Leitoscoloplos Pugettensis Class: Polychaeta, Sedentaria, Scolecida

Total Page:16

File Type:pdf, Size:1020Kb

Leitoscoloplos Pugettensis Class: Polychaeta, Sedentaria, Scolecida Phylum: Annelida Leitoscoloplos pugettensis Class: Polychaeta, Sedentaria, Scolecida A burrowing polychaete worm Order: Family: Orbiniidae, Orbiniinae Taxonomy: In 1957 Pettibone determined dominal region between setigers 15–21 that H. elongatus was a homonym a different (Hartman 1969). Thoracic dorsum flat and species named H. elongatus and was there- ventrum convex. No ventral papillae in poste- fore renamed H. pugettensis (Blake 1980). rior thorax (genus Leitoscoloplos, Day 1977) Haploscoloplos became a junior synonym of (Fig. 1). Scoloplos (for nomenclature see Blake Posterior: Pygidium slightly expanded, 1980) in 1977 and the genus Leitoscoloplos hemispherical). Anus dorsal. Long, slender was erected which now includes all former anal cirri (Scoloplos acmeceps, Fig. 1, John- Haploscoloplos species with pointed thoracic son 1901). setae and without parapodial hooks, includ- Parapodia: Biramous and lateral anteriorly ing L. pugettensis. (family Ordiniidae, Fauchald 1977), dorsal posteriorly (Harman 1969) (Fig. 1). Anterior- Description most podia short. Thorax with small papillar Size: Individuals range in size from 100–200 postsetal lobes (Hartman 1969) (Fig. 3). Ab- mm in length and 3 mm in width (Hartman dominal parapodia supported by acicula (Fig. 1969) with up to 300 setigers (Blake 1996). 5) and lobes become long and leaf-like poste- The specimen examined from Coos Bay was riorly (Johnson 1901) (Fig. 5). Abdominal no- 75 mm long with 136 segments. topodia with subtriangular postsetal lobes Color: When sexually mature, males are (Blake 1996). Abdominal neuropodia with bi- pink and females grey (Blake 1980). fid lobes. Inflated neuropodial flange present General Morphology: Orbiniids can be rec- (Blake 1996). ognized by their body morphology: anterior Setae (chaetae): Simple (not jointed) (family region is firm while the abdominal region is Orbiniidae Fauchald 1977). All slender and fragile, ragged and easily lost and by the pointed: leitos = simple, scoloplos = thorn presence of camerated and crenulated se- (Day 1977). Notosetae and neurosetae finely tae (Blake and Ruff 2007). crenulate (Blake 1996) in thorax (Fig. 4a). Body: Long, slender with 200–300 short Abdominal capillary noto- and neurosetae, as segments (Johnson 1901). Body most in thorax, have few furcate spines (Hartman broad at segments 9–17, narrowing gradual- 1969) (Fig. 4c). ly after segment 200. Eyes/Eyespots: None. Anterior: Prostomium small, acutely Anterior Appendages: None (family Orbini- pointed and conical (genus Leitoscoloplos, idae, Fauchald 1977). Day 1977) and with small palpode at apex Branchiae: Begin on setigers 13–18 (Fig. 2a). Peristomium bears one ring and (Hartman 1969) .Setiger 18 in present speci- width increases rapidly toward the second mens (from Coos Bay). Branchiae small (i.e. segment (Fig. 2a). First segment achaetous short and narrow) anteriorly, becoming flat (Figs. 1, 2). and subdistally inflated, laterally fringed Trunk: Thorax composed of 14–21 (“fimbriated”) and larger posteriorly (Fig. 5) setigers with transition from thoracic to ab- A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Hiebert, T.C. 2015. Leitoscoloplos pugettensis. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charles- ton, OR. (Hartman 1969). Abdominal branchiae are ginning on setigers 4–10 (not on all posterior twice as long as notopodial lobes (Blake segments). The body in Paraonidae is not 1996). divided into distinct regions by setae and par- Burrow/Tube: These burrowing poly- apodial shapes, but changes gradually along chaetes do not inhabit permanent burrows the body (not distinctly as in Orbiniidae, Fau- or tubes (Blake and Ruff 2007). chald 1977). A Paraonidae prostomium can Pharynx: Bears eversible proboscis with have a medial antenna, which are lacking in leaf-shaped lobes (Fig. 2b). Orbiniidae. They have branchiae on some Genitalia: median setigers in most species. The para- Nephridia: podia are lateral. Local paraonid genera in- clude: Aricidea, Cirrophorus, Paraonella and Possible Misidentifications Levinsenia (= Tauberia) (Hobson and Banse The order Orbiniida (Fauchald 1977) 1981; Blake and Ruff 2007). includes the families Orbiniidae and Paraon- Orbiniidae genera in the subfamily Pro- idae, the latter comprising smaller species toarciinae are small (less than 20 mm), have (less than 20 mm in length) (Blake and Ruff rounded prostomium, 1–2 asetigerous anteri- 2007). The order is characterized by a lack or segments, two peristomial rings and can of prostomial appendages, maximum of two lack branchiae. Recent research suggests asetigerous anterior segments, a lack of ad- that many Protoarciinae species are simply ditional cephalized segments or palps, sim- juvenile orbiniids (Blake 1996; 2000b). Gene- ple setae and an eversible pharynx that is ra include: either an axial sac or biramous (Fauchald Orbiniella, with two asetigerous anteri- 1977). Members of the family Orbiniidae or segments and no branchiae. Neuropodia have a prostomium and peristomium without have both hooks and capillary setae (Hobson appendages, one to two asetigerous anterior and Banse 1981). Orbiniella nuda is found segments and lateral thoracic parapodia, intertidally in Washington and British Colum- becoming dorsal abdominally. Setae can be bia, amongst gravel and rock. Para- capillary or simple hooks and some species orbiniella, a monotypic northeastern Pacific have brush-topped bifid or furcate setae. genus (Hobson and Banse 1981). Orbiniidae and Paraonidae can be distin- Protoaricia spp. have two asetigerous guished by peristomial rings, where orbiniids segments, are less than 6 mm in length and have one and paraonids have two (Blake have been found in northern California (Blake 2000). 1975). There are several similar families (not Protoariciella differs from Protoaricia by in the order Orbiniida): Ophelidae are short the presence of neuropodial hooks in the ab- and stout and have a strong ventral groove. dominal region (Hobson and Banse 1981). Goniadidae and Glyceridae have palps or Most notosetae are forked. Its branchiae some kind of buccal appendage. Am- begin at setigers 4–5 and continue to setigers pharetidae have retractible tentacles and 28–47. Protoariciella oligoranchia is found in Lumbrineridae have hard jaw pieces and British Columbia (Hobson 1976). hooded hooks among the setae (uncini). Polychaetes in the subfamily Orbini- Among those families which are orb- inae (including L. pugettensis) have only 1 iniids, the Paraonidae are small and often asetigerous anterior segment and its mem- overlooked, they have branchiae occurring bers are usually over 20 mm in length. Local only on maximum of 15–20 segments, be- genera in the Orbiniinae include: A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Naineris, which has a broadly round- tigers 13–18 in L. pugettensis. ed prostomium (unlike that of Leitoscolo- Ecological Information plos). Naineris dendritica, often found in al- Range: Alaska to southern California gae or in the marine grass (Phyllospadix), (Hartman 1969). occurs inside Coos Bay (Hartman and Reish Local Distribution: In Coos Bay including 1950) and offshore. Naineris quadricuspida South Slough, Shore Acres and offshore. and N. uncinata are found farther north Also Columbia River mouth and Yaquina Bay. (Hobson and Banse 1981). Habitat: Burrows in sandy shores (Johnson Orbinia have pointed prostomium and 1901) in gravelly, silty, fine sands (Parkinson one asetigerous anterior segment (as in L. 1978) or fine mud (Barnard and Reish 1959). pugettensis), but they also have very con- Individuals found in most substrates except spicuous ventral papillae on the posterior for black sulfide mud. Found occasionally thoracic segments, which are lacking in L. with eelgrass or algae, but not as closely as- pugettensis. Orbinia johnsoni is a rocky in- sociated with plant growth as in Naineris tertidal species. (Blake 1975). In Bodega Bay, California, Scoloplos is the genus most likely to most common in sandy mud with a large grain be confused with Leitoscoloplos. Scoloplos size and with little algal (Ulva) cover spp. have a pointed prostomium, one asetig- (Parkinson 1978). erous anterior segment and no ventral tho- Salinity: Found in salinities of 30 in Coos racic papillae. These two genera must be Bay. separated by their