Abarenicola Pacifica Class: Polychaeta, Sedentaria, Scolecida

Total Page:16

File Type:pdf, Size:1020Kb

Abarenicola Pacifica Class: Polychaeta, Sedentaria, Scolecida Phylum: Annelida Abarenicola pacifica Class: Polychaeta, Sedentaria, Scolecida Order: The lugworm or sand worm Family: Arenicolidae Description pendages (Fig. 2). Size: Individuals often over 10 cm long and Parapodia: (Fig. 3) Segments 1–19 with re- 1 cm wide. Present specimen is duced noto- and neuropodia that are reddish approximately 4 cm in length (from South and are far from the lateral line. All parapodia Slough of Coos Bay). On the West coast, are absent in the caudal region. average length is 15 cm (Ricketts and Calvin Setae (chaetae): (Fig. 3) Bundles of notose- 1971). tae arise from notopodia near branchiae. Color: Head and abdomen orange, body a Short neurosetae extend along neuropodium. mixture of yellow, green and brown with par- Setae present on segments 1-19 only (Blake apodial areas and branchiae red (Kozloff and Ruff 2007). 1993). Eyes/Eyespots: None. General Morphology: A sedentary poly- Anterior Appendages: None. chaete with worm-like, cylindrical body that Branchiae: Prominent and thickly tufted in tapers at both ends. Conspicuous segmen- branchial region with bunched setae. Hemo- tation, with segments wider than they are globin makes the branchiae appear bright red long and with no anterior appendages (Kozloff 1993). (Ruppert et al. 2004). Individuals can be Burrow/Tube: Firm, mucus impregnated bur- identified by their green color, bulbous phar- rows are up to 40 cm long, with typical fecal ynx (Fig. 1), large branchial gills (Fig. 2) and castings at tail end. Head end of burrow is a J-shaped burrow marked at the surface collapsed as worm continually consumes mud with distinctive coiled fecal castings (Kozloff (Healy and Wells 1959). Water is pumped 1993). through burrow by pulsating movements of Body: The body of arenicolids can be divid- the body (Ruppert et al. 2004). ed into three regions based on the presence Pharynx: Thin-walled pharynx is simple and or absence of branchiae. used for continually feeding on sediment. Anterior: A non-retractile prostomium Pharynx described as a large, eversible sack is without appendages (Blake and Ruff with mucus glands called buccal papillae 2007, Fig. 2). Anterior prebranchial region (Healy and Wells 1959) (Fig. 1). of six setigers without branchiae and with Genitalia: strong setigerous annuli. Nephridia: Five pairs of nephridia are naked Trunk: Posterior to the prebranchial (without hoods) and situated between parapo- region is a medial branchial region with large dia on segments 5–9 (Fig. 2). They are branchial gills from setigers seven to 19 (13 sometimes difficult to observe. pairs). Thoracic epidermis very thick, Abarenicola specific characteristics strongly aerolated (Fauchald 1977). Posterior: Caudal region is apodous, Esophageal caeca: Dissection is necessary asetigerous and without appendages. The to identify Abarenicola species. Abarenicola pygidium tapers gradually to anus, no ap- pacifica is distinct in having esophageal caeca A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Hiebert, T.C. 2014. Abarenicola pacifica. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. comprised of one large anterior pair and 3–6 conformer and can tolerate a wide range of smaller pairs (Blake and Ruff 2007, Fig. 4). salinities (lower salinity limit 17.5) (Oglesby 1973). Possible Misidentifications Temperature: No information is available on Other Arenicolidae have the same temperature tolerance, though temperature bushy gills in the middle third of the body. fluctuation between 6 and 16° C has been Only the genus Abarenicola has well- found to significantly affect feeding rate separated neuropodia, a non-retractile pro- (Hymel and Plante 2000). stomium, more than one pair of esophageal Tidal Level: Individuals