The Host-Pathogen Relationship in Rickettsia: Epidemiological Analysis of Rmsf in Ohio and a Comparative Molecular Analysis of Four Vir Genes

Total Page:16

File Type:pdf, Size:1020Kb

The Host-Pathogen Relationship in Rickettsia: Epidemiological Analysis of Rmsf in Ohio and a Comparative Molecular Analysis of Four Vir Genes THE HOST-PATHOGEN RELATIONSHIP IN RICKETTSIA: EPIDEMIOLOGICAL ANALYSIS OF RMSF IN OHIO AND A COMPARATIVE MOLECULAR ANALYSIS OF FOUR VIR GENES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jennifer R. Carmichael, B.S. ***** The Ohio State University 2008 Dissertation Committee: Approved by Paul A. Fuerst, Advisor Gustavo Leone _________________________________ Arthur Burghes Advisor Graduate Program in Molecular Genetics Glen Needham ABSTRACT Members of the vector-borne bacterial genus Rickettsia represent an emerging infectious disease threat and have continually been implicated in epidemics worldwide. It is of vital importance to understand the geographical distribution of disease and rickettsial-infected arthropods vectors. In addition, understanding the dynamics of the relationship between rickettsiae and their arthropod hosts will help aid in identifying important factors for virulence. Dermacentor variabilis dog ticks are the main vector in the eastern United States for Rickettsia rickettsii, the etiological agent of Rocky Mountain spotted fever. The frequency of rickettsial-infected ticks and their geographical location in Ohio over the last twenty years was analyzed. The frequency of rickettsial species was found to remain relatively constant (about 20%), but the incidence of R. rickettsii has increased from 6 to 16%. Also, the geographic distribution of rickettsial-positive ticks has expanded, corresponding to a rise of RMSF in these new areas. Type IV secretion system genes, like the vir group, are important for pathogenicity in many pathogens, but have not been analyzed in Rickettsia. Four vir genes, virB8, virB11, virB4, and virD4 were analyzed in Rickettsia amblyommii infected Amblyomma americanum Lone Star ticks from across the Northeast United States. Results showed that important protein motifs are mutated or absent. This evidence ii suggests the vir genes may not be functional in Rickettsia or they have evolved a novel role. In addition, analysis of virD4 showed that isolates were most similar to Rickettsia conorii and R. rickettsii, two highly pathogenic species. To determine if these genes are important for virulence, a novel qPCR approach was designed to compare the RNA expression in R. amblyommii-infected A. americanum tick and Vero cells. Here, expression of virB8 and virD4 was increased in Vero cells, while virB4 and virB11 had decreased expression. Since rickettsiae cause disease in humans, increases in expression levels in the mammalian Vero cells may be important for pathogenicity. Understanding all levels of disease, from basic biology and epidemiology, analysis of potential virulence genes, and functional analysis via RNA expression, contributes information that leads us closer to determining the process of rickettsial pathogenicity. iii Dedicated to my parents, Becky and John, and my sisters, Susie and Stephanie, without them none of this would have been possible Dedicated to Stephen Nye, who in death gave purpose to my work iv ACKNOWLEDGMENTS I would like to thank my advisor, Paul Fuerst, for giving me this opportunity and for his patience and advice. I would also like to thank all members of the Fuerst laboratory. This includes Greg Booton, Megan Shoff, Mike Sovic, and Daryl Kelly who I consider friends in addition to colleagues. I would also like to thank Megan for her helpful edits and suggestions. My Molecular Genetics classmates, Leena, Maria, Ryan, Stephen, and Casey have not only helped me through classes but have provided continued support and advice. Thanks to many members of the Gibbs lab, Chrissy, Kody, Jimmy, Tony, Liam and Jose, for invaluable advice, conversation, laughs, and friendship. These times have provided much needed stress relief and I looked forward to lunch every day. Also, I would like to thank Monica and Kaylan, whose friendships are highly valuable to me. There are many people outside the university that have also made all of this possible. I would like to thank my parents and my sisters, for always being there for me and giving me the motivation to succeed. Thanks to Beth Askue, Bela Bhatt, and Donna Winters who kept me in good health throughout these years; I can not express in words how much I am thankful for this. I would like to thank Joshua, without you there would be no figures in my thesis, and whose love and support I treasure close to my heart. v VITA March 8, 1979………………………………Born – Greensburg, PA 2001…………………………………………B.S., summa cum laude Lock Haven University of Pennsylvania 2001-2007…………………………………..Graduate Teaching Associate Graduate Research Associate Department of Molecular Genetics The Ohio State University 2007-2008………….