setae: Scoloplos have Temperature: Larvae successfully cultured at blunt spines as well as slender pointed se- 14–15˚C (Blake 1980). tae in the thoracic neuropodia. Scoloplos Tidal Level: Near low-water mark (Johnson acmeceps has a few incomplete rows of 1901). Also subtidal, but not as often as curved and ridged uncini in its thoracic neu- Scoloplos in Coos Bay, down to 380 m ropodia. Some of these neuropodia also (Parkinson 1978). have a single post-setal lobe. This species Associates: is found in the Coos Bay and Umpqua estu- Abundance: One of the most common inter- aries, usually subtidally. In California, it is tidal and subtidal benthic polychaetes
Recommended publications
  • (Annelida: Orbiniidae) with Numerous Stomach Papillae, from the Gulf of California, Eastern Pacific
    Contributions to Zoology, 83 (2) 133-150 (2014) Anatomical and morphometric analysis of a new species of Leitoscoloplos (Annelida: Orbiniidae) with numerous stomach papillae, from the Gulf of California, Eastern Pacific Pablo Hernández-Alcántara1, Vivianne Solís-Weiss2, 3 1 Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cdad Universitaria, D.F., 04510, Mexico 2 Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prol Av Niños Heroes s/n, Puerto Morelos Quintana Roo, 77580, Mexico 3 E-mail: [email protected] Key words: Leitoscoloplos emendation, Leitoscoloplos multipapillatus sp. nov., Mexican Pacific, Polychaeta Abstract Introduction The morphological and morphometric analyses of 88 orbiniids The family Orbiniidae Hartman, 1942 comprises a from the continental shelf of the Gulf of California lacking group of deposit-feeding polychaetes, distributed in all thoracic neuropodial hooks confirmed that a new species,Leito - the world seas. Following Hartman’s (1957) compre- scoloplos multipapillatus, described herein, is present along with Leitoscoloplos panamensis (Monro. 1933), already recorded hensive systematic review of the orbiniids, which in- there. The new species is closely related to L. panamensis, but cluded redefining all recognized genera, the family was can be clearly separated from this, and all other species of Leito- divided into the sub-families Orbiniinae (with one scoloplos, by the unique presence of up to 14 stomach papillae peristomial ring) and Protoariciinae (with two rings). per chaetiger. A third taxon was identified, Leitoscoloplos sp., Subsequently, Blake’s studies (1996) on their larval and which is morphologically indistinguishable from L.
    [Show full text]
  • Abarenicola Pacifica Class: Polychaeta, Sedentaria, Scolecida
    Phylum: Annelida Abarenicola pacifica Class: Polychaeta, Sedentaria, Scolecida Order: The lugworm or sand worm Family: Arenicolidae Description pendages (Fig. 2). Size: Individuals often over 10 cm long and Parapodia: (Fig. 3) Segments 1–19 with re- 1 cm wide. Present specimen is duced noto- and neuropodia that are reddish approximately 4 cm in length (from South and are far from the lateral line. All parapodia Slough of Coos Bay). On the West coast, are absent in the caudal region. average length is 15 cm (Ricketts and Calvin Setae (chaetae): (Fig. 3) Bundles of notose- 1971). tae arise from notopodia near branchiae. Color: Head and abdomen orange, body a Short neurosetae extend along neuropodium. mixture of yellow, green and brown with par- Setae present on segments 1-19 only (Blake apodial areas and branchiae red (Kozloff and Ruff 2007). 1993). Eyes/Eyespots: None. General Morphology: A sedentary poly- Anterior Appendages: None. chaete with worm-like, cylindrical body that Branchiae: Prominent and thickly tufted in tapers at both ends. Conspicuous segmen- branchial region with bunched setae. Hemo- tation, with segments wider than they are globin makes the branchiae appear bright red long and with no anterior appendages (Kozloff 1993). (Ruppert et al. 2004). Individuals can be Burrow/Tube: Firm, mucus impregnated bur- identified by their green color, bulbous phar- rows are up to 40 cm long, with typical fecal ynx (Fig. 1), large branchial gills (Fig. 2) and castings at tail end. Head end of burrow is a J-shaped burrow marked at the surface collapsed as worm continually consumes mud with distinctive coiled fecal castings (Kozloff (Healy and Wells 1959).
