Tubulanus Polymorphus Class: Anopla Order: Paleonemertea an Orange Ribbon Worm Family: Tubulanidae

Total Page:16

File Type:pdf, Size:1020Kb

Tubulanus Polymorphus Class: Anopla Order: Paleonemertea an Orange Ribbon Worm Family: Tubulanidae Phylum: Nemertea Tubulanus polymorphus Class: Anopla Order: Paleonemertea An orange ribbon worm Family: Tubulanidae “Such a worm when seen crawling in long and Palaeonemertea) but with lateral graceful curves over the bottom in clear water transverse grooves (Fig. 2a, b, c). earns for itself a place among the most Head cannot completely withdraw into body (Kozloff 1974). beautiful of all marine invertebrates” (Coe Posterior: No caudal cirrus. 1905) Eyes/Eyespots: None. Mouth: A long slit-like opening (Fig. 2c) Taxonomy: Tubulanus polymorphous was a posterior to the brain, separate from name assigned in unpublished work by proboscis pore (Fig. 2c) and positioned just Renier (1804). The genera Tubulanus and behind transverse furrows (Coe 1901). Carinella were described by Renier (1804) Proboscis: Eversible (phylum Nemertea) and Johnston (1833), respectively, and were and, when not everted, coiled inside synonymized by Bürger in 1904 (Gibson rhynchocoel (cavity). The proboscis in 1995). Melville (1986) and the International Tubulanus polymorphus is short with the Code of Zoological Nomenclature (ICZN) rhynchocoel reaching one third total worm determined that the family name Tubulanidae body length. Proboscis bears no stylets and take precedence over its senior subjective the proboscis pore almost terminal (Fig. 2c). synonym Carinellidae (Ritger and Norenburg Tube/Burrow: As is true for most Tubulanus 2006) and the name Tubulanus polymorphus species, T. polymorphus individuals live in was deemed published and available (ICZN thin parchment tubes that are attached to 1988). Previous names for T. polymorphus rocks or shells and made of hardened include C. polymorpha, C. rubra and C. mucous secretions (Coe 1943). speciosa. Possible Misidentifications Description The genus Tubulanus is slender, soft, Size: A large nemertean, up to three meters extensible without ocelli or cephalic grooves when extended. Commonly 25–75 cm in (Corrêa 1964) and with a flattened head with length and 5 mm in width (Coe 1901, 1905; transverse lateral grooves. Five other species Corrêa 1964). of Tubulanus are reported for Pacific Color: Individuals boldly colored in solid red, Northwest intertidal and subtidal habitats brown, orange or vermillion. No patterns and (Roe et al. 2007). T. polymorphus and T. no dorsal or ventral color differences (Coe sexlineatus are most common intertidally. 1901). Tubulanus polymorphus can be distinguished General Morphology: Recognizable by from the others by its large size, strong color bright orange color and long, stretchy and lack of pattern. morphology. Individuals are sometimes found Some of the other species are: within parchment tubes. Tubulanus pellucidus, a small (to 2.5 cm in Body: Long, thin and very soft (Coe 1901). length), white to translucent tube-dweller in Non-segmented (phylum Nemertea), estuaries, occurs on the Pacific coast from cylindrical anterior but can flatten posteriorly San Francisco to San Diego and on the (Fig. 1). Atlantic coast from New England to Florida Anterior: Head rather broad, set off (Gibson 1995; Roe et al. 2007). Tubulanus from body and somewhat flattened. cingulatus is deep brown with white No cephalic grooves (order Hiebert, T.C. 2015. Tubulanus polymorphus. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12651 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] transverse rings and four long stripes. Abundance: Rather common (Corrêa 1964) Individuals reach lengths to 15 cm and occur and quite common on the outer coast in subtidally and lower in soft sediments. Pacific Oregon, but rarely abundant in Alaska (Coe distribution from Bolinas to San Diego, 1901). California (Coe 1904; Roe et al. 2007). Tubulanus sexlineatus is up to 1.5 m in Life-History Information length, chocolate brown with white rings and Reproduction: Male and female individuals 5–6 longitudinal lines. This tube-dwelling often inhabit the same parchment tube where species is found from Alaska to southern they deposit eggs (Coe 1943). Specimens California (Griffin 1898; Roe et al. 2007). are sexually mature from early summer (San Tubulanus capistratus is a slender and brown Juan Island, WA, Stricker 1987) to August tube-dweller (Coe 1901), up to one meter (Coe 1905) and can produce great numbers long, with many narrow white transverse rings of large (350 µm in diameter) eggs (Stricker and three longitudinal lines. The range of T. 1987), which are often used for experimental capistratus is Alaska to Monterey Bay, studies (Coe 1940; Stricker et al. 2001, 2013). California (Roe et al. 2007). Subtidal species Larva: Larvae hatch after two days, are large found off the coast of southern California (500 µm in length) and uniformly ciliated with include T. albocinctus and T. frenatus (Coe inconspicuous apical tuft of cilia (Stricker 1904; Corrêa 1964). 1987). These lecithotrophic larvae develop Because of the many identifying rapidly (approximately 90 hr, Coe 1940; characteristics that are internal and not Stricker 1987). visible, it is sometimes very difficult to Juvenile: distinguish among nemerteans without Longevity: dissecting them. Ways in which the worms Growth Rate: The growth rate of most flatten, contract, and coil are useful as aids to nemerteans is unknown. Most species have identification of live specimens. some regenerative ability. Tubulanus polymorphus and T. sexlineatus are known to Ecological Information regenerate both anterior and posterior ends Range: NE Pacific range Aleutian Islands, (T. Hiebert, pers. obs.) Alaska south to Monterey, California. Food: A predator on soft-bodied worms and Worldwide distribution includes northern mollusks, where only soft parts are ingested European and Mediterranean coasts. from larger prey (Coe 1943). Local Distribution: Collected in Coos Bay in Predators: exposed parts of estuaries, as well as rocky Behavior: Can be found at low tide outer shores. Coos Bay sites include searching for food. Charleston, Barview and Pony Slough. Habitat: Under heavy boulders, among Bibliography mussels, in mud and shell hash, on both open coast and in bays (Haderlie 1975). It is the 1. COE, W. R. 1901. Papers from the common large orange nemertean of the outer Harriman Alaska Expedition. The coastal rocky intertidal. Nemerteans. Proceedings of the Salinity: Often collected on outer rocky Washington Academy:1-110. shores at salinities of 30. 2. —. 1904. Nemerteans of the Pacific Temperature: Found in cold and temperate coast of North America. Harriman waters. Expedition. 11:111-220. Tidal Level: Intertidal (Corrêa 1964) to low 3. —. 1905. Nemerteans of the west and intertidal and subtidal zones (Haderlie 1980). northwest coasts of North America. Associates: Small polychaetes are often Bulletin of the Museum at Harvard found within the parchment tubes of T. College. xlvii:1-318. polymorphus. 4. —. 1940. Revision of the nemertean fauna of the Pacific coasts of north, Hiebert, T.C. 2015. Tubulanus polymorphus. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. central and northern South America. adjacent regions. University of Allan Hancock Pacific Expeditions. Washington Press, Seattle. Reports. 2:247-323. 14. MELVILLE, R. V. 1986. Tubulanus 5. —. 