A New Genus and Species of Lineid Heteronemertean from South Africa, Polybrachiorhynchus Dayi (Nemertea: Anopla), Possessing a Multi- Branched Proboscis

Total Page:16

File Type:pdf, Size:1020Kb

A New Genus and Species of Lineid Heteronemertean from South Africa, Polybrachiorhynchus Dayi (Nemertea: Anopla), Possessing a Multi- Branched Proboscis BULLETIN OF MARINE SCIENCE, 27(3): 552-571, 1977 A NEW GENUS AND SPECIES OF LINEID HETERONEMERTEAN FROM SOUTH AFRICA, POLYBRACHIORHYNCHUS DAYI (NEMERTEA: ANOPLA), POSSESSING A MULTI- BRANCHED PROBOSCIS Ray Gibson ABSTRACT A new genus and species of lineid heteronemertean from South Africa, Polybracllio- rhyne/Ius dayi, is described and illustrated. lts most characteristic taxonomic feature, the mode of branching of the proboscis, distinguishes the worm from all other described nemerteans. The proboscis consists of a single main axis from which the primary branches arise in only a single plane either alternately along the lateral margins or dichotomously at the distal tip. Each primary branch then bifurcates regularly up to the quaternary branch let stage. Other anatomical characters can also be used to distinguish the new taxon of worms from existing heteronemertean species which have a branched proboscis and these are discussed in detail. A key for the identification of nemertean species which possess a branched proboscis is provided. Only three species of nemerteans, all be- and Panorhynchus. They defined Gorgono- longing to the anoplan order Heteronemer- rhynchus as possessing a branched proboscis, tea, have so far been described with a the branches being regularly dichotomous branched proboscis. Gorgonorhynchus re- with numerous (32-64) divisions, whereas pens Dakin and Fordham (1931) has been the structure from Panorhynchus was de- reported from Australia (Dakin and Ford- scribed as forming a panicle-like branching ham, 1931, ] 936; Dakin, 1973; Bennett, system, with the proximal portion of the 1974) and the Marshall Islands (Coe, proboscis trunk containing one muscle cross 1947), and is probably the form from and a complete layer of circular musculature. India referred to by Gravely (1927) (see Further differences between the proboscides Gibson, 1974a: 473-474); Gorgonorhyn- of these genera lie in that "The characteristic chus bermudensis Wheeler (1940a) is dendritic form of the everted proboscis (of known from Bermuda (Wheeler, 1936, Gorgonorhynchus) is achieved by a regular 1940a) and Florida (Gibson, 1974a); and alternation of the planes of division" (Dakin Panorhynchus argentinensis Serna de Este- and Fordham, 1936: 465), whereas in ban and Moretto (1969) has been found Panorhynchus the principal lateral branches only in a lagoon near Buenos Aires, Argen- emerge in a "very open spiral" (Serna de tina (Serna de Esteban and Moretto, 1969). Esteban, pers. comm. 23 February 1976). Few species of nemerteans have been re- The proboscis of the new South African form corded from South African shores (Wheeler, possesses quite a different mode of branch- 1940b; Day, 1974). Among these, Day ing; the primary branches, apart from the (1974: 47) lists a "Gorgonorhynchus sp.," terminal pair which result from a simple although his illustration depicts a proboscis dichotomous division of the distal axial which is not branched dichotomously as in tip, are given off laterally and alternately the two species of this genus. Indeed, the from the single main axis entirely within a nature of the proboscis branching was used single plane. Each primary branch then by Serna de Esteban and Moretto (1969: divides through three successive bifurcations 167) as a major taxonomic character for to give eight quaternary branchlets. This distinguishing between Gorgonorhynchus manner of branching, together with other 552 GIBSON: NEW GENUS OF HETERONEMERTEAN 553 morphological differences, excludes the trichrome or Alcian blue methods for ana- present nemerteans from either of the genera tomical investigations. listed above and they are accordingly placed In addition, the morphology of the present in a new genus, Polybrachiorhynchus specimens has been compared with selected (Greek: poly-many; brachion-an