……………………….Graduate Research Associate Department of Molecular Genetics The Ohio State University PUBLICATIONS 1. Carmichael, J. and P. Fuerst. 2006. A Rickettsial mixed infection in a Dermacentor variabilis tick from Ohio. Annals of the New York Academy of Sciences 1078: 334–337. 2. Kelly, D., J. Carmichael, G.C. Booton, K.F. Poetter and P.A. Fuerst. 2006. Novel Spotted Fever Group Rickettsiae (SFGR) infecting Amblyomma americanum ticks in Ohio, USA. Annals of the New York Academy of Sciences 1063: 352-355. 3. Booton, G.C., J.R. Carmichael, F.L. Schuster, P.A. Fuerst, T.J. Byers. 2003. Balamuthia mandrillaris: Identification of Clinical and Environmental Isolates Using Genus-Specific PCR. Journal of Eukaryotic Microbiology 50: 508-509. vi 4. Booton, G.C., J.R. Carmichael, G.S. Visvesvara, T.J. Byers and P.A. Fuerst. 2003. Genotyping of Balamuthia mandrillaris based on nuclear 18S and mitochondrial 16S rRNA genes. American Journal of Tropical Medicine and Hygiene 68: 65-69. 5. Booton, G.C., J.R. Carmichael, G.S. Visvesvara, T.J. Byers and P.A. Fuerst. 2003. PCR identification of Balamuthia mandrillaris using the mitochondrial 16S rRNA gene as a target. Journal of Clinical Microbiology 41: 453-455. FIELDS OF STUDY Major Field: Molecular Genetics vii TABLE OF CONTENTS Page Abstract……………………………………………………………………………... ii Dedication………………………………………………………………………...... iv Acknowledgements………………………………………………………………… v Vita…………………………………………………………………………………. vi List of Tables……………………………………………………………………….. x List of Figures……………………………………………………………………… xii List of Abbreviations……………………………………………………………….. xv Chapters: 1. Introduction…………………………………………………………………... 1 Aims………………………………………………………………………. 24 2. Trends in Dermacentor variabilis dog ticks infected with the agent of Rocky Mountain spotted fever, Rickettsia rickettsii, and cases of clinical disease in Ohio over a twenty year time period……………………..………………….. 37 Materials and methods……………………………………………………. 39 Results……………………………………………………………………. 44 Discussion………………………………………………………………… 49 Summary………………………………………………………………….. 56 3. Variability in the mitochondrial control region and 12S rDNA gene among Dermacentor variabilis ticks……...…………………………………………. 61 Materials and methods……………………………………………………. 63 Results……………………………………………………………………. 66 Discussion………………………………………………………………… 73 viii 4. Molecular and Phylogeograhpical analysis of the vir genes, virB8, virB11, virB4, and virD4, from Rickettsia amblyommii isolates from the northeast United States……………..………………………………………………….. 81 Materials and methods……………………………………………………. 86 Results…………………………………………………………………….. 90 Discussion………………………………………………………………… 100 5. Differential expression of vir genes between mammalian and arthropod cells infected with Rickettsia amblyommii……..………………………………….. 104 Materials and Methods...…………………………………………………. 107 Results..…………………………………………………………………... 117 Discussion…..……………………………………………………………. 140 6. Summary and Conclusions…………………………………………………... 147 Bibliography………………………………………………………………………... 151 Appendix A: Nucleotide Sequences………………………………………………... 166 ix LIST OF TABLES Table Page 1 Comparison of number of Dermacentor variabilis ticks positive for Rickettsia sp. by the 17kDa surface antigen gene and DFA methods….. 45 2 Number of rickettsial-infected Dermacentor variabilis submitted from Ohio counties in the years 1983-6 and 2003-4…………………………. 48 3 RMSF cases per county in Ohio for the years 1981-86 and 2003-4…… 53 4 Number of Dermacentor variabilis ticks analyzed for the 3’ 12S rDNA/D-loop gene region classified by geographical location................ 68 5 Number of Dermacentor variabilis ticks analyzed for the 5’12S rDNA gene region classified by geographical region………………………….. 71 6 Molecular analysis of the 17kDa surface antigen gene in Dermacentor variabilis ticks analyzed for the D-loop region and 12 rDNA…………. 