HOW to PRINT NYLFORCE CARBON FIBER and GLASS FIBER

Total Page:16

File Type:pdf, Size:1020Kb

HOW to PRINT NYLFORCE CARBON FIBER and GLASS FIBER HOW TO PRINT NYLFORCE CARBON FIBER and GLASS FIBER Tips and recommendations: MAINTENANCE Even though carbon fibers contained in our Nylforce reduce the water that can be absorbed by the filament, Nylforce Carbon Fiber is a nylon filament at its roots, so, before printing, be sure that your material is completely dry. When sold, we provide the spool inside a plastic sachet with a desiccant bag inside, so keeping it in there with the sachet well closed is enough. In case it got humidity, place it in an oven at 85 - 95°C for 6 to 8 hours, then put it in a dry place preferably in a small closed container with desiccant. HOT END, NOZZLES and COOLING FANS As the filament requires temperatures between 250°C and 265°C to extrude, please be sure that your hot end is set up for printing Nylon filaments. An all-metal hot end is the solution and most 3D printers can easily be upgraded with it in order to print at temperatures above 240°C (extrusion temperature). For the abrasion effect of the carbon fibers, stainless steel, hardened nozzles able to resist abrasive materials or the OLSSON RUBY nozzle, are highly recommended. Larger nozzles (0.6 and larger) can produce amazing strong parts as the trace width is directly proportional to interlayer adhesion. that you can purchase from us, in diameters 1.75 and 2.85 and from 0.4 to 0.8 mm. Cooling fans are not recommended. BED ADHESION The filament doesn’t stick well on PEI, BuildTak or similar surfaces, we print it successfully on a heated glass bed (60-70°C) with PVA based stick glue or a non-heated one with a sheet of Garolite LE. A great feature of our Nylforce Carbon Fiber is that the carbon fibers inside, beside reducing water absorption, keep the material dimensionally stable and reduce also the shrink rate (common in pure nylon filaments) while printing. EXTRUDER TEMPERATURE Every 3D printer has its own settings, but 250-265°C is the recommended guideline. Remember, Nylons can be extruded at lower degrees, but parts easily break when not printed hot enough, so be sure you can reach the right temperatures. FIBER FORCE ITALY SRL ~ 31100 TREVISO (TV) – Vicolo Dotti, 4 – e-mail: [email protected] - REA TV 370002 - PIVA/C.F. 04683260261 – PEC: [email protected] .
Recommended publications
  • Care Label Recommendations
    CARE LABEL RECOMMENDATIONS RECOMMENDED CARE FOR APPAREL PRODUCTS Fiber content, fabric construction, color, product construction, finish applications and end use are all considered when determining recommended care. Following are recommended care instructions for Nordstrom Products, however; the product must be tested to confirm that the care label is suitable. GARMENT/ CONSTRUCTION/ FIBER CONTENT FABRICATION CARE LABEL Care ABREVIATION EMBELLISHMENTS Knits and Sweaters Acetate/Acetate Blends Knits / Sweaters K & S Dry Clean Only DCO Acrylic Sweater K & S Machine Wash Cold, Gentle Cycle With Like Colors Only Non-Chlorine Bleach If Needed MWC GC WLC ONCBIN TDL RP CIIN Tumble Dry Low, Remove Promptly Cool Iron If Needed Acrylic Gentle Or Open Construction, Chenille K & S Turn Garment Inside Out Or Loosely Knit Machine Wash Cold, Gentle Cycle With Like Colors TGIO MWC GC WLC ONCBIN R LFTD CIIN Only Non-Chlorine Bleach If Needed Reshape, Lay Flat To Dry Cool Iron If Needed Acrylic / Rayon Blends Sweaters / Gentle Or Open K & S Professionally Dry Clean Construction, Chenille Or Loosely Knit Short Cycle, No Steam PDC SC NS Acrylic / Wool Blends Sweaters with Embelishments K & S Hand Wash Cold, Separately Only Non-Chlorine Bleach If Needed, No Wring Or Twist Reshape, Lay Flat To Dry Cool Iron If Needed HWC S ONCBIN NWOT R LFTD CIIN DNID Do Not Iron Decoration Acrylic / Wool Blends Sweaters K & S Hand Wash Cold, Separately Only Non-Chlorine Bleach If Needed Roll In Towel To Remove Excess Moisture Reshape, Lay Flat To Dry HWC S ONCBIN RITTREM
    [Show full text]
  • Natural Materials for the Textile Industry Alain Stout
    English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ...................................................................................................................