    [Show full text]
  • Molecular Phylogeny of the Family Capitellidae (Annelida)
    Title Molecular Phylogeny of the Family Capitellidae (Annelida) Author(s) Tomioka, Shinri; Kakui, Keiichi; Kajihara, Hiroshi Zoological Science, 35(5), 436-445 Citation https://doi.org/10.2108/zs180009 Issue Date 2018-10 Doc URL http://hdl.handle.net/2115/75605 Type article File Information Zoological Science35-5_436‒445(2018).pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ZOOLOGICAL436 SCIENCE 35: 436–445 (2018) S. Tomioka et al. © 2018 Zoological Society of Japan Molecular Phylogeny of the Family Capitellidae (Annelida) Shinri Tomioka1*, Keiichi Kakui2, and Hiroshi Kajihara2 1Rishiri Town Museum, Senhoshi, Rishiri Is., Hokkaido 097-0311, Japan 2Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo, Hokkaido 060-0810, Japan Capitellids have emerged as monophyletic in most but not all recent molecular phylogenies, indi- cating that more extensive taxon sampling is necessary. In addition, monophyly of most or all capitellid genera was questionable, as some diagnostic characters vary ontogenetically within individuals. We tested the monophyly of Capitellidae and eight capitellid genera using phyloge- netic analyses of combined 18S, 28S, H3, and COI gene sequences from 36 putative capitellid spe- cies. In our trees, Capitellidae formed a monophyletic sister group to Echiura, and Capitella was also monophyletic, separated by a long branch from other capitellids. Well-supported clades each containing representatives of different genera, or containing a subset of species within a genus, indicated that Barantolla, Heteromastus, and Notomastus are likely not monophyletic. We mapped three morphological characters traditionally used to define capitellid genera (head width relative to width of first segment, number of thoracic segments, and number of segments with capillary chae- tae) onto our tree.
    [Show full text]
  • (Polychaeta: Scolecida) from Coiba Island, Eastern Pacific of Panama, with Description of a New Species
    Orbiniidae polychaetes (Polychaeta: Scolecida) from Coiba Island, eastern Pacific of Panama, with description of a new species Eduardo López, Pedro Cladera & Guillermo San Martín Laboratorio de Biología Marina e Invertebrados; Departamento de Biología (Zoología); Universidad Autónoma de Madrid. E-28049 Spain; Fax: +34 91 497 83 44; [email protected] Received 22-V-2002. Corrected 23-XI-2003. Accepted 09-VIII-2006. Abstract: Santa Cruz and El Gambute, two mangrove systems with associated tidal flats, were sampled in Coiba National Park, Coiba Island, Pacific of Panama. At each site, two samplings were done at low, middle and high intertidal levels in February and November of 1997. A new orbiniid species were found: Orbinia oligopapillata n. sp. is characterized by having 15-16 thoracic chaetigers with four or five rows of uncini and up to three papil- liform postchaetal processes on neuropodial lobes by the abdominal parapodia bearing flail-tipped neurochaetae, and by the presence on anterior-most abdominal chaetigers of interramal cirri and a low number of subpodial and stomach papillae. A specimen belonging to genus Leitoscoloplos Day, 1977 is described as “Leitoscoloplos sp.”, characterized by the lateral pouches on its abdominal chaetigers, a unique case for the family because these brooding structures have only been previously cited in two species of Scoloplos. Naineris sp. is characterized by the number of its thoracic chaetigers, branchiae, uncini and bilobed abdominal neuropodia with protruding aciculae. Rev. Biol. Trop. 54 (4): 1307-1318. Epub 2006 Dec. 15. Key words: mangrove, tidal flats, Tropical Eastern Pacific, Orbiniidae, brooding polychaeta. The Orbiniidae (Polychaeta: Scolecida) are Although limited, (each genus was represented burrowing polychaetes that can be found from only by type of species in the cladistic analy- low tidal to abyssal depths, acting in most cases sis, not considering intrageneric variability) as nonselective subsurface deposit feeders.