78 7 vir genes PCR and sequencing primers and annealing temperatures…… 89 8 Geographical locations of Rickettsia amblyommii-infected Amblyomma americanum ticks analyzed for vir genes……………………………….. 91 9 Trypsin diluent ingredients per 2.5 L solution………………………….. 109 10 RNA concentrations and amounts used in RT-PCR of R. amblyommii- infected and uninfected Vero, 34oC, and 24oC Ambylomma americanum cell cultures……………………………………………………………… 111 11 Sequences of primers used in qPCR for virB8, virB11, virB4, virD4, and gltA………………………………………………………………….. 112 12 Sequences and annealing temperatures of PCR primers used to amplify vir genes…………………………………………………………………. 114 x 13 virD4 qPCR amplification and melt curve data………………………… 121 14 virB4 qPCR amplification and melt curve data…………………………. 126 15 virB8 qPCR amplification and melt curve data…………………………. 130 16 virB11 qPCR amplification and melt curve data………………………... 134 17 gltA qPCR amplification and melt
Recommended publications
  • Distribution of Tick-Borne Diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2*
    Wu et al. Parasites & Vectors 2013, 6:119 http://www.parasitesandvectors.com/content/6/1/119 REVIEW Open Access Distribution of tick-borne diseases in China Xian-Bo Wu1, Ren-Hua Na2, Shan-Shan Wei2, Jin-Song Zhu3 and Hong-Juan Peng2* Abstract As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. Keywords: Ticks, Tick-borne diseases, Epidemic, China Review (Table 1) [2,4]. Continuous reports of emerging tick-borne Ticks can carry and transmit viruses, bacteria, rickettsia, disease cases in Shandong, Henan, Hebei, Anhui, and spirochetes, protozoans, Chlamydia, Mycoplasma,Bartonia other provinces demonstrate the rise of these diseases bodies, and nematodes [1,2].
    [Show full text]
  • (Batch Learning Self-Organizing Maps), to the Microbiome Analysis of Ticks
    Title A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Nakao, Ryo; Abe, Takashi; Nijhof, Ard M; Yamamoto, Seigo; Jongejan, Frans; Ikemura, Toshimichi; Sugimoto, Author(s) Chihiro The ISME Journal, 7(5), 1003-1015 Citation https://doi.org/10.1038/ismej.2012.171 Issue Date 2013-03 Doc URL http://hdl.handle.net/2115/53167 Type article (author version) File Information ISME_Nakao.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Ryo Nakao1,a, Takashi Abe2,3,a, Ard M. Nijhof4, Seigo Yamamoto5, Frans Jongejan6,7, Toshimichi Ikemura2, Chihiro Sugimoto1 1Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan 2Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan 3Graduate School of Science & Technology, Niigata University, 8050, Igarashi 2-no-cho, Nishi- ku, Niigata 950-2181, Japan 4Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany 5Miyazaki Prefectural Institute for Public Health and Environment, 2-3-2 Gakuen Kibanadai Nishi, Miyazaki 889-2155, Japan 6Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands 7Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa aThese authors contributed equally to this work. Keywords: BLSOMs/emerging diseases/metagenomics/microbiomes/symbionts/ticks Running title: Tick microbiomes revealed by BLSOMs Subject category: Microbe-microbe and microbe-host interactions Abstract Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic.
    [Show full text]
  • Babela Massiliensis, a Representative of a Widespread Bacterial
    Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae Isabelle Pagnier, Natalya Yutin, Olivier Croce, Kira S Makarova, Yuri I Wolf, Samia Benamar, Didier Raoult, Eugene V. Koonin, Bernard La Scola To cite this version: Isabelle Pagnier, Natalya Yutin, Olivier Croce, Kira S Makarova, Yuri I Wolf, et al.. Babela mas- siliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biology Direct, BioMed Central, 2015, 10 (13), 10.1186/s13062-015-0043-z. hal-01217089 HAL Id: hal-01217089 https://hal-amu.archives-ouvertes.fr/hal-01217089 Submitted on 19 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pagnier et al. Biology Direct (2015) 10:13 DOI 10.1186/s13062-015-0043-z RESEARCH Open Access Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae Isabelle Pagnier1, Natalya Yutin2, Olivier Croce1, Kira S Makarova2, Yuri I Wolf2, Samia Benamar1, Didier Raoult1, Eugene V Koonin2 and Bernard La Scola1* Abstract Background: Only a small fraction of bacteria and archaea that are identifiable by metagenomics can be grown on standard media.