are common intertid- caeca, and five pairs of nephridiopores. ally, but no information on specific tide level is Both Arenicola marina and pusilla have available. Hobson (1967) suggests that distri- been found in Oregon estuaries. Abarenico- bution is instead based on sediment composi- la claparedii oceanica, has hooded nephri- tion. dial pores and esophageal caeca composed Associates: In a commensal relationship, of 7–9 smaller pairs. Abarenicola vagabun- Pinnixa schmitti is known to cohabit the bur- da, from Puget Sound (but possibly from row of A. pacifica (O’Clair and O’Clair 1998). Oregon) (Oglesby 1973), is usually larger Abundance: Often to 50/m2 (Kozloff 1974) and dark brown. It too, has hooded nephri- and very dense in specialized habitats. Proba- dial pores, and smaller esophageal caeca bly 2nd most abundant macroscopic animal in (11–18). Finally, the burrows of A. vagabun- Coos Bay (Porch 1970). A. pacifica was much da are less permanent than A. pacifica's, are less abundant than in preceding years-- it was found in deep sand and may be more sub- sparse (<1/m2) on Portside beach in April tidal (Hobson 1966). 2015 (Emlet pers com). Ecological Information Life-History Information Range: Type locality is Puget Sound (Healy Reproduction: Iteroparous. Eggs and sperm and Wells, 1959). Known range includes discharged from nephridiopores, while both Humboldt Bay, California to Alaska, Japan. sexes are in their burrows. Males release thin Local Distribution: A north Pacific form and membranous spermatophores (0.5–0.2 mm in the most common lugworm (family Are- diameter) which fall into female burrows and nicolidae) in Puget Sound area intertidally are ruptured by female setae (Okuda 1936; (Hobson 1966). Found in Coos Bay from Fernald et al. 1987). Oocytes are pink to pale estuary mouth to Coos River mouth (marker yellow and 160-190 µm in diameter with con- 15) and at Sunset Bay (Oglesby 1973). spicuous envelope (Fernald et al. 1987). Fer- Habitat: Individuals build substantial L- or J- tilization occurs in female's burrow. Broods shaped burrows in sand and mud, mixed are found within burrows January-early April gravel or mud sediments (South Slough of (Washington) and develop within gelatinous Coos Bay) (Kozloff 1974). Abarenicola masses (Fernald et al. 1987). pacifica tolerates a muddier, less Larva: Planktonic larvae are non-feeding and permeable, more poorly sorted sediment hatch from gelatinous masses within adult than does A. c. vagabunda (Hobson 1966), tubes as 2 setiger stages (Fernald et al. but does not live in very soft mud (Porch 1987). Only the larvae of two local Are- 1970). nicolidae species are known (Arenicola mari- Salinity: This species is not found in waters na and Abarenicola claparedii, Crumrine of low salinity or in heavily polluted anaero- 2001). bic conditions (Porch 1970), but is an osmo- A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Juvenile: Strathmann (ed.). University of Washing- Longevity: ton Press, Seattle, WA. Growth Rate: Relative growth rate of 0–6% 5. HEALY, E. A., and G. P. WELLS. 1959. per day, depending on age and food quality Three new lugworms (Arenicolidae, Poly- (Linton and Taghon 2000). chaeta) from the north Pacific area. Pro- Food: Primarily detritus, picked up by mu- ceedings of the Zoological Society of Lon- cus of proboscis (Fig. 1) and digested out of don. 133:315-335. sand and mud, which is then defecated. De- 6. HOBSON, K. D. 1966. Ecological oberva- pending on sediment type, A. pacificia may tions on Abarenicola species (Polychaeta) utilize a variety of feeding modes (deposit, of the north Pacific, M. S. University of suspension, direct dissolved organic matter Washinton, Seattle, WA. uptake) (Hylleberg 1975). Feeding activity 7. HOBSON, K. D. 1967. The feeding and by Abarenicola pacifica is instrumental in ecology of two North Pacific Abarenicola bioturbation and generation of clay laminae species. (Arenicolidae, Polychaeta). Bio- (Swinbanks 1981). logical Bulletin. 