    [Show full text]
  • Soil-Dwelling Polychaetes: Enigmatic As Ever? Some Hints on Their
    Contributions to Zoology, 70 (3) 127-138 (2001) SPB Academic Publishing bv, The Hague Soil-dwelling polychaetes: enigmatic as ever? Some hints on their phylogenetic relationships as suggested by a maximum parsimony analysis of 18S rRNA gene sequences ³ Emilia Rota Patrick Martin² & Christer Erséus ¹, 1 di Dipartimento Biologia Evolutivei. Universitd di Siena, via P. A. Mattioli 4. IT-53100 Siena, Italy, e-mail: 2 Institut des Sciences naturelles de des [email protected]; royal Belgique, Biologic Eaux donees, 29 rue Vautier, B-1000 e-mail: 3 Bruxelles, Belgium, [email protected]; Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden, e-mail: [email protected] Keywords: Terrestrial Polychaeta, Parergodrilus heideri, Stygocapitella subterranea, Hrabeiella I8S rRNA periglandulata, gene, molecular phylogeny, rapid radiation Abstract Collectionof new specimens 130 DNA extraction, amplification and sequencing 130 Alignment To re-evaluate 130 the various hypotheses on the systematic position of Phylogenetic analyses 130 Parergodrilus heideri Reisinger, 1925 and Hrabeiella Results 132 periglandulata Pizl & Chalupský, 1984,the sole truly terrestrial Discussion 132 non-clitellateannelidsknown to date, their phylogenetic relation- ships Acknowledgements 136 were investigated using a data set of new 18S rDNA References 136 of sequences these and other five relevant annelid taxa, including an unknown of species Ctenodrilidae, as well as homologous sequences available for 18 already polychaetes, one aphano- neuran, 11 clitellates, two pogonophorans, one echiuran, one Introduction sipunculan, three molluscs and two arthropods. Two different alignments were constructed, according to analgorithmic method terrestrial forms constitute (Clustal Truly a tiny minority W) and on the basis of a secondary structure model non-clitellate annelids, (DCSE), A maximum parsimony analysis was performed with among only represented by arthropods asan unambiguous outgroup.
    [Show full text]
  • Polychaete Worms Definitions and Keys to the Orders, Families and Genera
    THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • 2A Annelida Polychaeta Aciculata Onuphidae Diopatra Spp
    Benthic Survey Results Site Phylum Class Order Family Scientific Name Weight(g) Quantity Average Weight(g) 2A Annelida Polychaeta Aciculata Onuphidae Diopatra spp. 0.0194 1 0.0194 Annelida Polychaeta Scolecida Capitellidae Mediomastus californiensis 0.0033 2 0.0017 Annelida Polychaeta Canalipalpata Cirratulidae Chaetozone spp. 0.0025 1 0.0025 2B Annelida Polychaeta Scolecida Capitellidae Mediomastus californiensis 0.0214 5 0.0043 Annelida Polychaeta Scolecida Maldanidae Praxillela spp. 0.0200 7 0.0029 Annelida Polychaeta Orbiniida Orbiniidae Naineris laevigata 0.0174 3 0.0058 Annelida Polychaeta Aciculata Pilariidae Pilargidae spp. 0.0022 1 0.0022 Annelida Polychaeta Aciculata Nephtyidae Aglaophamus inermis 0.0003 1 0.0003 Annelida Polychaeta Aciculata Hesionidae Nereis spp. 0.0009 1 0.0009 Annelida Polychaeta Canalipalpata Cirratulidae Chaetozone spp. 0.0008 1 0.0008 Annelida Polychaeta Scolecida paraonidae Paradoneis spp. 0.0012 1 0.0012 2C Annelida Polychaeta Phyllodocida Nereidae Perinereis spp. 0.0573 