    [Show full text]
  • Characterization of the Interaction Between R. Conorii and Human
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 4-5-2018 Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis Abigail Inez Fish Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Bacteria Commons, Bacteriology Commons, Biology Commons, Immunology of Infectious Disease Commons, and the Pathogenic Microbiology Commons Recommended Citation Fish, Abigail Inez, "Characterization of the Interaction Between R. Conorii and Human Host Vitronectin in Rickettsial Pathogenesis" (2018). LSU Doctoral Dissertations. 4566. https://digitalcommons.lsu.edu/gradschool_dissertations/4566 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF THE INTERACTION BETWEEN R. CONORII AND HUMAN HOST VITRONECTIN IN RICKETTSIAL PATHOGENESIS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Interdepartmental Program in Biomedical and Veterinary Medical Sciences Through the Department of Pathobiological Sciences by Abigail Inez
    [Show full text]
  • Phenotypic and Genomic Analyses of Burkholderia Stabilis Clinical Contamination, Switzerland Helena M.B
    RESEARCH Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland Helena M.B. Seth-Smith, Carlo Casanova, Rami Sommerstein, Dominik M. Meinel,1 Mohamed M.H. Abdelbary,2 Dominique S. Blanc, Sara Droz, Urs Führer, Reto Lienhard, Claudia Lang, Olivier Dubuis, Matthias Schlegel, Andreas Widmer, Peter M. Keller,3 Jonas Marschall, Adrian Egli A recent hospital outbreak related to premoistened gloves pathogens that generally fall within the B. cepacia com- used to wash patients exposed the difficulties of defining plex (Bcc) (1). Burkholderia bacteria have large, flexible, Burkholderia species in clinical settings. The outbreak strain multi-replicon genomes, a large metabolic repertoire, vari- displayed key B. stabilis phenotypes, including the inabil- ous virulence factors, and inherent resistance to many anti- ity to grow at 42°C; we used whole-genome sequencing to microbial drugs (2,3). confirm the pathogen was B. stabilis. The outbreak strain An outbreak of B. stabilis was identified among hos- genome comprises 3 chromosomes and a plasmid, shar- ing an average nucleotide identity of 98.4% with B. stabilis pitalized patients across several cantons in Switzerland ATCC27515 BAA-67, but with 13% novel coding sequenc- during 2015–2016 (4). The bacterium caused bloodstream es. The genome lacks identifiable virulence factors and has infections, noninvasive infections, and wound contamina- no apparent increase in encoded antimicrobial drug resis- tions. The source of the infection was traced to contaminat- tance, few insertion sequences, and few pseudogenes, ed commercially available, premoistened washing gloves suggesting this outbreak was an opportunistic infection by used for bedridden patients. After hospitals discontinued an environmental strain not adapted to human pathogenic- use of these gloves, the outbreak resolved.
    [Show full text]
  • “Candidatus Deianiraea Vastatrix” with the Ciliate Paramecium Suggests
    bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The extracellular association of the bacterium “Candidatus Deianiraea vastatrix” with the ciliate Paramecium suggests an alternative scenario for the evolution of Rickettsiales 5 Castelli M.1, Sabaneyeva E.2, Lanzoni O.3, Lebedeva N.4, Floriano A.M.5, Gaiarsa S.5,6, Benken K.7, Modeo L. 3, Bandi C.1, Potekhin A.8, Sassera D.5*, Petroni G.3* 1. Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università 10 degli studi di Milano, Milan, Italy 2. Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint-Petersburg, Russia 3. Dipartimento di Biologia, Università di Pisa, Pisa, Italy 4 Centre of Core Facilities “Culture Collections of Microorganisms”, Saint Petersburg State 15 University, Saint Petersburg, Russia 5. Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy 6. UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 7. Core Facility Center for Microscopy and Microanalysis, Saint Petersburg State University, Saint- Petersburg, Russia 20 8. Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint- Petersburg, Russia * Corresponding authors, contacts: [email protected] ; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018.