133:323-354. Predators: Arenicolids have many preda- 8. HYMEL, S. N., and C. J. PLANTE. 2000. tors including most estuarine creatures: man Feeding and bacteriolytic responses of the (for fish bait), birds, fish. deposit-feeder Abarenicola pacifica Behavior: Most research into the behavior (Polychaeta : Arenicolidae) to changes in of A. pacific is focused on bioturbation and temperature and sediment food concentra- particle selection (Hylleberg 1975). tion. Marine Biology. 136:1019-1027. 9. HYLLEBERG, J. 1975. Selective feeding Bibliography by Abarenicola pacifica with notes on 1. BLAKE, J. A., and E. R. RUFF. 2007. Abarenicola and a concept of gardening in Polychaeta, p. 309-410. In: Light and lugworms. Ophelia. 14:113-137. Smith manual: intertidal invertebrates 10. KOZLOFF, E. 1993. Seashore life of the from central California to Oregon. J. Carl- northern Pacific coast: an illustrated guide ton (ed.). University of California Press, to northern California, Oregon, Washing- Berkeley, CA. ton, and British Columbia. University of 2. CRUMRINE, L. 2001. Polychaeta, p. 39- Washington Press, Seattle, WA. 77. In: Identification guide to larval ma- 11. KOZLOFF, E. N. 1974. Keys to the marine rine invertebrates of the Pacific North- invertebrates of Puget Sound, the San west. A. Shanks (ed.). Oregon State Uni- Juan Archipelago, and adjacent regions. versity Press, Corvallis, OR. University of Washington Press, Seattle. 3. FAUCHALD, K. 1977. The polychaete 12. LINTON, D. L., and G. L. TAGHON. 2000. worms: definitions and keys to the or- Feeding, growth, and fecundity of ders, families, and genera. Natural Histo- Abarenicola pacifica in relation to sedi- ry Museum of Los Angeles County Sci- ment organic concentration. Journal of Ex- ence Series. 28:1-190. perimental Marine Biology and Ecology. 4. FERNALD, R. L., C. O. HERMANS, T. C. 254:85-107. LACALLI, W.
Recommended publications
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1984 Elsevier B.V. This manuscript is an author version with the final publication available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Wilson, W. H., Jr. (1984). Non‐overlapping distributions of spionid polychaetes: the relative importance of habitat and competition. Journal of Experimental Marine Biology and Ecology, 75(2), 119‐127. doi:10.1016/0022‐0981(84)90176‐X J. Exp. Mar. Bioi. Ecol., 1984, Vol. 75, pp. 119-127 119 Elsevier JEM 217 NON-OVERLAPPING DISTRIBUTIONS OF SPIONID POLYCHAETES: THE RELATIVE IMPORTANCE OF HABITAT AND COMPETITIONI W. HERBERT WILSON, JR. Harbor Branch Institution, Inc .. R.R. 1, Box 196, Fort Pierce, FL 33450. U.S.A. Abstract: The spionid polychaetes, Pygospio elegans Claparede, Pseudopolydora kempi (Southern), and Rhynchospio arenincola Hartman are found in False Bay, Washington. Two species, Pygospio elegans and Pseudopolydora kempi, co-occur in the high intertidal zone. The third species Rhynchospio arenincola occurs only in low intertidal areas. Reciprocal transplant experiments were used to test the importance of intraspecific density, interspecific density, and habitat on the survivorship of experimental animals. For all three species, only habitat had a significant effect. Individuals of each species survived better in experimental containers in their native habitat, regardless of the heterospecific and conspecific densities used in the experiments. The physical stresses associated with the prolonged exposure of the high intertidal site are experimentally shown to result in Rhynchospio mortality. From these experiments, habitat type is the only significant factor tested which can explain the observed distributions; the presence of confamilials has no detected effect on the survivorship of any species, suggesting that competition does not serve to maintain the patterns of distribution.