arm; stained slides of Panorhynchus argentinensis rhynchos-a snout), the specific name dayi kindly loaned by Dr. Carmen J. de la Serna being chosen in honour of the finder, Pro- de Esteban, University of Buenos Aires. fessor John H. Day, and to mark his retire- ment from the Department of Zoology, Uni- Polybrachiorhynchus new genus versity of Cape Town, South Africa. Heteronemerteans with a single pair of deep horizontal lateral cephalic slits; with a MATERrALS AND METHODS complex branched proboscis comprising an The description of Polybrachiorhynchus undivided main axis from which primary dayi is based upon five specimens collected branches emerge in a single plane, terminal by Professor Day. Three of the animals, primaries formed by dichotomy of the distal originally given to the British Museum (Nat- axial tip but remaining primaries arising ural History), London, several years ago, alternately from the lateral axis margins, have been loaned through the courtesy of each primary branch dividing dichotomously Mr. S. Prudhoe but two were sent directly to to give eight quaternary branchlets; pro- the author by Dr. Charles Griffiths of the boscis axis containing three muscle layers Department of Zoology, University of Cape (outer and inner longitudinal, middle circu- Town. The localities from where the nemer- lar) and two muscle crosses; rhynchocoel teans were obtained, together with their musculature not interwoven with body wall University of Cape Town Ecological Survey muscle layers; dermal glandular zone and Catalogue Numbers, are: (1) BRE 73A outer longitudinal musculature of body wall Breede River. 34°S, 200E. One specimen, separated by distinct layer of connective tis- dug from mud in Zostera zone. Collection sue; dorsal fibrous core of cerebral ganglia date unknown. (2) BRE 158B Breede simple, not forked either at front or back; River. Two specimens, near river mouth, nervous system with neurochord cells in the intertidally from Upogebia beds. Collected 9 brain and neurochord fibres in the lateral January 1974. (3) DBN 54B Durban Bay. nerve cords; proboscis nerve supply a neural One specimen, burrowed in a sand bank. sheath without distinct nerves; foregut with Collected 19 July 1950. (4) DBN 211A a delicate layer of circular splanchnic Durban Bay. One specimen, swimming next muscles and with a longitudinal muscle plate to a wharf at night. Collected 4 October between dorsal wall and rhynchocoel; main 1951. intestinal canal enclosed by a layer of longi- The worms were preserved in formalin but tudinal muscle fibres; blood system with a have subsequently been secondarily fixed in cephalic lacunar network and a postcerebral hot (60°C) Bouin's fluid prior to sectioning foregut plexus, transverse blood connectives at 6-7 ""m in 56°C melting point paraffin present in intestinal region, mid-dorsal vessel wax. The smaller of the two worms holding developed into a long rhynchocoelic villus; catalogue number BRE 158B has been com- cephalic glands well developed, reaching pletely sectioned, but the large size of the backwards to anterior margins of brain and remaining animals made it impracticable to opening via frontal organ; without eyes; section them fully and accordingly only rep- with a caudal cirrus. resentative portions of their bodies have been examined histologically. All sections Type-Species.-Polybrachiorhynchus dayi, have been stained by either the Mallory new species. 554 BULLETIN OF MARINE SCIENCE, VOL. 27, NO.3, 1977 Polybrltchiorhynchus dltyi new species Type-Specimens.-Type material deposited with the British Museum (Natural History), London, consists of series of stained sec- tions and uncut body fragments. The Registration Numbers, with relevant Uni- versity of Cape Town Catalogue Numbers listed in brackets, are: Holotype, fully sec- tioned specimen, 1976.3.18.2 (BRE 158B); Paratypes, 1976.3.17.1 (DBN 211A), 1976.3.17.2 (DBN 54B), 1976.3.18.1 (BRE 73A) and unsectioned animal under 1976.3.18.2 (BRE 158B). Type-Locality.-Breede River, South Af- rica, 34°24'S, 20050'E, near river mouth, intertidally from Upogebia beds. External Appearance.