1 0.0573 Annelida Polychaeta Scolecida Maldanidae Praxillela spp. 0.0004 1 0.0004 Annelida Polychaeta Solecida Opheliidae Ophelina grandis 0.0010 1 0.0010 Annelida Polychaeta Aciculata Phyllodocidae Nephtys ciliata 0.0009 1 0.0009 Annelida Polychaeta Canalipalpata Cirratulidae Chaetozone spp. 0.0014 1 0.0014 Annelida Polychaeta Scolecida Capitellidae Mediomastus californiensis 0.0047 1 0.0047 Annelida Polychaeta Aciculata Nephtyidae Aglaophamus inermis 0.0023 1 0.0023 2D Annelida Polychaeta Aciculata Phyllodocidae Nephtys ciliata 0.0307 2 0.0154 Annelida Polychaeta Aciculata Dorvilleidae Dorvillea spp. 0.0324 10 0.0032 Annelida Polychaeta Solecida Cossuridae Cossurella spp. 0.0258 5 0.0052 Annelida Polychaeta Scolecida Maldanidae Praxillela spp. 0.0077 2 0.0039 Annelida Polychaeta Phyllodocida Glyceridae Glycera onomichiensis 0.4780 2 0.2390 Annelida Polychaeta Scolecida paraonidae Paradoneis spp.
    [Show full text]
  • Biodiversity Action Plan
    CORRIB DEVELOPMENT BIODIVERSITY ACTION PLAN 2014-2019 Front Cover Images: Sruwaddacon Bay Evening Lady’s Bedstraw at Glengad Green-veined White Butterfly near Leenamore Common Dolphin Vegetation survey at Glengad CORRIB DEVELOPMENT BIODIVERSITY ACTION PLAN 1 Leenamore Inlet CORRIB DEVELOPMENT 2 BIODIVERSITY ACTION PLAN LIST OF CONTENTS 2.4 DATABASE OF BIODIVERSITY 39 3 THE BIODIVERSITY A CKNOWLEDGEMENTS 4 ACTION PLAN 41 FOREWORd 5 3.1 ESTABLISHING PRIORITIES FOR CONSERVATION 41 EXECUTIVE SUMMARY 6 3.1.1 HABITATS 41 1 INTRODUCTION 8 3.1.2 SPECIES 41 1.1 BIODIVERSITY 8 3.2 AIMS 41 1.1.1 WHAT is biodiversity? 8 3.3 OBJECTIVES AND acTIONS 42 1.1.2 WHY is biodiversity important? 8 3.4 MONITORING, EVALUATION 1.2 INTERNATIONAL AND NATIONAL CONTEXT 9 AND IMPROVEMENT 42 1.2.1 CONVENTION on BIODIVERSITY 9 3.4.1 MONITORING 42 1.2.2 NATIONAL and local implementation 9 3.4.2 EVALUATION and improvement 43 1.2.3 WHY A biodiversity action plan? 10 TABLE 5 SUMMARY of obJECTIVES and actions for THE conservation of habitats and species 43 3.4.3 Reporting, commUNICATING and 2 THE CORRIB DEVELOPMENT VERIFICATION 44 AND BIODIVERSITY 11 3.4.3.1 ACTIONS 44 2.1 AN OVERVIEW OF THE CORRIB 3.4.3.2 COMMUNICATION 44 DEVELOPMENT 11 3.5 STAKEHOLDER ENGAGEMENT AND FIG 1 LOCATION map 11 PARTNERSHIPS FOR BIODIVERSITY 44 FIG 2 Schematic CORRIB DEVELOPMENT 12 3.5.1 S TAKEHOLDER engagement and CONSULTATION 44 2.2 DESIGNATED CONSERVATION SITES AND THE CORRIB GaS DEVELOPMENT 13 3.5.2 PARTNERSHIPS for biodiversity 44 3.5.3 COMMUNITY staKEHOLDER engagement 45 2.2.1 DESIGNATED
    [Show full text]
  • Systematics, Evolution and Phylogeny of Annelida – a Morphological Perspective
    Memoirs of Museum Victoria 71: 247–269 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Systematics, evolution and phylogeny of Annelida – a morphological perspective GÜNTER PURSCHKE1,*, CHRISTOPH BLEIDORN2 AND TORSTEN STRUCK3 1 Zoology and Developmental Biology, Department of Biology and Chemistry, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany ([email protected]) 2 Molecular Evolution and Animal Systematics, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany (bleidorn@ rz.uni-leipzig.de) 3 Zoological Research Museum Alexander König, Adenauerallee 160, 53113 Bonn, Germany (torsten.struck.zfmk@uni- bonn.de) * To whom correspondence and reprint