    [Show full text]
  • Rickettsia Prowazekii Common Human Exposure Routes
    APPENDIX 2 Rickettsia prowazekii Common Human Exposure Routes: Disease Agent: • Exposure to the feces of infected body lice. The lice are infected by a human blood meal. The rickettsiae • Rickettsia prowazekii reproduce in the louse gut epithelium. Infection occurs when louse feces are scratched into the skin, Disease Agent Characteristics: inoculated onto mucous membrane or inhaled. • As a bioweapon, the agent can be aerosolized, with • Rickettsiae are obligate intracellular Gram-negative intent of infection through inhalation. bacteria. • Sporadic cases occur after exposure to flying squir- • Order: Rickettsiales; Family: Rickettsiaceae rels, most likely as a result of exposure to squirrel flea • Size: 0.3 ¥ 1.0 mm intracellular bacteria that take up feces. The organism has also been identified in ticks Gram stain poorly feeding on livestock in Africa. • Nucleic acid: Rickettsial genomes are among the Likelihood of Secondary Transmission: smallest of bacteria at 1000-1600 kb. The R. prowazekii genome is 1100 kb. • No evidence of direct person-to-person transmission • Physicochemical properties: Susceptible to 1% • Under crowded conditions, where bathing and sodium hypochlorite, 70% ethanol, glutaraldehyde, washing clothes are difficult, and where lice are formaldehyde and quaternary ammonium disinfec- present, typhus can spread explosively. tants. Sensitive to moist heat (121°C for at least • Recent outbreaks have occurred in a number of areas 15 min) and dry heat (160-170°C for at least 1 hour). in the world under conditions of war and population The organism is stable in tick tissues or blood under displacement. ambient environmental conditions, surviving up to 1 year; sensitive to drying (feces of infected ticks At-Risk Populations: quickly lose their infectivity on drying).
    [Show full text]
  • WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/05 (2006.01) A61P 31/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/CA20 14/000 174 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 4 March 2014 (04.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13/790,91 1 8 March 2013 (08.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: LABORATOIRE M2 [CA/CA]; 4005-A, rue kind of regional protection available): ARIPO (BW, GH, de la Garlock, Sherbrooke, Quebec J1L 1W9 (CA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: LEMIRE, Gaetan; 6505, rue de la fougere, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Sherbrooke, Quebec JIN 3W3 (CA).
    [Show full text]
  • Article/25/5/18-0438-App1.Pdf)
    RESEARCH LETTERS Pathology. 2011;43:58–63. http://dx.doi.org/10.1097/ variabilis ticks can transmit the causative agent of Rocky PAT.0b013e328340e431 Mountain spotted fever, and Ixodes scapularis ticks can 8. Rodriguez-Lozano J, Pérez-Llantada E, Agüero J, Rodríguez-Fernández A, Ruiz de Alegria C, Martinez-Martinez L, transmit the causative agents of Lyme disease, babesiosis, et al. Sternal wound infection caused by Gordonia bronchialis: and human granulocytic anaplasmosis (1). Although less identification by MALDI-TOF MS. JMM Case Rep. 2016;3: common in the region, A. maculatum ticks are dominant e005067. in specific habitats and can transmit the causative agent of Rickettsia parkeri rickettsiosis (1). Address for correspondence: Rene Choi, Department of Ophthalmology, Persons who have occupations that require them to be Casey Eye Institute, Oregon Health and Science University, 3375 SW outside on a regular basis might have a greater risk for ac- Terwilliger Blvd, Portland, OR 97239, USA; email: [email protected] quiring a tickborne disease (2). Although numerous stud- ies have been conducted regarding risks for tickborne dis- eases among forestry workers in Europe, few studies have been performed in the United States (2,3). The studies that have been conducted in the United States have focused on forestry workers in the northeastern region (2). However, because of variable phenology and densities of ticks, it is useful to evaluate tick activity and pathogen prevalence in Rickettsiales in Ticks various regions and ecosystems. Burn-tolerant and burn-dependent ecosystems, such as Removed from Outdoor pine (Pinus spp.) and mixed pine forests commonly found Workers, Southwest Georgia in the southeastern United States, have unique tick dynam- and Northwest Florida, USA ics compared with those of other habitats (4).
    [Show full text]
  • Fleas and Flea-Borne Diseases
    International Journal of Infectious Diseases 14 (2010) e667–e676 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Review Fleas and flea-borne diseases Idir Bitam a, Katharina Dittmar b, Philippe Parola a, Michael F. Whiting c, Didier Raoult a,* a Unite´ de Recherche en Maladies Infectieuses Tropicales Emergentes, CNRS-IRD UMR 6236, Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France b Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, USA c Department of Biology, Brigham Young University, Provo, Utah, USA ARTICLE INFO SUMMARY Article history: Flea-borne infections are emerging or re-emerging throughout the world, and their incidence is on the Received 3 February 2009 rise. Furthermore, their distribution and that of their vectors is shifting and expanding. This publication Received in revised form 2 June 2009 reviews general flea biology and the distribution of the flea-borne diseases of public health importance Accepted 4 November 2009 throughout the world, their principal flea vectors, and the extent of their public health burden. Such an Corresponding Editor: William Cameron, overall review is necessary to understand the importance of this group of infections and the resources Ottawa, Canada that must be allocated to their control by public health authorities to ensure their timely diagnosis and treatment. Keywords: ß 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Flea Siphonaptera Plague Yersinia pestis Rickettsia Bartonella Introduction to 16 families and 238 genera have been described, but only a minority is synanthropic, that is they live in close association with The past decades have seen a dramatic change in the geographic humans (Table 1).4,5 and host ranges of many vector-borne pathogens, and their diseases.
