive and a N-PCR test using a Rickettsia-specific partial outer membrane protein A (rOmpA) confirmed R. monacensis. This is the first case wherein a patient suspected of having scrub typhus owing to the presence of rash and eschar was also found to be coinfected with O. tsutsugamushi and R. monacensis based on molecular testing. INTRODUCTION leukocyte count, 7,200/mm3; hemoglobin, 11.6 g/dL; platelet count, 232,000/mm3; and erythrocyte sedimentation rate, 31 Rickettsia monacensis is a pathogen that causes spotted mm/hours. C-reactive protein and procalcitonin levels were fever group rickettsial infection; the main symptoms of in- elevated at 9.26 mg/dL and 0.836 ng/mL (0–0.5 ng/mL), re- fection include fever, headache, and myalgia, as well as es- 1 spectively.
    [Show full text]
  • Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
    Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup
    [Show full text]
  • Expansion of Tick-Borne Rickettsioses in the World
    microorganisms Review Expansion of Tick-Borne Rickettsioses in the World Mariusz Piotrowski * and Anna Rymaszewska Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These infections are among the oldest known diseases transmitted by vectors. In the last three decades there has been a rapid increase in the recognition of this disease complex. This unusual expansion of information was mainly caused by the development of molecular diagnostic techniques that have facilitated the identification of new and previously recognized rickettsiae. A lot of currently known bacteria of the genus Rickettsia have been considered nonpathogenic for years, and moreover, many new species have been identified with unknown pathogenicity. The genus Rickettsia is distributed all over the world. Many Rickettsia species are present on several continents. The geographical distribution of rickettsiae is related to their vectors. New cases of rickettsioses and new locations, where the presence of these bacteria is recognized, are still being identified. The variety and rapid evolution of the distribution and density of ticks and diseases which they transmit shows us the scale of the problem. This review article presents a comparison of the current understanding of the geographic distribution of pathogenic Rickettsia species to that of the beginning of the century. Keywords: Tick-borne rickettsioses; Tick-borne diseases; Rickettsiales 1. Introduction Tick-borne rickettsioses are caused by obligate intracellular Gram-negative bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia.
    [Show full text]
  • Annual Report 2019 2019
    Vector-Borne Disease Section Annual Report 2019 2019 ANNUAL REPORT VECTOR-BORNE DISEASE SECTION INFECTIOUS DISEASES BRANCH DIVISION OF COMMUNICABLE DISEASE CONTROL CENTER FOR INFECTIOUS DISEASES CALIFORNIA DEPARTMENT OF PUBLIC HEALTH Gavin Newsom Governor State of California VBDS Annual Report, 2019 Contents Preface .......................................................................................................................................................................................................iii Acknowledgements ............................................................................................................................................................................ iv Suggested Citations ............................................................................................................................................................................ vi Program Overview .............................................................................................................................................................................. vii Chapters 1 Rodent-borne Diseases 1 2 Flea-borne Diseases 4 3 Tick-borne Diseases 7 4 Mosquito-borne Diseases 13 5 U.S. Forest Service Cost-Share Agreement 21 6 Vector Control Technician Certification Program 25 7 Public Information Materials and Publications 27 State of California June 2020 California Department of Public Health ii VBDS Annual Report, 2019 Preface I am pleased to present to you the 2019 Annual Report for the Vector-Borne Disease Section
    [Show full text]
  • Rickettsia Monacensis As a Cause of a Tick Bite
    a nonpruritic, disseminated maculopapular rash, with no Rickettsia inoculation eschar, of the trunk and lower extremities, in- cluding palms and soles. Other than a slightly low plate- monacensis let count (82,000/mm3), examination fi ndings were within normal limits. MSF was diagnosed, and serum and defi - and Human brinated blood samples were taken before a course of oral doxycycline (100 mg/12 h for 10 d) was initiated. Three Disease, Spain days later, fever and rash were gone without sequelae. Ad- Isabel Jado,* José A. Oteo,† Mikel Aldámiz,‡ ditional serial serum samples were taken during weeks 4, Horacio Gil,* Raquel Escudero,* 13, and 26 after onset and reserved for serologic analysis Valvanera Ibarra,† Joseba Portu,‡ (Table). Aranzazu Portillo,† María J. Lezaun,‡ Patient 2 was a 59-year-old woman from Basque Cristina García-Amil,* Isabel Rodríguez-Moreno,* Country, who sought medical attention on September 20, and Pedro Anda* 2003, 4 days after onset of fever (38ºC), headache, and an erythematous rash, with no inoculation eschar, at the site of We identifi ed Rickettsia monacensis as a cause of a tick bite. The patient reported a history of tick bites, most acute tickborne rickettsiosis in 2 humans. Its pathogenic recently 1 week before symptom onset. Blood cell counts role was assessed by culture and detection of the organism and other blood chemistry values were normal. MSF was in patients’ blood samples. This fi nding increases the num- ber of recognized human rickettsial pathogens and expands diagnosed, and oral doxycycline (100 mg/12 h for 10 d) the known geographic distribution of Mediterranean spotted was prescribed.