-Living worms are coloured "straw yellow or tinged with pink" (letter from Professor Day dated 10 Jan- uary 1974) or yellowish-white (Day, 1974). Colour notes accompanying two of the speci- mens record that DBN 54B was reddish brown overall with pale edges, whilst DBN 211A possessed a pale yellow-brown head but had a darker body with transparent pink Figure 1. PolybrachiorhYllchus dayi. External margins. Preserved animals are a uniform features, drawn from preserved specimen. (A) En- dull flesh colour overall. tire worm. cc, caudal cirrus; If, flattened lateral 'fins' of intestinal region. (B) Anterior end viewed Polybrachiorhynchus dayi attains a size from ventral surface. mt, mouth; pp, proboscis considerably larger than has been reported pore. (C) Anterior end from lateral aspect. cs, for either Gorgonorhynchus or Panorhyn- cephalic slit. The scale bar refers to A only. chus species; live individuals, after anaesthe- tization, reach a maximum of some 25 in. in Distinct "fins" extend along the lateral mar- length (ca. 60 cm) (letter from Dr. Grif- gins for most of the body length, much as in fiths, 29 January 1974), compared with other nemerteans (e.g., species of Cerebratu- about 20 cm for Gorgonorhynchus repens Ius) which are capable of actively swimming (Dakin and Fordham, 1936), 12 cm for in an eel-like manner (Verrill, 1892; Coe, Gorgonorhynchus bermudensis (Wheeler, 1943). Posteriorly the body gradually tapers L940a) and 18 cm for Panorhynchus argen- to terminate in a small stumpy caudal cirrus tinensis (Serna de Esteban and Moretto, 3 mm or less in length. The wedge-shaped 1969). The body is
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Nemertean Taxonomy—Implementing Changes in the Higher Ranks, Dismissing Anopla and Enopla
    Received: 27 August 2018 | Accepted: 28 August 2018 DOI: 10.1111/zsc.12317 LETTER TO THE EDITOR Nemertean taxonomy—Implementing changes in the higher ranks, dismissing Anopla and Enopla Dear Editor, José E. Alfaya3 Nemertean classification has closely followed Stiasny‐ Fernando Ángel Fernández‐Álvarez4 Wijnhoff’s scheme (1936) that was based on Schultze’s Håkan S Andersson5 (1851) division of the taxon into the two classes Anopla and Sonia C. S. Andrade6 Enopla. In August 2018, the 9th International Conference of Thomas Bartolomaeus7 Nemertean Biology took place in the Wadden Sea Station of Patrick Beckers7 the Alfred Wegener Institute in List auf Sylt, Germany. At Gregorio Bigatti3 this meeting, the community reached consensus to revise ne- Irina Cherneva8 mertean taxonomy at the class level, based on the compiled Alexey Chernyshev9,10 evidence from studies on nemertean systematics published Brian M. Chung11 in the last 15 years (Andrade et al., 2014, 2012 ; Thollesson Jörn von Döhren7 & Norenburg, 2003). Previous classifications (e.g., Stiasny‐ Gonzalo Giribet12 Wijnhoff, 1936) are not based on phylogenetic grounds, and Jaime Gonzalez‐Cueto13 the use of these names is therefore nowadays not wholly in- Alfonso Herrera‐Bachiller14 formative. With the purpose of facilitating the practical use Terra Hiebert15 of the nemertean taxonomy and also making nemertean tax- Natsumi Hookabe16 onomy reflect a wealth of more recent information, we con- Juan Junoy14 clude that the ranks Anopla and Enopla should be eliminated Hiroshi Kajihara16 with the following argumentation: “Enopla” has for long Daria Krämer7 held no more information than the name “Hoplonemertea”. Sebastian Kvist17,18 “Anopla” is paraphyletic and the name usually corresponds Timur Yu Magarlamov9 to the following traits: (a) not bearing stylet; and (b) mouth Svetlana Maslakova15 and proboscis having separate openings.
    [Show full text]
  • Phylum Nemertea)
    THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Biology Chair: Dr. Qiristopher'Tudge m Dr.David C r. Jon L. Norenburg Dean of the College of Arts and Sciences JuK4£ __________ Date 2004 American University Washington, D.C. 20016 AMERICAN UNIVERSITY LIBRARY 1 1 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1421360 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1421360 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger ABSTRACT Most nemerteans are studied from poorly preserved museum specimens.