1943. Biology of the nemerteans of and Tubulanus polymorphus the Atlantic coast of North America. (Polychaeta) proposed reinstatement Transactions of the Connecticut under plenary powers. Bulletin of Academy of Arts and Sciences. Zoological Nomenclature. 43:112-114. 35:129-328. 15. RITGER, R. K., and J. L. 6. CORRÊA, D. D. 1964. Nemerteans NORENBURG. 2006. Tubulanus from California and Oregon. riceae new species (Nemertea: Proceedings of the California Anopla: Palaeonemertea: Academy of Sciences (series 4). Tubulanidae), from south Florida, 31:515-558. Belize and Panama. Journal of Natural 7. GIBSON, R. 1995. Nemertean genera History. 40:931-942. and species of the world: an annotated 16. ROE, P., J. L. NORENBURG, and S. checklist of original names and MASLAKOVA. 2007. Nemertea, p. description citation, synonyms, current 221-233. In: Light and Smith manual: taxonomic status, habitats and intertidal invertebrates from central recorded zoogeographic distribution. California to Oregon. J. T. Carlton Journal of Natural History. 29:271-562. (ed.). University of California Press, 8. GRIFFIN, B. B. 1898. Description of Berkeley, CA. some marine Nemerteans of Puget 17. STRICKER, S. A. 1987. Phylum Sound and Alaska. Annals of the New Nemertea, p. 129-137. In: York Academy of Sciences. xi:pp. 193- Reproduction and development of 218. marine invertebrates of the northern 9. HADERLIE, E. C. 1975. Phylum Pacific coast. University of Nemertea (Rhynchocoela), p. 112- Washington Press, Seattle, WA. 120. In: Light's manual: intertidal 18. STRICKER, S. A., C. CLINE, and D. invertebrates of the central California GOODRICH. 2013. Oocyte maturation coast. S. F. Light, R. I. Smith, and J. T. and fertilization in marine nemertean Carlton (eds.). University of California worms: using similar sorts of signaling Press, Berkeley. pathways
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Nemertean Taxonomy—Implementing Changes in the Higher Ranks, Dismissing Anopla and Enopla
    Received: 27 August 2018 | Accepted: 28 August 2018 DOI: 10.1111/zsc.12317 LETTER TO THE EDITOR Nemertean taxonomy—Implementing changes in the higher ranks, dismissing Anopla and Enopla Dear Editor, José E. Alfaya3 Nemertean classification has closely followed Stiasny‐ Fernando Ángel Fernández‐Álvarez4 Wijnhoff’s scheme (1936) that was based on Schultze’s Håkan S Andersson5 (1851) division of the taxon into the two classes Anopla and Sonia C. S. Andrade6 Enopla. In August 2018, the 9th International Conference of Thomas Bartolomaeus7 Nemertean Biology took place in the Wadden Sea Station of Patrick Beckers7 the Alfred Wegener Institute in List auf Sylt, Germany. At Gregorio Bigatti3 this meeting, the community reached consensus to revise ne- Irina Cherneva8 mertean taxonomy at the class level, based on the compiled Alexey Chernyshev9,10 evidence from studies on nemertean systematics published Brian M. Chung11 in the last 15 years (Andrade et al., 2014, 2012 ; Thollesson Jörn von Döhren7 & Norenburg, 2003). Previous classifications (e.g., Stiasny‐ Gonzalo Giribet12 Wijnhoff, 1936) are not based on phylogenetic grounds, and Jaime Gonzalez‐Cueto13 the use of these names is therefore nowadays not wholly in- Alfonso Herrera‐Bachiller14 formative. With the purpose of facilitating the practical use Terra Hiebert15 of the nemertean taxonomy and also making nemertean tax- Natsumi Hookabe16 onomy reflect a wealth of more recent information, we con- Juan Junoy14 clude that the ranks Anopla and Enopla should be eliminated Hiroshi Kajihara16 with the following argumentation: “Enopla” has for long Daria Krämer7 held no more information than the name “Hoplonemertea”. Sebastian Kvist17,18 “Anopla” is paraphyletic and the name usually corresponds Timur Yu Magarlamov9 to the following traits: (a) not bearing stylet; and (b) mouth Svetlana Maslakova15 and proboscis having separate openings.