    [Show full text]
  • Molecular Detection and Identification of Rickettsiales Pathogens in Dog Ticks from Costa Rica
    Accepted Manuscript Title: Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Author: Liliana Campos-Calderon´ Leyda Abrego-S´ anchez´ Antony Solorzano-Morales´ Alberto Alberti Gessica Tore Rosanna Zobba Ana E. Jimenez-Rocha´ Gaby Dolz PII: S1877-959X(16)30120-0 DOI: http://dx.doi.org/doi:10.1016/j.ttbdis.2016.07.015 Reference: TTBDIS 700 To appear in: Received date: 29-2-2016 Revised date: 1-7-2016 Accepted date: 24-7-2016 Please cite this article as: Campos-Calderon,´ Liliana, Abrego-S´ anchez,´ Leyda, Solorzano-Morales,´ Antony, Alberti, Alberto, Tore, Gessica, Zobba, Rosanna, Jimenez-Rocha,´ Ana E., Dolz, Gaby, Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.Ticks and Tick-borne Diseases http://dx.doi.org/10.1016/j.ttbdis.2016.07.015 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica Liliana Campos-Calderóna, Leyda Ábrego-Sánchezb, Antony Solórzano- Moralesa, Alberto Albertic, Gessica Torec, Rosanna Zobbac, Ana E. Jiménez- Rochaa, Gaby Dolza,b,* aEscuela de Medicina Veterinaria, Universidad Nacional, Campus Benjamín Núñez, Barreal de Heredia, Costa Rica ([email protected], [email protected], [email protected]).
    [Show full text]
  • Poster Session 2 12:00 - 14:00 Tuesday, 11Th June, 2019 Zia Ballroom Presentation Type Poster
    Poster Session 2 12:00 - 14:00 Tuesday, 11th June, 2019 Zia Ballroom Presentation type Poster 111 Molecular Detection of Rickettsia in American Dog Ticks Collected Along the Platte River in South Central Nebraska Brandon Luedtke1, Julie Shaffer1, Estrella Monrroy1, Corey Willicott1, Travis Bourret2 1University of Nebraska-Kearney, Kearney, USA. 2Creighton University School of Medicine, Omaha, USA Abstract Dermacentor variabilis is the predominant tick species in Nebraska and is presumed to be the primary vector of Rickettsia rickettsii associated with Nebraskans that have contracted Rocky Mountain spotted fever. Interestingly, cases of Rocky Mountain spotted fever in Nebraska have increased on a year over year basis, yet the prevalence of D. variabilis vectoring R. rickettsii has not been established for Nebraska. Here we sought to set a baseline for the prevalence of D. variabilis vectoring R. rickettsii and other spotted fever group (SFG) rickettsiae. Over a 3 year period, D. variabilis were collected along the Platte River in south central Nebraska. Individual tick DNA was analyzed using endpoint PCR to identify ticks carrying SFG rickettsiae. A total of 927 D. variabilis were analyzed by PCR and 38 (4.1%) ticks tested positive for SFG rickettsiae. Presumptive positives were sequenced to identify the Rickettsia species, of which 29 (76%) were R. montanensis, 5 (13%) were R. amblyommatis, 4 (11%) were R. bellii, and R. rickettsii was not detected. These data indicate that R. rickettsii is likely at a low prevalence in south central Nebraska and spillover of R. amblyommatis into D. variabilis is occurring likely due to the invasive lone star tick (Amblyoma americanum).