    [Show full text]
  • Tubulanus Polymorphus Class: Anopla Order: Paleonemertea an Orange Ribbon Worm Family: Tubulanidae
    Phylum: Nemertea Tubulanus polymorphus Class: Anopla Order: Paleonemertea An orange ribbon worm Family: Tubulanidae “Such a worm when seen crawling in long and Palaeonemertea) but with lateral graceful curves over the bottom in clear water transverse grooves (Fig. 2a, b, c). earns for itself a place among the most Head cannot completely withdraw into body (Kozloff 1974). beautiful of all marine invertebrates” (Coe Posterior: No caudal cirrus. 1905) Eyes/Eyespots: None. Mouth: A long slit-like opening (Fig. 2c) Taxonomy: Tubulanus polymorphous was a posterior to the brain, separate from name assigned in unpublished work by proboscis pore (Fig. 2c) and positioned just Renier (1804). The genera Tubulanus and behind transverse furrows (Coe 1901). Carinella were described by Renier (1804) Proboscis: Eversible (phylum Nemertea) and Johnston (1833), respectively, and were and, when not everted, coiled inside synonymized by Bürger in 1904 (Gibson rhynchocoel (cavity). The proboscis in 1995). Melville (1986) and the International Tubulanus polymorphus is short with the Code of Zoological Nomenclature (ICZN) rhynchocoel reaching one third total worm determined that the family name Tubulanidae body length. Proboscis bears no stylets and take precedence over its senior subjective the proboscis pore almost terminal (Fig. 2c). synonym Carinellidae (Ritger and Norenburg Tube/Burrow: As is true for most Tubulanus 2006) and the name Tubulanus polymorphus species, T. polymorphus individuals live in was deemed published and available (ICZN thin parchment tubes that are attached to 1988). Previous names for T. polymorphus rocks or shells and made of hardened include C. polymorpha, C. rubra and C. mucous secretions (Coe 1943). speciosa. Possible Misidentifications Description The genus Tubulanus is slender, soft, Size: A large nemertean, up to three meters extensible without ocelli or cephalic grooves when extended.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Phylum Nemertea Or Rhynchocoela (Minor Phyla)
    Animal Diversity: (Non-Chordates) Phylum Nemertea or Rhynchocoela (Minor Phyla) Hardeep Kaur Assistant Professor, Department of Zoology, Ramjas College, University of Delhi Delhi – 110 007 CONTENTs: ¾ Introduction ¾ External Structure ¾ Body Wall and Locomotion ¾ Nutrition and Digestive System ¾ Circulatory System ¾ Excretory System ¾ Nervous System and Sense Organs ¾ Regeneration ¾ Reproductive System ¾ Embryogeny ¾ Classification of Nemerteans ¾ General Characters of Nemerteans ¾ Affinities of Nemerteans ¾ Glossary ¾ References / Suggested Readings PHYLUM NEMERTEA / PHYLUM RHYNCHOCOELA INTRODUCTION: Phylum Nemertea comprises approximately 1200 species of ¾ elongated and often flattened worms, called ribbon worms (many have flattened body) or ¾ bottle worms (because of narrow anterior end) ¾ proboscis worms, (because of the presence of a remarkable proboscis apparatus used in capturing food). The Nemerteans are named for Nemertes, one of the Nereids, sea-nymph of Greek mythology. They are commonly looked upon related to the Turbellaria and were formerly included in them, but the fact that they possess a complete digestive system with anus and also a blood vascular system makes them higher in organization than the Turbellaria. However, presence of a protrusible proboscis with a separate proboscis pore, other than mouth, is the most characteristic feature of the phylum. Almost all nemerteans are free living, bottom-dwelling, marine animals. Few commensal and parasitic species have been described. Nemertopsis actinophila is a slender form living beneath the pedal disc of sea anemones. Carcinonmertes may be found on gills and egg masses of crabs. Some species of Tetrastemma live in the branchial cavity of tunicates. Only few exibit commensal mode of life eg. Gonomertes parasitica is a commensal species found on crustaceans,.
    [Show full text]
  • South Bay 2003
    THE CITY OF SAN DIEGO Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant) 2003 Ocean Monitoring Program Metropolitan Wastewater Department Environmental Monitoring and Technical Services Division July 2004 July 1, 2004 THE CITY OF SAN DIEGO Mr. John Robertus Executive Officer Regional Water Quality Control Board San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123 Attention: POTW Compliance Unit Dear Sir: Enclosed is the 2003 Annual Receiving Waters Monitoring Report for NPDES Permit No. CAO109045, Order No. 2000-129, for the City ofSan Diego South Bay Water Reclamation Plant (SBWRP) discharge to the Pacific Ocean through the South Bay Ocean Outfall. This report contains data summaries and statistical analyses for the various portions ofthe ocean monitoring program, including oceanographic conditions, microbiology, sediment characteristics, macro benthic communities, demersal fishes and megabenthic invertebrates, and bioaccumulation ofcontaminants in fish tissues. These data are also presented in the International Boundary and Water Commission's annual report for discharge from the International Wastewater Treatment Plant (NPDES Permit No. ·cA0108928, Order No. 96-50). I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry ofthe person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best ofmy knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility offine and imprisonment for knowing violations.