    [Show full text]
  • Phylum Nemertea)
    THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Biology Chair: Dr. Qiristopher'Tudge m Dr.David C r. Jon L. Norenburg Dean of the College of Arts and Sciences JuK4£ __________ Date 2004 American University Washington, D.C. 20016 AMERICAN UNIVERSITY LIBRARY 1 1 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1421360 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1421360 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger ABSTRACT Most nemerteans are studied from poorly preserved museum specimens.
    [Show full text]
  • Detailed Reconstruction of the Nervous and Muscular System Of
    Kerbl et al. BMC Evolutionary Biology (2015) 15:277 DOI 10.1186/s12862-015-0531-x RESEARCH ARTICLE Open Access Detailed reconstruction of the nervous and muscular system of Lobatocerebridae with an evaluation of its annelid affinity Alexandra Kerbl1, Nicolas Bekkouche1, Wolfgang Sterrer2 and Katrine Worsaae1* Abstract Background: The microscopic worm group Lobatocerebridae has been regarded a ‘problematicum’, with the systematic relationship being highly debated until a recent phylogenomic study placed them within annelids (Curr Biol 25: 2000-2006, 2015). To date, a morphological comparison with other spiralian taxa lacks detailed information on the nervous and muscular system, which is here presented for Lobatocerebrum riegeri n. sp. based on immunohistochemistry and confocal laser scanning microscopy, supported by TEM and live observations. Results: The musculature is organized as a grid of longitudinal muscles and transverse muscular ring complexes in the trunk. The rostrum is supplied by longitudinal muscles and only a few transverse muscles. The intraepidermal central nervous system consists of a big, multi-lobed brain, nine major nerve bundles extending anteriorly into the rostrum and two lateral and one median cord extending posteriorly to the anus, connected by five commissures. The glandular epidermis has at least three types of mucus secreting glands and one type of adhesive unicellular glands. Conclusions: No exclusive “annelid characters” could be found in the neuromuscular system of Lobatocerebridae, except for perhaps the mid-ventral nerve. However, none of the observed structures disputes its position within this group. The neuromuscular and glandular system of L. riegeri n. sp. shows similarities to those of meiofaunal annelids such as Dinophilidae and Protodrilidae, yet likewise to Gnathostomulida and catenulid Platyhelminthes, all living in the restrictive interstitial environment among sand grains.
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Phylum Nemertea Or Rhynchocoela (Minor Phyla)
    Animal Diversity: (Non-Chordates) Phylum Nemertea or Rhynchocoela (Minor Phyla) Hardeep Kaur Assistant Professor, Department of Zoology, Ramjas College, University of Delhi Delhi – 110 007 CONTENTs: ¾ Introduction ¾ External Structure ¾ Body Wall and Locomotion ¾ Nutrition and Digestive System ¾ Circulatory System ¾ Excretory System ¾ Nervous System and Sense Organs ¾ Regeneration ¾ Reproductive System ¾ Embryogeny ¾ Classification of Nemerteans ¾ General Characters of Nemerteans ¾ Affinities of Nemerteans ¾ Glossary ¾ References / Suggested Readings PHYLUM NEMERTEA / PHYLUM RHYNCHOCOELA INTRODUCTION: Phylum Nemertea comprises approximately 1200 species of ¾ elongated and often flattened worms, called ribbon worms (many have flattened body) or ¾ bottle worms (because of narrow anterior end) ¾ proboscis worms, (because of the presence of a remarkable proboscis apparatus used in capturing food). The Nemerteans are named for Nemertes, one of the Nereids, sea-nymph of Greek mythology. They are commonly looked upon related to the Turbellaria and were formerly included in them, but the fact that they possess a complete digestive system with anus and also a blood vascular system makes them higher in organization than the Turbellaria. However, presence of a protrusible proboscis with a separate proboscis pore, other than mouth, is the most characteristic feature of the phylum. Almost all nemerteans are free living, bottom-dwelling, marine animals. Few commensal and parasitic species have been described. Nemertopsis actinophila is a slender form living beneath the pedal disc of sea anemones. Carcinonmertes may be found on gills and egg masses of crabs. Some species of Tetrastemma live in the branchial cavity of tunicates. Only few exibit commensal mode of life eg. Gonomertes parasitica is a commensal species found on crustaceans,.