    [Show full text]
  • Choosing the Proper Short Cut Fiber for Your Nonwoven Web
    Choosing The Proper Short Cut Fiber for Your Nonwoven Web ABSTRACT You have decided that your web needs a synthetic fiber. There are three important factors that have to be considered: generic type, diameter, and length. In order to make the right choice, it is important to know the chemical and physical characteristics of the numerous man-made fibers, and to understand what is meant by terms such as denier and denier per filament (dpf). PROPERTIES Denier Denier is a property that varies depending on the fiber type. It is defined as the weight in grams of 9,000 meters of fiber. The current standard of denier is 0.05 grams per 450 meters. Yarn is usually made up of numerous filaments. The denier of the yarn divided by its number of filaments is the denier per filament (dpf). Thus, denier per filament is a method of expressing the diameter of a fiber. Obviously, the smaller the denier per filament, the more filaments there are in the yarn. If a fairly closed, tight web is desired, then lower dpf fibers (1.5 or 3.0) are preferred. On the other hand, if high porosity is desired in the web, a larger dpf fiber - perhaps 6.0 or 12.0 - should be chosen. Here are the formulas for converting denier into microns, mils, or decitex: Diameter in microns = 11.89 x (denier / density in grams per milliliter)½ Diameter in mils = diameter in microns x .03937 Decitex = denier x 1.1 The following chart may be helpful. Our stock fibers are listed along with their density and the diameter in denier, micron, mils, and decitex for each: Diameter Generic Type
    [Show full text]
  • Yarn Numbering Systems
    TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 TRI 1014 YARN NUMBERING SYSTEMS © 2003 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. TABLE OF CONTENTS Page INTRODUCTION 1 DIRECT SYSTEMS 1 INDIRECT SYSTEMS 2 CONVERSION 4 PLIED YARNS 4 YARN DIAMETER 5 YARN NUMBERING SYSTEMS - TABLE 1 6 CONVERSION FACTORS - TABLE 2 7 YARN NUMBERING SYSTEMS INTRODUCTION Textiles are often sold on a weight basis and consequently it is natural to express the size of "thickness" of a yarn in terms of weight (or mass). There are two basic ways in which this may be done. These are: (a) by saying how much a given length of yarn weighs, or (b) by saying what length of yarn one would have in a given weight. Generally these are known as the direct and indirect systems of yarn numbering, respectively. In other words: Weight(or mass) Direct yarn number = Length Length Indirect yarn number = Weight(or mass) It will be noted that one is the inverse of the other. In the first case, the number gets larger as the yarn or strand gets coarser. In the second case, the number gets smaller as the yarn or strand gets coarser. Each system has its advantages and disadvantages and each has found areas in which, by custom, it is used. It so happens that because long, thin strands are usually involved, the length figures are usually large and the weight figures are small. Consequently, the yarn numbers would get impossibly large or impossibly small unless special units are used.
    [Show full text]
  • Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing
    machines Article Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing Flaviana Calignano 1,* , Massimo Lorusso 2 , Ignanio Roppolo 3 and Paolo Minetola 1 1 Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; [email protected] 2 Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies IIT@Polito, Corso Trento 21, 10129 Turin, Italy; [email protected] 3 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; [email protected] * Correspondence: fl[email protected]; Tel.: +39-011-090-7218 Received: 19 July 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: Additive manufacturing (i.e., 3D printing) has rapidly developed in recent years. In the recent past, many researchers have highlighted the development of in-house filaments for fused filament fabrication (FFF), which can extend the corresponding field of application. Due to the limited mechanical properties and deficient functionality of printed polymer parts, there is a need to develop printable polymer composites that exhibit high performance. This study analyses the actual mechanical characteristics of parts fabricated with a low-cost printer from a carbon fibre-reinforced nylon filament. The results show that the obtained values differ considerably from the values presented in the datasheets of various filament suppliers. Moreover, the hardness and tensile strength are influenced by the building direction, the infill percentage, and the thermal stresses, whereas the resilience is affected only by the building direction. Furthermore, the relationship between the mechanical properties and the filling factor is not linear.