    [Show full text]
  • Rickettsia Spp. in Bats of Romania: High Prevalence of Rickettsia Monacensis in Two Insectivorous Bat Species Ioana A
    Matei et al. Parasites Vectors (2021) 14:107 https://doi.org/10.1186/s13071-021-04592-x Parasites & Vectors RESEARCH Open Access Rickettsia spp. in bats of Romania: high prevalence of Rickettsia monacensis in two insectivorous bat species Ioana A. Matei1*† , Alexandra Corduneanu2†, Attila D. Sándor2,3, Angela Monica Ionica2,4, Luciana Panait2, Zsuzsa Kalmár2, Talida Ivan5, Ionel Papuc5, Cosmina Bouari1, Nicodim Fit1 and Andrei Daniel Mihalca2 Abstract Background: Spotted fever group rickettsiae represent one of the most diverse groups of vector-borne bacteria, with several human pathogenic species showing an emerging trend worldwide. Most species are vectored by ticks (Ixodidae), with many zoonotic reservoir species among most terrestrial vertebrate groups. While the reservoir compe- tence of many diferent vertebrate species is well known (e.g. birds, rodents and dogs), studies on insectivorous bats have been rarely performed despite their high species diversity, ubiquitous urban presence and importance in har- boring zoonotic disease agents. Romania has a high diversity and ubiquity of bats. Moreover, seven out of eight SFG rickettsiae species with zoonotic potential were previously reported in Romania. Based on this, the aim of this study was to detect Rickettsia species in tissue samples in bats. Methods: Here we report a large-scale study (322 bats belonging to 20 species) on the presence of Rickettsia spp. in Romanian bat species. Tissue samples from insectivorous bats were tested for the presence of Rickettsia DNA using PCR detection amplifying a 381 bp fragment of the gltA gene. Positive results were sequenced to confrm the results. The obtained results were statistically analyzed by chi-squared independence test.
    [Show full text]
  • Rickettsia Sibirica Subsp. Mongolitimonae Infection And
    LETTERS 8. Pawlotsky JM, Belec L, Gresenguet G, were otherwise within normal limits. for 10 days, under close surveillance. Deforges L, Bouvier M, Duval J, et al. No tick bite was reported by the pa- After 2 days of treatment, she was afe- High prevalence of hepatitis B, C and E markers in young sexually active adults tient, although she had been walking a brile and the rash completely resolved. from the Central African Republic. J Med few days before in Camargue (south- No obstetric complications occurred Virol. 1995;46:269–72. ern France). Serologic results for R. and she gave birth to a healthy boy at 9. Guthmann JP, Klovstad H, Boccia D, conorii, R. typhi, Brucella spp., Bor- term. Two years later, the right sco- Hamid N, Pinoges L, Nizou J, et al. A large outbreak of hepatitis E among dis- relia spp., and Coxiella burnetii were toma remained unchanged. placed population in Darfur, Sudan, 2004: negative. Serologic tests for rickettsiosis The role of water treatment methods. Clin One day after admission, she re- were performed with an acute-phase Infect Dis. 2006;42:1685–91. ported loss of vision (scotoma) in her serum sample and a convalescent- 10. Bile K, Isse A, Mohamud O, Allebeck P, Nilsson L, Norder H, et al. Contrasting right eye. She underwent a complete phase serum sample (1 month after roles of rivers and wells as sources of ophthalmic evaluation. Measurement onset of symptoms). Samples were drinking water on attack and fatality rates of visual acuity and results of a slit- sent to the World Health Organization in hepatitis E epidemic in Somalia.
    [Show full text]
  • Intraspecies Comparative Genomics of Rickettsia
    AIX ͲMARSEILLE UNIVERSITÉ FACULTÉ DE MÉDECINE DE MARSEILLE ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ T H È S E Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 13 décembre 2013 Par M. Erwin SENTAUSA Né le 16 décembre 1979 àMalang, Indonésie INTRASPECIES COMPARATIVE GENOMICS OF RICKETTSIA Pour obtenir le grade de DOCTORAT d’AIX ͲMARSEILLE UNIVERSITÉ SPÉCIALITÉ :PATHOLOGIE HUMAINE Ͳ MALADIES INFECTIEUSES Membres du Jury de la Thèse : Dr. Patricia RENESTO Rapporteur Pr. Max MAURIN Rapporteur Dr. Florence FENOLLAR Membre du Jury Pr. Pierre ͲEdouard FOURNIER Directeur de thèse Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes UM63, CNRS 7278, IRD 198, Inserm 1095 Avant Propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master de Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené àrespecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre àl’étudiant de le commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]