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Comparative Biology of Oogenesis in Nemertean Worms Stephen A
    AaaZoologka (Stockholm) 82: 213-230 (July 2001) Comparative biology of oogenesis in nemertean worms Stephen A. Strieker1, Toni L. Smythe1, Leonard Miller1 and Jon L. Norenburg2 Abstract 'Department of Biology, University of New Strieker, S. A., Smythe,T, L., Miller, L. and Norenburg, J. L. 2001. Mexico, Albuquerque, NM 87131; Comparative biology of oogenesis in nemertean worms. — Acta Zoobgica 2 Invertebrate Zoology, MRC 163,Museum (Stockholm) 82: 213-230 of Natural History, Washington, DC 20560 USA In order to supplement previous analyses of oogenesis in nemertean worms, this study uses light and electron microscopy to compare the ovaries and Keywords: oocytes in 16 species of nemerteans that represent various taxa within the ovary, ultrastructure, vitellogenesis, yolk, phylum, Nemertean ovaries comprise serially repeated sacs with an ovarian nucleoli, endoplasmic reticulum, confocal wall that characteristically includes myofilament-containing cells interspersed microscopy, oocyte maturation, serotonin among the germinal epithelium. Each oocyte can attach to the germinal epithelium by a vegetally situated stalk and resides in the ovarian lumen Accepted for publication: without being surrounded by follicle cells. In the ovary, oocytes arrest at 26 September 2000 prophase I of meiosis and contain a hypertrophied nucleus ('germinal vesicle') that often possesses multiple nucleoli. Intraovarian growth apparently involves an autosynthetic mode of yolk formation in most nemerteans and generates oocytes that measure ~60 Jim to 1 mm. When fully developed, oocytes can be discharged through a short gonoduct and are either spawned freely or deposited within egg cases. In most species, oocytes released from the ovary possess extracellular coats and resume maturation by undergoing germinal vesicle breakdown (GVBD).
    [Show full text]
  • South Bay 2003
    THE CITY OF SAN DIEGO Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant) 2003 Ocean Monitoring Program Metropolitan Wastewater Department Environmental Monitoring and Technical Services Division July 2004 July 1, 2004 THE CITY OF SAN DIEGO Mr. John Robertus Executive Officer Regional Water Quality Control Board San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123 Attention: POTW Compliance Unit Dear Sir: Enclosed is the 2003 Annual Receiving Waters Monitoring Report for NPDES Permit No. CAO109045, Order No. 2000-129, for the City ofSan Diego South Bay Water Reclamation Plant (SBWRP) discharge to the Pacific Ocean through the South Bay Ocean Outfall. This report contains data summaries and statistical analyses for the various portions ofthe ocean monitoring program, including oceanographic conditions, microbiology, sediment characteristics, macro benthic communities, demersal fishes and megabenthic invertebrates, and bioaccumulation ofcontaminants in fish tissues. These data are also presented in the International Boundary and Water Commission's annual report for discharge from the International Wastewater Treatment Plant (NPDES Permit No. ·cA0108928, Order No. 96-50). I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry ofthe person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best ofmy knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility offine and imprisonment for knowing violations.
