An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T

Total Page:16

File Type:pdf, Size:1020Kb

An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. Use of funds Copies of the NOAA Professional Paper NMFS series are available free in limited for printing of this series has been ap- numbers to government agencies, both federal and state. They are also available in proved by the Director of the Office exchange for other scientific and technical publications in the marine sciences. Profes- of Management and Budget. sional Papers are published online in PDF format at http://spo.nmfs.noaa.gov NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm Katherine P. Maslenikov Robert Van Syoc James W. Orr Robert R. Lauth Duane E. Stevenson Theodore W. Pietsch November 2016 U.S. Department of Commerce Seattle, Washington Cover figure (top left to bottom right): Halichondria oblonga (Porifera); Cheilonereis cyclurus (Polychaeta); Tonicella insignis (Polyplacophora); Neptunea lyrata (Gastropoda); Pandalus tridens (Decapoda: Caridea); Oregonia gracilis (Decapoda: Brachyura); brachiopod unidentified (Brachiopoda); Pagurus ochotensis (Decapoda: Anomura); Ophiura sarsii (Ophiuroidea); Pteraster octaster (Asteroidea). Suggested reference Drumm, David T., Katherine P. Maslenikov, Robert Van Syoc, James W. Orr, Rob- ert R. Lauth, Duane E. Stevenson, and Theodore W. Pietsch. 2016. An annotated checklist of the marine macroinvertebrates of Alaska. NOAA Professional Paper NMFS 19, 289 p. doi:10.7755/PP.19 Online dissemination This report is posted online in PDF format at http://spo.nmfs.noaa.gov (click on Professional Papers link). Copyright law Although the contents of the Professional Papers have not been copyrighted and may be reprinted entirely, reference to source is appreciated. Proprietary products The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publi- cation. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication. Disclaimer The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Marine Fisheries Service (NOAA). CONTENTS Introduction ................................................................1 Order Astrophorida ........................................16 Methods ......................................................................2 Family Ancorinidae ...................................16 Data sources ................................................................3 Family Geodiidae ......................................17 Marine geography of Alaska .......................................4 Family Vulcanellidae .................................17 Current status and future directions ............................7 Order Clionaida .............................................17 Checklist ...................................................................12 Family Clionaidae .....................................17 Phylum Porifera—The Sponges .................................12 Order Polymastiida ........................................17 Class Calcarea ......................................................12 Family Polymastiidae ................................17 Subclass Calcaronea ...........................................12 Order Tethyida ...............................................18 Order Baerida .................................................12 Family Tethyidae ......................................18 Family Baeriidae .......................................12 Order Suberitida .............................................18 Order Leucosolenida ......................................12 Family Suberitidae ....................................18 Family Amphoriscidae ..............................12 Family Halichondriidae ............................18 Family Grantiidae .....................................12 Family Stylocordylidae .............................19 Family Leucosoleniidae .............................13 Order Haplosclerida .......................................19 Family Sycettidae ......................................13 Family Callyspongiidae .............................19 Subclass Calcinea ................................................13 Family Chalinidae .....................................19 Order Clathrinidae .........................................13 Family Niphatidae ....................................20 Family Clathrinidae ..................................13 Family Petrosiidae ....................................20 Class Hexactinellida .............................................13 Order Poecilosclerida .....................................21 Subclass Amphidiscophora ................................13 Family Acarnidae ......................................21 Order Amphidiscosida ....................................13 Family Microcionidae ...............................21 Family Hyalonematidae ............................13 Family Coelosphaeridae ............................22 Subclass Hexasterophora ....................................13 Family Crambeidae ...................................23 Order Hexactinosida ......................................13 Family Crellidae .......................................23 Family Farreidae .......................................13 Family Hymedesmiidae .............................23 Family Euretidae .......................................13 Family Iotrochotidae ................................23 Family Aphrocallistidae ............................14 Family Myxillidae .....................................23 Family Tretodictyidae ...............................14 Family Phellodermidae .............................24 Order Lyssacinosida .......................................14 Family Tedaniidae .....................................24 Family Euplectellidae ................................14 Family