    [Show full text]
  • Molecular Phylogeny of the Family Capitellidae (Annelida)
    Title Molecular Phylogeny of the Family Capitellidae (Annelida) Author(s) Tomioka, Shinri; Kakui, Keiichi; Kajihara, Hiroshi Zoological Science, 35(5), 436-445 Citation https://doi.org/10.2108/zs180009 Issue Date 2018-10 Doc URL http://hdl.handle.net/2115/75605 Type article File Information Zoological Science35-5_436‒445(2018).pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ZOOLOGICAL436 SCIENCE 35: 436–445 (2018) S. Tomioka et al. © 2018 Zoological Society of Japan Molecular Phylogeny of the Family Capitellidae (Annelida) Shinri Tomioka1*, Keiichi Kakui2, and Hiroshi Kajihara2 1Rishiri Town Museum, Senhoshi, Rishiri Is., Hokkaido 097-0311, Japan 2Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo, Hokkaido 060-0810, Japan Capitellids have emerged as monophyletic in most but not all recent molecular phylogenies, indi- cating that more extensive taxon sampling is necessary. In addition, monophyly of most or all capitellid genera was questionable, as some diagnostic characters vary ontogenetically within individuals. We tested the monophyly of Capitellidae and eight capitellid genera using phyloge- netic analyses of combined 18S, 28S, H3, and COI gene sequences from 36 putative capitellid spe- cies. In our trees, Capitellidae formed a monophyletic sister group to Echiura, and Capitella was also monophyletic, separated by a long branch from other capitellids. Well-supported clades each containing representatives of different genera, or containing a subset of species within a genus, indicated that Barantolla, Heteromastus, and Notomastus are likely not monophyletic. We mapped three morphological characters traditionally used to define capitellid genera (head width relative to width of first segment, number of thoracic segments, and number of segments with capillary chae- tae) onto our tree.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Ecological Condition of the Estuaries of Oregon and Washington
    EPA 910-R-06-001 Alaska United States Region 10 Idaho Environmental Protection 1200 Sixth Avenue Oregon Agency Seattle, WA 98101 Washington Office of Environmental Assessment March 2006 Ecological Condition of the Estuaries of Oregon and Washington (blank page) EPA Region 10 Office of Environmental Assessment March 2006 Ecological Condition of the Estuaries of Oregon and Washington an Environmental Monitoring and Assessment Program (EMAP) Report Authors: Gretchen Hayslip1, Lorraine Edmond1, Valerie Partridge2, Walt Nelson3, Henry Lee3, Faith Cole3, Janet Lamberson3 , and Larry Caton4 March 2006 1 U.S. Environmental Protection Agency, Region 10, Seattle, Washington 2 Washington State Department of Ecology, Environmental Assessment Program, Olympia, Washington 3 U.S. Environmental Protection Agency, Office of Research and Development, Western Ecology Division, Newport, Oregon 4 Oregon Department of Environmental Quality, Portland, Oregon U.S. Environmental Protection Agency, Region 10 Office of Environmental Assessment 1200 Sixth Avenue Seattle, Washington 98101 Publication Number: EPA 910-R-06-001 Suggested Citation: Hayslip, G., L. Edmond, V. Partridge, W. Nelson, H. Lee, F. Cole, J. Lamberson , and L. Caton. 2006. Ecological Condition of the Estuaries of Oregon and Washington. EPA 910-R-06-001. U.S. Environmental Protection Agency, Office of Environmental Assessment, Region 10, Seattle, Washington. i EPA Region 10 Office of Environmental Assessment March 2006 (blank page) ii EPA Region 10 Office of Environmental Assessment March 2006
    [Show full text]
  • Interplay Between Abiotic Factors and Species Assemblages Mediated by the Ecosystem Engineer Sabellaria Alveolata
    Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier To cite this version: Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier. Interplay between abi- otic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuarine, Coastal and Shelf Science, Elsevier, 2018, 200, pp.1-18. 10.1016/j.ecss.2017.10.001. hal-02323051 HAL Id: hal-02323051 https://hal.archives-ouvertes.fr/hal-02323051 Submitted on 10 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 3 1 Title 4 5 2 Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria 6 7 3 alveolata (Annelida: Polychaeta) 8 9 4 Authors 10 11 5 Auriane G. Jones a,b,c, Stanislas F. Dubois a, Nicolas Desroy b, Jérôme Fournier c,d 12 6 Affiliations 13 14 7 a IFREMER, Laboratoire Centre de Bretagne, DYNECO LEBCO, 29280 Plouzané, France 15 b 16 8 IFREMER, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, BP 80108, 35801 Dinard cedex, France 17 9 18 10 c CNRS, UMR 7208 BOREA, 61 rue Buffon, CP 53, 75231 Paris cedex 05, France 19 20 11 d MNHN, Station de Biologie Marine, BP 225, 29182 Concarneau cedex, France 21 12 Corresponding author 22 23 Auriane G.