    [Show full text]
  • Phylum NEMERTINI*
    NEMERTINI: ANOPLA Phylum NEMERTINI* Class ANOPLA Order PALAEONEMERTINI Family Tubulanidae TUBULANUS LINEARIS (McIntosh) [Bürger, 1895, p. 519, T. I, fig. 2, as Carinella; 1904, p. 12] Two specimens Duke Rock, 1892 (T.H.R.): several specimens inside Breakwater (Queen's Grounds, Asia Shoal, Millbay Pit, Duke Rock); shallow-water form, 1910 (Wijnhoff, 1912, p. 409) TUBULANUS POLYMORPHUS Renier [Bürger, 1895, p, 517, T. I, figs. 4 and 10, as Carinella; 1904, p. 12] One specimen Stoke Point, 25 fm., 2.3.92 (T.H.R.): Mewstone Amphioxus Grounds, 10.9.95; about half-way between Rame and Eddystone, 20.12.28; 4m W. of Eddystone, 9.4.00, one specimen on each occasion (W.I.B.): Eddystone and Rame Grounds, once off the Breakwater, 1910 (Wijnhoff, 1912, p. 409) SALCOME On shore on the west side of the Salstone (Allen and Todd, 1900, p. 188) TUBULANUS MINIATUS (Bürger) [Bürger, 1895, p. 521, T. I, fig. 8, as Carinella; 1904, p. 12] Three specimens Rame-Eddystone Grounds, 44-55 fm., 11.8.10 (Wijnhoff 1912, p. 410) TUBULANUS NOTHUS (Bürger, 1895, p. 527, T. I, fig. 8, as Carinella) [Bürger 1904, p. 13] Rum Bay, Bridge and Queen's Grounds, each 1 specimen; Asia Shoal and Millbay Pit, each 3 specimens, 1910 (Wijnhoff, 1912, p. 412): Duke Rock 1 specimen, 16.8.21 (J.F.G.W.) TUBULANUS SUPERBUS (Kölliker) [Bürger, 1895, p. 521, T. 1, figs. 5, 7, 9, 11 as Carinella; 1904, p. 13] Six miles S.E. of Mewstone, 1 specimen (T.H.R.): sand-bank in Yealm (R.C.P., W.I.B.): Drake's Island, Mewstone Grounds, Rame-Eddystone and Eddystone Grounds (W.I.B.): Eddystone and Rame-Eddystone Grounds, frequent; Asia Shoal 1 specimen, 1910 (Wijnhoff, 1912, p.
    [Show full text]
  • Resolving a 200-Year-Old Taxonomic Conundrum: Neotype Designation for Cephalothrix Linearis (Nemertea: Palaeonemertea) Based on a Topotype from Bergen, Norway
    Fauna norvegica 2019 Vol. 39: 39–76. Resolving a 200-year-old taxonomic conundrum: neotype designation for Cephalothrix linearis (Nemertea: Palaeonemertea) based on a topotype from Bergen, Norway Hiroshi Kajihara1 Kajihara H. 2019. Resolving a 200-year-old taxonomic conundrum: neotype designation for Cephalothrix linearis (Nemertea: Palaeonemertea) based on a topotype from Bergen, Norway. Fauna norvegica 39: 39–76. The taxonomic identity of the palaeonemertean Cephalothrix linearis (Rathke, 1799) has been obscure for nearly two centuries, because its original description applies to almost any congeners, including Cephalothrix filiformis (Johnston 1828) and Cephalothrix rufifrons (Johnston, 1837), which occur commonly in the North Sea and adjacent waters. In this paper, I redescribe C. linearis based on two topotypes from Bergen, one herein designated as the neotype for C. linearis, because Rathke’s original material is not extant; I invoke Article 70.3.2 of the International Code of Zoological Nomenclature to fix Planaria linearis Rathke, 1799 as the type species of Cephalothrix Örsted, 1843 for the sake of stability. From the neotype, I determined sequences of the 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I (COI) genes. Using the COI sequence, I inferred the phylogenetic position of C. linearis along with 316 cephalotrichid sequences currently available in public databases. A tree-based species delimitation analysis detected 43 entities among them, with 34 in Cephalothrix and nine in either Balionemertes or Cephalotrichella.