Cladorhizidae ................................24 Family Rossellidae ....................................14 Family Guitarridae ...................................24 Class Homoscleromorpha .....................................16 Family Esperiopsidae ................................25 Order Homosclermorphida ............................16 Family Mycalidae .....................................25 Family Plakinidae .....................................16 Family Isodictyidae ...................................26 Class Demospongiae .............................................16 Family Latrunculiidae ...............................26 Subclass Keratosa ...............................................16 Order Axinellida ............................................26 Order Dendroceratida ....................................16 Family Axinellidae ....................................26 Family Darwinellidae ................................16 Family Raspaillidae ..................................26 Order Dictyoceratida ......................................16 Order Bubarida ..............................................26 Family Dysideidae ....................................16 Family Bubaridae ......................................26 Subclass Heteroscleromorpha .............................16 Order Biemnida ..............................................26 Order Tetractinellida ......................................16 Family Biemnidae .....................................26 Suborder Spirophorina .................................16 Phylum Cnidaria .......................................................27
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Onchidoris Bilamellata Class: Gastropoda, Opisthobranchia Order: Nudibranchia Many-Gilled Onchidoris Nudibranch Family: Onchidoridae
    Phylum: Mollusca Onchidoris bilamellata Class: Gastropoda, Opisthobranchia Order: Nudibranchia Many-gilled onchidoris nudibranch Family: Onchidoridae Description Papillae: Mushroom-shaped, with protruding Size: Usual length 15 mm (McDonald 1980); spicules (Fig. 3). Numerous club-like this specimen 15.5 mm long, 11 mm wide, 6 tubercles of unequal size with a slight convex mm high. Far northern and Atlantic specimens top. 10-15 spicules covered with epithelium can reach 31 mm length (Marcus 1961). project out over the surface. Spicules are Color: Translucent brownish-white with thick with blunt tips and are centrally bent, irregular dark or rusty brown splotches, sloping obliquely toward the base of the sometimes as irregular longitudinal stripes. tubercle (Kress 1981). Spicules support the Commonly a light spot between the dark body and make it unpalatable (Potts 1981). rhinophores; gills dull white, underside a dull Eggs: Type A, defined as an egg mass in white (Marcus 1961). No yellow pigment, but ribbon form, attached along the length of one some specimens without brown color (Kozloff edge, with capsules occurring throughout 1974). Cryptic coloration (Potts 1981). (Hurst 1967). With a short, stout spiral ribbon Body Shape: Doridiform: oval; slightly attached along one edge, flaring out on the broadened towards front. With a broad flat other (O’Donoghue and O’Donoghue 1922) foot, thick fleshy mantle, and conspicuous (Fig. 5); capsules have a smooth wall and double circlet of gills dorsally (Figs. 1, 2). contain 1-3 eggs; 60,000 eggs in a ribbon 4 Dorsum covered with many large round cm long (Hadfield 1963). Eggs 100µm. Eggs papillae, becoming smaller at edges.
    [Show full text]
  • Annelida, Hesionidae), Described As New Based on Morphometry
    Contributions to Zoology, 86 (2) 181-211 (2017) Another brick in the wall: population dynamics of a symbiotic species of Oxydromus (Annelida, Hesionidae), described as new based on morphometry Daniel Martin1,*, Miguel A. Meca1, João Gil1, Pilar Drake2 & Arne Nygren3 1 Centre d’Estudis Avançats de Blanes (CEAB-CSIC) – Carrer d’Accés a la Cala Sant Francesc 14. 17300 Blanes, Girona, Catalunya, Spain 2 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui 2, Puerto Real 11519, Cádiz, Spain 3 Sjöfartsmuseet Akvariet, Karl Johansgatan 1-3, 41459, Göteborg, Sweden 1 E-mail: [email protected] Key words: Bivalvia, Cádiz Bay, Hesionidae, Iberian Peninsula, NE Atlantic Oxydromus, symbiosis, Tellinidae urn:lsid:zoobank.org:pub: D97B28C0-4BE9-4C1E-93F8-BD78F994A8D1 Abstract Results ............................................................................................. 186 Oxydromus humesi is an annelid polychaete living as a strict bi- Morphometry ........................................................................... 186 valve endosymbiont (likely parasitic) of Tellina nymphalis in Population size-structure ..................................................... 190 Congolese mangrove swamps and of Scrobicularia plana and Infestation characteristics .................................................... 190 Macomopsis pellucida in Iberian saltmarshes. The Congolese Discussion ....................................................................................... 193 and Iberian polychaete populations were previously
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • Natural Products in Polyclad Flatworms
    marine drugs Review Natural Products in Polyclad Flatworms Justin M. McNab 1 , Jorge Rodríguez 1, Peter Karuso 2,* and Jane E. Williamson 1,* 1 Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia; [email protected] (J.M.M.); [email protected] (J.R.) 2 Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia * Correspondence: [email protected] (P.K.); [email protected] (J.E.W.) Abstract: Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.
    [Show full text]
  • Chapter Two Marine Organisms
    THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018.