requests should be addressed. Email: [email protected] Abstract Purschke, G., Bleidorn, C. and Struck, T. 2014. Systematics, evolution and phylogeny of Annelida – a morphological perspective . Memoirs of Museum Victoria 71: 247–269. Annelida, traditionally divided into Polychaeta and Clitellata, is an evolutionary ancient and ecologically important group today usually considered to be monophyletic. However, there is a long debate regarding the in-group relationships as well as the direction of evolutionary changes within the group. This debate is correlated to the extraordinary evolutionary diversity of this group. Although annelids may generally be characterised as organisms with multiple repetitions of identically organised segments and usually bearing certain other characters such as a collagenous cuticle, chitinous chaetae or nuchal organs, none of these are present in every subgroup. This is even true for the annelid key character, segmentation. The first morphology-based cladistic analyses of polychaetes showed Polychaeta and Clitellata as sister groups.
    [Show full text]
  • Scolecida; Orbiniidae) in Tyrrhenian Sea (Western Mediterranean) Giulia Atzori1*, Eduardo López2, Pierantonio Addis1, Andrea Sabatini1 and Serenella Cabiddu1
    Atzori et al. Marine Biodiversity Records (2016) 9:5 DOI 10.1186/s41200-016-0017-6 MARINE RECORD Open Access First record of the alien polychaete Naineris setosa (Scolecida; Orbiniidae) in Tyrrhenian Sea (Western Mediterranean) Giulia Atzori1*, Eduardo López2, Pierantonio Addis1, Andrea Sabatini1 and Serenella Cabiddu1 Abstract During a survey in Santa Gilla, a Tyrrhenian lagoon located in southern Sardinia, several specimens of the alien polychaete Naineris setosa were found. 1) A brief description of the specimens is presented; they possess the rounded prostomium and the crenulated capillary chaetae typical of the genus, but they are characterized by the absolute lacking of uncini or subuluncini in thoracic neuropodia, which is unique trait within Naineris; 2) some environmental characteristics of the collection site are measured; 3) the description and the distribution of the specimens are also provided. Keywords: Introduced species, Coastal lagoon, Mediterranean Sea, polychaeta, Naineris setosa Background detritivorous, burrowing organisms (López 2012). In the Occurrence of alien species has altered marine ecosystems Mediterranean Sea, the native fauna of Orbiniidae is all over the world. The Mediterranean Sea is one of the composed of 13 species (López 2012) and the genus marine areas most affected by biological invasions (Zenetos Naineris Blainville, 1828 is represented only by N. laevi- et al. 2010). A recent revision (Coll et al. 2010) considers it gata (Gube, 1855). Apart from N. setosa (Verrill, 1900), as a biodiversity hotspot, harbouring about 17,000 species, other orbiniids, namely N. quadraticeps Day, 1965 and ofwhichmorethan600(3.3%)arealienones. Leitoscoloplos kerguelensis (McIntosh, 1885), have been Species belonging to the class Polychaeta can be found in also recorded as alien species in this area but these re- every marine benthic environment from littoral to hadal ports are currently considered questionable (Zenetos depths.Theyplayakeyroleinthetrophicecologyofthese et al.
    [Show full text]