    [Show full text]
  • (Polychaeta: Scolecida) from Coiba Island, Eastern Pacific of Panama, with Description of a New Species
    Orbiniidae polychaetes (Polychaeta: Scolecida) from Coiba Island, eastern Pacific of Panama, with description of a new species Eduardo López, Pedro Cladera & Guillermo San Martín Laboratorio de Biología Marina e Invertebrados; Departamento de Biología (Zoología); Universidad Autónoma de Madrid. E-28049 Spain; Fax: +34 91 497 83 44; [email protected] Received 22-V-2002. Corrected 23-XI-2003. Accepted 09-VIII-2006. Abstract: Santa Cruz and El Gambute, two mangrove systems with associated tidal flats, were sampled in Coiba National Park, Coiba Island, Pacific of Panama. At each site, two samplings were done at low, middle and high intertidal levels in February and November of 1997. A new orbiniid species were found: Orbinia oligopapillata n. sp. is characterized by having 15-16 thoracic chaetigers with four or five rows of uncini and up to three papil- liform postchaetal processes on neuropodial lobes by the abdominal parapodia bearing flail-tipped neurochaetae, and by the presence on anterior-most abdominal chaetigers of interramal cirri and a low number of subpodial and stomach papillae. A specimen belonging to genus Leitoscoloplos Day, 1977 is described as “Leitoscoloplos sp.”, characterized by the lateral pouches on its abdominal chaetigers, a unique case for the family because these brooding structures have only been previously cited in two species of Scoloplos. Naineris sp. is characterized by the number of its thoracic chaetigers, branchiae, uncini and bilobed abdominal neuropodia with protruding aciculae. Rev. Biol. Trop. 54 (4): 1307-1318. Epub 2006 Dec. 15. Key words: mangrove, tidal flats, Tropical Eastern Pacific, Orbiniidae, brooding polychaeta. The Orbiniidae (Polychaeta: Scolecida) are Although limited, (each genus was represented burrowing polychaetes that can be found from only by type of species in the cladistic analy- low tidal to abyssal depths, acting in most cases sis, not considering intrageneric variability) as nonselective subsurface deposit feeders.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Interplay Between Abiotic Factors and Species Assemblages Mediated by the Ecosystem Engineer Sabellaria Alveolata (Annelida: Polychaeta)
    Estuarine, Coastal and Shelf Science 200 (2018) 1e18 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) * Auriane G. Jones a, b, c, , Stanislas F. Dubois a, Nicolas Desroy b,Jer ome^ Fournier c, d a IFREMER, Centre de Bretagne, DYNECO LEBCO, 29280 Plouzane, France b IFREMER, Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, BP 80108, 35801 Dinard cedex, France c CNRS, UMR 7208 BOREA, 61 rue Buffon, CP 53, 75231 Paris cedex 05, France d MNHN, Station de Biologie Marine, BP 225, 29182 Concarneau cedex, France article info abstract Article history: Sabellaria alveolata is a gregarious polychaete that uses sand particles to build three-dimensional Received 1 February 2017 structures known as reefs, fixed atop rocks or built on soft sediments. These structures are known to Received in revised form modify the local grain-size distribution and to host a highly diversified macrofauna, altered when the 4 October 2017 reef undergoes disturbances. The goal of this study was to investigate the different sedimentary and Accepted 6 October 2017 biological changes associated with the presence of a S. alveolata reef over two contrasting seasons (late Available online 7 October 2017 winter and late summer), and how these changes were linked. Three different sediments were considered: the engineered sediment (the actual reef), the associated sediment (the soft sediment Keywords: Honeycomb worm surrounding the reef structures) and a control soft sediment (i.e. no reef structures in close proximity).