    [Show full text]
  • Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska
    Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska. Report to Prince William Sound Regional Citizens’ Advisory Council (PWSRCAC) From Molecular Ecology Laboratory Moss Landing Marine Laboratory Dr. Jonathan Geller Melinda Wheelock Martin Guo Any opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. December 1, 2018 Revised August 15, 2019 Abstract This report describes the methods and findings of the metagenetic analysis of plankton samples from the waters of Prince William Sound (PWS), Alaska. The study was done to identify zooplankton, in particular the larvae of invasive benthic species. Plankton samples, collected by the Prince William Sound Science Center (PWSSC), were analyzed by the Molecular Ecology Laboratory at the Moss Landing Marine Laboratories. The samples were taken from five stations in May of 2017 in Port Valdez and elsewhere in PWS. DNA was extracted from bulk plankton and a portion of the mitochondrial Cytochrome c oxidase subunit 1 gene, the most commonly used DNA barcode for animals, was amplified by polymerase chain reaction (PCR). Products of PCR were sequenced using Illumina reagents and MiSeq instrument. 211 operational taxonomic units (an approximation of biological species) were found and 52 were identified to species. Most species were crustaceans and molluscs, and none were non-native. We also compared PWSRCAC samples taken in 2016 to the current set of samples. Fewer species were identified in 2017 than in 2016, but sampling methods varied across years. Standardization of methods and a longer time series are necessary to investigate temporal trends. Page 1 of 17 952.431.190815.MLMetagenetic Introduction Monitoring marine habitat for species of concern, including invasive species, can be costly and time-consuming, which limits the information available to resource managers, scientists, and the public.
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1984 Elsevier B.V. This manuscript is an author version with the final publication available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Wilson, W. H., Jr. (1984). Non‐overlapping distributions of spionid polychaetes: the relative importance of habitat and competition. Journal of Experimental Marine Biology and Ecology, 75(2), 119‐127. doi:10.1016/0022‐0981(84)90176‐X J. Exp. Mar. Bioi. Ecol., 1984, Vol. 75, pp. 119-127 119 Elsevier JEM 217 NON-OVERLAPPING DISTRIBUTIONS OF SPIONID POLYCHAETES: THE RELATIVE IMPORTANCE OF HABITAT AND COMPETITIONI W. HERBERT WILSON, JR. Harbor Branch Institution, Inc .. R.R. 1, Box 196, Fort Pierce, FL 33450. U.S.A. Abstract: The spionid polychaetes, Pygospio elegans Claparede, Pseudopolydora kempi (Southern), and Rhynchospio arenincola Hartman are found in False Bay, Washington. Two species, Pygospio elegans and Pseudopolydora kempi, co-occur in the high intertidal zone. The third species Rhynchospio arenincola occurs only in low intertidal areas. Reciprocal transplant experiments were used to test the importance of intraspecific density, interspecific density, and habitat on the survivorship of experimental animals. For all three species, only habitat had a significant effect. Individuals of each species survived better in experimental containers in their native habitat, regardless of the heterospecific and conspecific densities used in the experiments. The physical stresses associated with the prolonged exposure of the high intertidal site are experimentally shown to result in Rhynchospio mortality. From these experiments, habitat type is the only significant factor tested which can explain the observed distributions; the presence of confamilials has no detected effect on the survivorship of any species, suggesting that competition does not serve to maintain the patterns of distribution.
    [Show full text]
  • A Blind Abyssal Corambidae (Mollusca, Nudibranchia) from the Norwegian Sea, with a Reevaluation of the Systematics of the Family
    A BLIND ABYSSAL CORAMBIDAE (MOLLUSCA, NUDIBRANCHIA) FROM THE NORWEGIAN SEA, WITH A REEVALUATION OF THE SYSTEMATICS OF THE FAMILY ÁNGEL VALDÉS & PHILIPPE BOUCHET VALDÉS, ÁNGEL & PHILIPPE BOUCHET 1998 03 13. A blind abyssal Corambidae (Mollusca, Nudibranchia) SARSIA from the Norwegian Sea, with a reevaluation of the systematics of the family. – Sarsia 83:15-20. Bergen. ISSN 0036-4827. Echinocorambe brattegardi gen. et sp. nov. is described based on five eyeless specimens collected between 2538 and 3016 m depth in the Norwegian Sea. This new monotypic genus differs from other confamilial taxa in having the dorsum covered with long papillae and a radula formula n.3.1.3.n. The posterior notch in the notum and gill morphology, which have traditionally been used as generic characters in the family Corambidae, are considered to have little or no taxonomical value above species level. Instead of the currently described 11 nominal genera, we recognize as valid only Corambe and Loy, to which is now added Echinocorambe. Loy differs from Corambe in the asym- metrical lobes of the posterior notal notch and the presence of spicules in the notum. All other nominal genera are objective or subjective synonyms of these two. Ángel Valdés, Departamento de Biología de Organismos y Sistemas, Laboratorio de Zoología, Universidad de Oviedo, E-33071 Oviedo, Spain (E-mail: [email protected]). – Philippe Bouchet, Muséum National d’Histoire Naturelle, Laboratoire de Biologie des Invertébrés Marins et Malacologie, 55 Rue de Buffon, F-75005 Paris, France. KEYWORDS: Mollusca; Nudibranchia; Corambidae; new genus and new species; abyssal waters; Norwegian Sea. cal with transverse lamellae.
    [Show full text]