    [Show full text]
  • Nylon Wool Fiber Columns
    U.S. Corporate Headquarters Polysciences Europe GmbH Polysciences Asia-Pacific, Inc. 400 Valley Rd. Badener Str. 13 2F-1, 207 DunHua N. Rd. Warrington, PA 18976 69493 Hirschberg an der Taipei, Taiwan 10595 1(800) 523-2575 / (215) 343-6484 Bergstrasse, Germany (886) 2 8712 0600 1(800)343-3291 fax +(49) 6201 845 20 0 (886) 2 8712 2677 fax [email protected] +(49) 6201 845 20 20 fax [email protected] [email protected] TECHNICAL DATA SHEET 425A Page 1 of 2 Nylon Wool Fiber Columns BACKGROUND NYLON WOOL FIBER VS. SHEEP RBC ROSETTING METHODS Researchers have been using nylon wool fiber procedures to separate T-cell and Wong and Mittal (1981)9 did extensive research comparing the methods of Nylon B-cell lymphocytes for more than 20 years. In the early 1970’s M. H. Julius et al Wool Fiber separation and the commonly- used and well-studied sheep RBC (1973),1 Eisen et al (1972),2 and Greaves & Brain (1974)3 described specific (SRBC) rosetting.10,11 Wong and Mittal were interested in isolating B-cells for conditions for the use of Nylon Wool Fiber in columns or plastic straws. These serologic typing of HLA-DR antigen. protocols resulted in yields of 50-90% T-cell recovery and 10-100 fold B-cell depletion. Wong and Mittal concluded that “Due to its simplicity and reliability, nylon wool adherence may be preferred over the SRBC rosette method for the routine pheno- These early researchers found it necessary to scrub or wash their Nylon Wool Fiber typing of B-cells.” Their findings are illustrated in Table 1.
    [Show full text]
  • Technical Product Guide
    strength in materials Technical Product Guide www.agy.com Table of Contents Corporate Overview AGY provides the best quality, highest performance, and broadest range of glass fiber yarns, rovings and chop products to Corporate Overview .............................1 a wide variety of markets and end uses. Although founded as an independent entity Glass Fiber Manufacturing ...................2 in 1998, AGY has a 50+ year history of serving the composites industry. Nomenclature ......................................3 Globally, AGY has over 600 employees Conversion Tables ...............................6 involved in production, sales, distribution and development of our products. Our AGY Glass Yarns .................................8 world headquarters, technology center and manufacturing facility are located in Aiken, AGY Glass Rovings ...........................14 SC U.S.A. AGY Chopped Glass ..........................16 We also have commercial and administrative offices in Lyon, France, and AGY Packaging Specificaions ............18 a commercial office in Shanghai, China. AGY Sizing Systems ..........................20 Typical Fiber Properties .....................26 Glossary of Terms ..............................28 strength in materials 1 Glass Fiber Manufacturing Glass Fiber Nomenclature AGY glass fibers are made from molten glass. The viscous liquid is General drawn through tiny holes at the base of the furnace to form hair-like Glass fiber yarns are typically identified by either an inch-pound based system (U.S. customary system) or a TEX/metric system (based on the SI*/metric system). filaments. A protective sizing, applied as the filament cools and This section gives a brief description of glass fiber yarn nomenclature, including hardens, helps prevent abrasion during additional processing and comparisons of the two systems (see table on page 4). A more comprehensive makes the glass compatible with various resin systems.
    [Show full text]
  • Natural Fibers and Fiber-Based Materials in Biorefineries
    Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom.
    [Show full text]
  • Interfacial Adhesion in Rayon/Nylon Sheath/Core Composite Fibers. Weiying Tao Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1991 Interfacial Adhesion in Rayon/Nylon Sheath/Core Composite Fibers. Weiying Tao Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Tao, Weiying, "Interfacial Adhesion in Rayon/Nylon Sheath/Core Composite Fibers." (1991). LSU Historical Dissertations and Theses. 5213. https://digitalcommons.lsu.edu/gradschool_disstheses/5213 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Immersion Dyeing Nylon and Acetate Rayon Using Prosperse Disperse Dyes Please Read Directions Carefully Before Starting
    Immersion Dyeing Nylon and Acetate Rayon using PROsperse Disperse Dyes Please read directions carefully before starting. For medium to dark shades, it is recommended that nylon be dyed with acid dyes, because disperse dyes lack acceptable fastness. Acetate rayon can only be dyed with disperse dyes and has acceptable fastness in all depths of shade with the disperse dyes. All Dyeing should be done in a stainless steel or enamelware container only. Never use aluminum pots. Use Pyrex or stainless steel measuring utensils and a large wooden dowel for stirring in the boiling dye bath. Always do test samples before working on a large project. Please Note: These dyes have the potential to stain any sink that is not made of stainless steel or fireclay ceramic. For additional information, visit our web site at www.prochemicalanddye.com. Wear rubber gloves, apron, or old clothes. Utensils used for dyeing should never be used for food preparation. Supplies PROsperse Disperse Dye Citric Acid Crystals or White Distilled Vinegar Synthrapol PRO Dye Activator or Soda Ash Procedure 1. Scour the fabric by machine washing in HOT 140F (60C) water, or by hand in a pot on the stove with 2 tsp (2 gm) PRO Dye Activator or Soda Ash and 2 tsp (2.5 ml) Synthrapol per pound of fabric (454 gm, or 3 to 4 yards of muslin weight fabric). Rinse thoroughly. This step does not add the dye fixative to the fabric; it prepares your fabric for dyeing by removing any dirt, oil or sizing. 2. Dissolve the dye. Thoroughly dissolve the desired amount of dye powder, from the chart below, in 1 cup (250 ml) of boiling water.