    [Show full text]
  • 2A Annelida Polychaeta Aciculata Onuphidae Diopatra Spp
    Benthic Survey Results Site Phylum Class Order Family Scientific Name Weight(g) Quantity Average Weight(g) 2A Annelida Polychaeta Aciculata Onuphidae Diopatra spp. 0.0194 1 0.0194 Annelida Polychaeta Scolecida Capitellidae Mediomastus californiensis 0.0033 2 0.0017 Annelida Polychaeta Canalipalpata Cirratulidae Chaetozone spp. 0.0025 1 0.0025 2B Annelida Polychaeta Scolecida Capitellidae Mediomastus californiensis 0.0214 5 0.0043 Annelida Polychaeta Scolecida Maldanidae Praxillela spp. 0.0200 7 0.0029 Annelida Polychaeta Orbiniida Orbiniidae Naineris laevigata 0.0174 3 0.0058 Annelida Polychaeta Aciculata Pilariidae Pilargidae spp. 0.0022 1 0.0022 Annelida Polychaeta Aciculata Nephtyidae Aglaophamus inermis 0.0003 1 0.0003 Annelida Polychaeta Aciculata Hesionidae Nereis spp. 0.0009 1 0.0009 Annelida Polychaeta Canalipalpata Cirratulidae Chaetozone spp. 0.0008 1 0.0008 Annelida Polychaeta Scolecida paraonidae Paradoneis spp. 0.0012 1 0.0012 2C Annelida Polychaeta Phyllodocida Nereidae Perinereis spp. 0.0573 1 0.0573 Annelida Polychaeta Scolecida Maldanidae Praxillela spp. 0.0004 1 0.0004 Annelida Polychaeta Solecida Opheliidae Ophelina grandis 0.0010 1 0.0010 Annelida Polychaeta Aciculata Phyllodocidae Nephtys ciliata 0.0009 1 0.0009 Annelida Polychaeta Canalipalpata Cirratulidae Chaetozone spp. 0.0014 1 0.0014 Annelida Polychaeta Scolecida Capitellidae Mediomastus californiensis 0.0047 1 0.0047 Annelida Polychaeta Aciculata Nephtyidae Aglaophamus inermis 0.0023 1 0.0023 2D Annelida Polychaeta Aciculata Phyllodocidae Nephtys ciliata 0.0307 2 0.0154 Annelida Polychaeta Aciculata Dorvilleidae Dorvillea spp. 0.0324 10 0.0032 Annelida Polychaeta Solecida Cossuridae Cossurella spp. 0.0258 5 0.0052 Annelida Polychaeta Scolecida Maldanidae Praxillela spp. 0.0077 2 0.0039 Annelida Polychaeta Phyllodocida Glyceridae Glycera onomichiensis 0.4780 2 0.2390 Annelida Polychaeta Scolecida paraonidae Paradoneis spp.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • Systematics, Evolution and Phylogeny of Annelida – a Morphological Perspective
    Memoirs of Museum Victoria 71: 247–269 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Systematics, evolution and phylogeny of Annelida – a morphological perspective GÜNTER PURSCHKE1,*, CHRISTOPH BLEIDORN2 AND TORSTEN STRUCK3 1 Zoology and Developmental Biology, Department of Biology and Chemistry, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany ([email protected]) 2 Molecular Evolution and Animal Systematics, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany (bleidorn@ rz.uni-leipzig.de) 3 Zoological Research Museum Alexander König, Adenauerallee 160, 53113 Bonn, Germany (torsten.struck.zfmk@uni- bonn.de) * To whom correspondence and reprint requests should be addressed. Email: [email protected] Abstract Purschke, G., Bleidorn, C. and Struck, T. 2014. Systematics, evolution and phylogeny of Annelida – a morphological perspective . Memoirs of Museum Victoria 71: 247–269. Annelida, traditionally divided into Polychaeta and Clitellata, is an evolutionary ancient and ecologically important group today usually considered to be monophyletic. However, there is a long debate regarding the in-group relationships as well as the direction of evolutionary changes within the group. This debate is correlated to the extraordinary evolutionary diversity of this group. Although annelids may generally be characterised as organisms with multiple repetitions of identically organised segments and usually bearing certain other characters such as a collagenous cuticle, chitinous chaetae or nuchal organs, none of these are present in every subgroup. This is even true for the annelid key character, segmentation. The first morphology-based cladistic analyses of polychaetes showed Polychaeta and Clitellata as sister groups.
    [Show full text]