    [Show full text]
  • LC-Locus Alignment Sites Distance, Number of Nodes Supplementary
    12.5 10.0 7.5 5.0 Distance, number of nodes 2.5 0.0 g1 g2 g3 g3.5 g4 g5 g6 g7 g8 g9 g10 g10.1 g11 g12 g13 g14 g15 (11) (3) (3) (10) (3) (3) (3) (3) (3) (3) (3) (4) (3) (3) (3) (2) (3) LC-locus alignment sites Supplementary Figure S1. Compatibility of the evolutionary histories of the LC-locus and of individual LC genes.The sites of the LC-locus alignment are arranged along the X-axis, with the dashed red lines demarcating the alignment boundaries of the individual RcGTA-like genes (labeled with RcGTA gene names, g1 through g15; see Supplementary Table S4). For each alignment site, the Y-axis shows the phylogenetic distance between the optimal placement of a taxon in a phylogeny reconstructed from a 100 amino-acid window that surrounds the site and in the LC-locus phylogeny, averaged across all sliding windows that contain the site. The Y-axis values averaged across all taxa and all sites within a gene is shown in parentheses on the X-axis. For 15 out of 17 genes, only 2-4 nodes separate the optimal taxon position in the LC-locus and gene phylogeny. The inflated distances for g1 and g3.5 are likely because only 15 and 21 of 95 LCs, respectively, have a homolog of these genes and the SSPB analysis is highly sensitive to missing data (Berger et al. 2011). a. Bacteria Unassigned Thermotogae Tenericutes Synergistetes Spirochaetes Proteobacteria ylum Planctomycetes h p Firmicutes Deferribacteres Cyanobacteria Chloroflexi Bacteroidetes Actinobacteria Acidobacteria 1(11,750) 2(1,750) 3(2,538) 4(168) 5(51) 6(54) 7(43) 8(32) 9(26) 10(40) 11(33) 12(198) 13(173) 14(101) 15(98) 16(43) 17(114) Number of rcc01682−rcc01698 homologs in a cluster b.
    [Show full text]
  • Health: Epidemiology Subchapter 41A
    CHAPTER 41 – HEALTH: EPIDEMIOLOGY SUBCHAPTER 41A – COMMUNICABLE DISEASE CONTROL SECTION .0100 – REPORTING OF COMMUNICABLE DISEASES 10A NCAC 41A .0101 REPORTABLE DISEASES AND CONDITIONS (a) The following named diseases and conditions are declared to be dangerous to the public health and are hereby made reportable within the time period specified after the disease or condition is reasonably suspected to exist: (1) acquired immune deficiency syndrome (AIDS) - 24 hours; (2) anthrax - immediately; (3) botulism - immediately; (4) brucellosis - 7 days; (5) campylobacter infection - 24 hours; (6) chancroid - 24 hours; (7) chikungunya virus infection - 24 hours; (8) chlamydial infection (laboratory confirmed) - 7 days; (9) cholera - 24 hours; (10) Creutzfeldt-Jakob disease - 7 days; (11) cryptosporidiosis - 24 hours; (12) cyclosporiasis - 24 hours; (13) dengue - 7 days; (14) diphtheria - 24 hours; (15) Escherichia coli, shiga toxin-producing - 24 hours; (16) ehrlichiosis - 7 days; (17) encephalitis, arboviral - 7 days; (18) foodborne disease, including Clostridium perfringens, staphylococcal, Bacillus cereus, and other and unknown causes - 24 hours; (19) gonorrhea - 24 hours; (20) granuloma inguinale - 24 hours; (21) Haemophilus influenzae, invasive disease - 24 hours; (22) Hantavirus infection - 7 days; (23) Hemolytic-uremic syndrome – 24 hours; (24) Hemorrhagic fever virus infection - immediately; (25) hepatitis A - 24 hours; (26) hepatitis B - 24 hours; (27) hepatitis B carriage - 7 days; (28) hepatitis C, acute - 7 days; (29) human immunodeficiency
    [Show full text]