    [Show full text]
  • The History of Naturally Colored Cotton JULIA BARATTA
    The History of Naturally Colored Cotton JULIA BARATTA otton’s colorful history began many was part of later U.S. history, centuries ago and in far-flung regions and that it has a small role in agriculture today. of the world. The original cultivars C Through the years, nat- were developed more than 5,000 years ago urally colored cotton has by the people of South and Central America, appeared primarily as a last- while other varieties were found to be indig- ditch effort to meet a need. During World War II (1939–1945), enous to Africa and Asia. There are also a for example, there was a shortage of number of references to cotton being grown dyes, so green and brown cotton was grown in India, China, Russia, Mexico, and Egypt. and used. Because the fibers had not been bred for At some point, naturally colored cotton length, after the war, naturally colored cotton fell out of favor again. made its entrance into America, probably In 1982, Sally Fox was working for a cotton during the seventeenth century. breeder when she found a bag of brown cotton Historically in America, white cotton was con- and seeds. The cotton, which had come from the sidered “king,” while naturally colored cotton was U.S. Department of Agriculture, had been part of discussed only as legend. In my research for this an effort to promote growing naturally colored article, I found few who had heard or read that fiber. Sally Fox’s more than twenty years of work slaves were sometimes allowed to grow natu- in the world of naturally colored cottons is ongo- rally colored cotton because of its “deficiencies”: ing: She began with that small bag and has built a shorter staple, or length of fiber, which made it a reputation for growing high-quality, longer-sta- more difficult to spin into usable thread, as well pled cotton of reddish-brown and shades of green.
    [Show full text]
  • Nylon Fiber Types Available in the North America Commercial Specified Market
    Nylon Fiber Types Available in the North America Commercial Specified Market Combined Fiber Mill Nylon type 6 Nylon type 6,6 (N6 and N6,6 or other) Atlas | Masland Contract Aquafil Econyl® Antron® (includes Avant) Unbranded EarthSmart® refreshfiber® Ultron® Universal XTI® Bentley Antron® Ultron® Universal XTI® Engineered Floors EF Contract Encore® SD Ultima® J+J Flooring Encore® SD Ultima® Ultron® Encore® BCF Unbranded Pentz Commercial Encore® SD Ultima® Flooring Interface Aquafil Econyl® Antron® Universal Mannington Commercial Aquafil Econyl® Antron® Mannington Quantum Mannington Quantum™ Ultron® Unbranded Milliken and Company Aquafil Econyl® Antron® Universal WearOn® Shaw Industries Group Patcraft Eco Solution Q® Antron® Eco Solution Q® SD Solution Q Shaw Contract Eco Solution Q® Antron® Eco Solution Q® SD Solution Q Tarkett Dynex® Antron® TDX Dynex® SD TDX XTI® The Mohawk Group Colorstrand® SD Antron® Colorstrand® Duracolor® Tricor Premium Fortis™ Specify Antron® Fiber Running Line Styles with Antron® Fiber Fiber Name Polymer Type Cross Section Dye Methods Antron® Lumena™ / Lumena DNA™ Nylon type 6,6 Four-hole Hollow Filament Solution Dye Antron® Lumena™ Glimmers Nylon type 6,6 Delta Single-Hole Filament Solution Dye Antron® Legacy™ Nylon type 6,6 Four-hole Hollow Filament White Dye Aquafil Econyl® Nylon type 6 Trilobal Solution Dye Colorstrand® Varied Trilobal Combination Duracolor® Tricor Premium Nylon type 6 Modified Delta Single-Hole Solution Dye Filament Duracolor® Premium Varied polymers Various fiber shapes Solution Dye, Combination
    [Show full text]