    [Show full text]
  • Nemertea (Ribbon Worms)
    ISSN 1174–0043; 118 (Print) ISSN 2463-638X; 118 (Online) Taihoro Nukurc1n,�i COVERPHOTO: Noteonemertes novaezealandiae n.sp., intertidal, Point Jerningham, Wellington Harbour. Photo: Chris Thomas, NIWA. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Invertebrate Fauna of New Zealand: Nemertea (Ribbon Worms) by RAY GIBSON School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street Liverpool L3 3AF, United Kingdom NIWA Biodiversity Memoir 118 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication GIBSON, Ray The invertebrate fauna of New Zealand: Nemertea (Ribbon Worms) by Ray Gibson - Wellington : NIWA (National Institute of Water and Atmospheric Research) 2002 (NIWA Biodiversity memoir: ISSN 0083-7908: 118) ISBN 0-478-23249-7 II. I. Title Series UDC Series Editor: Dennis P. Gordon Typeset by: Rose-Marie C. Thompson National Institute of Water and Atmospheric Research (NIWA) (incorporating N.Z. Oceanographic Institute) Wellington Printed and bound for NIWA by Graphic Press and Packaging Levin Received for publication - 20 June 2001 ©NIWA Copyright 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page 5 ABSTRACT 6 INTRODUCTION 9 Materials and Methods 9 CLASSIFICATION OF THE NEMERTEA 9 Higher Classification CLASSIFICATION OF NEW ZEALAND NEMERTEANS AND CHECKLIST OF SPECIES .
    [Show full text]
  • 2020 Interim Receiving Waters Monitoring Report
    POINT LOMA OCEAN OUTFALL MONTHLY RECEIVING WATERS INTERIM RECEIVING WATERS MONITORING REPORT FOR THE POINTM ONITORINGLOMA AND SOUTH R EPORTBAY OCEAN OUTFALLS POINT LOMA 2020 WASTEWATER TREATMENT PLANT NPDES Permit No. CA0107409 SDRWQCB Order No. R9-2017-0007 APRIL 2021 Environmental Monitoring and Technical Services 2392 Kincaid Road x Mail Station 45A x San Diego, CA 92101 Tel (619) 758-2300 Fax (619) 758-2309 INTERIM RECEIVING WATERS MONITORING REPORT FOR THE POINT LOMA AND SOUTH BAY OCEAN OUTFALLS 2020 POINT LOMA WASTEWATER TREATMENT PLANT (ORDER NO. R9-2017-0007; NPDES NO. CA0107409) SOUTH BAY WATER RECLAMATION PLANT (ORDER NO. R9-2013-0006 AS AMENDED; NPDES NO. CA0109045) SOUTH BAY INTERNATIONAL WASTEWATER TREATMENT PLANT (ORDER NO. R9-2014-0009 AS AMENDED; NPDES NO. CA0108928) Prepared by: City of San Diego Ocean Monitoring Program Environmental Monitoring & Technical Services Division Ryan Kempster, Editor Ami Latker, Editor June 2021 Table of Contents Production Credits and Acknowledgements ...........................................................................ii Executive Summary ...................................................................................................................1 A. Latker, R. Kempster Chapter 1. General Introduction ............................................................................................3 A. Latker, R. Kempster Chapter 2. Water Quality .......................................................................................................15 S. Jaeger, A. Webb, R. Kempster,
    [Show full text]
  • Section 3.4 Invertebrates
    Hawaii-Southern California Training and Testing Final EIS/OEIS October 2018 Final Environmental Impact Statement/Overseas Environmental Impact Statement Hawaii-Southern California Training and Testing TABLE OF CONTENTS 3.4 Invertebrates .......................................................................................................... 3.4-1 3.4.1 Introduction ........................................................................................................ 3.4-3 3.4.2 Affected Environment ......................................................................................... 3.4-3 3.4.2.1 General Background ........................................................................... 3.4-3 3.4.2.2 Endangered Species Act-Listed Species ............................................ 3.4-15 3.4.2.3 Species Not Listed Under the Endangered Species Act .................... 3.4-20 3.4.3 Environmental Consequences .......................................................................... 3.4-29 3.4.3.1 Acoustic Stressors ............................................................................. 3.4-30 3.4.3.2 Explosive Stressors ............................................................................ 3.4-51 3.4.3.3 Energy Stressors ................................................................................ 3.4-59 3.4.3.4 Physical Disturbance and Strike Stressors ........................................ 3.4-64 3.4.3.5 Entanglement Stressors .................................................................... 3.4-85 3.4.3.6
    [Show full text]