    [Show full text]
  • Phylum NEMERTINI*
    NEMERTINI: ANOPLA Phylum NEMERTINI* Class ANOPLA Order PALAEONEMERTINI Family Tubulanidae TUBULANUS LINEARIS (McIntosh) [Bürger, 1895, p. 519, T. I, fig. 2, as Carinella; 1904, p. 12] Two specimens Duke Rock, 1892 (T.H.R.): several specimens inside Breakwater (Queen's Grounds, Asia Shoal, Millbay Pit, Duke Rock); shallow-water form, 1910 (Wijnhoff, 1912, p. 409) TUBULANUS POLYMORPHUS Renier [Bürger, 1895, p, 517, T. I, figs. 4 and 10, as Carinella; 1904, p. 12] One specimen Stoke Point, 25 fm., 2.3.92 (T.H.R.): Mewstone Amphioxus Grounds, 10.9.95; about half-way between Rame and Eddystone, 20.12.28; 4m W. of Eddystone, 9.4.00, one specimen on each occasion (W.I.B.): Eddystone and Rame Grounds, once off the Breakwater, 1910 (Wijnhoff, 1912, p. 409) SALCOME On shore on the west side of the Salstone (Allen and Todd, 1900, p. 188) TUBULANUS MINIATUS (Bürger) [Bürger, 1895, p. 521, T. I, fig. 8, as Carinella; 1904, p. 12] Three specimens Rame-Eddystone Grounds, 44-55 fm., 11.8.10 (Wijnhoff 1912, p. 410) TUBULANUS NOTHUS (Bürger, 1895, p. 527, T. I, fig. 8, as Carinella) [Bürger 1904, p. 13] Rum Bay, Bridge and Queen's Grounds, each 1 specimen; Asia Shoal and Millbay Pit, each 3 specimens, 1910 (Wijnhoff, 1912, p. 412): Duke Rock 1 specimen, 16.8.21 (J.F.G.W.) TUBULANUS SUPERBUS (Kölliker) [Bürger, 1895, p. 521, T. 1, figs. 5, 7, 9, 11 as Carinella; 1904, p. 13] Six miles S.E. of Mewstone, 1 specimen (T.H.R.): sand-bank in Yealm (R.C.P., W.I.B.): Drake's Island, Mewstone Grounds, Rame-Eddystone and Eddystone Grounds (W.I.B.): Eddystone and Rame-Eddystone Grounds, frequent; Asia Shoal 1 specimen, 1910 (Wijnhoff, 1912, p.
    [Show full text]
  • Resolving a 200-Year-Old Taxonomic Conundrum: Neotype Designation for Cephalothrix Linearis (Nemertea: Palaeonemertea) Based on a Topotype from Bergen, Norway
    Fauna norvegica 2019 Vol. 39: 39–76. Resolving a 200-year-old taxonomic conundrum: neotype designation for Cephalothrix linearis (Nemertea: Palaeonemertea) based on a topotype from Bergen, Norway Hiroshi Kajihara1 Kajihara H. 2019. Resolving a 200-year-old taxonomic conundrum: neotype designation for Cephalothrix linearis (Nemertea: Palaeonemertea) based on a topotype from Bergen, Norway. Fauna norvegica 39: 39–76. The taxonomic identity of the palaeonemertean Cephalothrix linearis (Rathke, 1799) has been obscure for nearly two centuries, because its original description applies to almost any congeners, including Cephalothrix filiformis (Johnston 1828) and Cephalothrix rufifrons (Johnston, 1837), which occur commonly in the North Sea and adjacent waters. In this paper, I redescribe C. linearis based on two topotypes from Bergen, one herein designated as the neotype for C. linearis, because Rathke’s original material is not extant; I invoke Article 70.3.2 of the International Code of Zoological Nomenclature to fix Planaria linearis Rathke, 1799 as the type species of Cephalothrix Örsted, 1843 for the sake of stability. From the neotype, I determined sequences of the 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I (COI) genes. Using the COI sequence, I inferred the phylogenetic position of C. linearis along with 316 cephalotrichid sequences currently available in public databases. A tree-based species delimitation analysis detected 43 entities among them, with 34 in Cephalothrix and nine in either Balionemertes or Cephalotrichella.
    [Show full text]