Program & Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of Ampharete (Annelida: Ampharetidae) from The
European Journal of Taxonomy 531: 1–16 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.531 www.europeanjournaloftaxonomy.eu 2019 · Parapar J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article A new species of Ampharete (Annelida: Ampharetidae) from the West Shetland shelf (NE Atlantic Ocean), with two updated keys to the species of the genus in North Atlantic waters Julio PARAPAR 1,*, Juan MOREIRA 2 & Ruth BARNICH 3 1 Departamento de Bioloxía, Universidade da Coruña, Rúa da Fraga 10, 15008 A Coruña, Galicia, Spain. 2 Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain. 2 Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain. 3 Thomson Unicomarine Ltd., Compass House, Surrey Research Park, Guildford, GU2 7AG, United Kingdom. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1urn:lsid:zoobank.org:author:CE188F30-C9B0-44B1-8098-402D2A2F9BA5 2urn:lsid:zoobank.org:author:B1E38B9B-7751-46E0-BEFD-7C77F7BBBEF0 3urn:lsid:zoobank.org:author:F1E3AEB7-0C77-41BB-8A6C-F8B429F17DA1 Abstract. Ampharete oculicirrata sp. nov. (Annelida: Ampharetidae) is described from samples collected by the Joint Nature Conservation Committee and Marine Scotland Science, in the West Shetland Shelf NCMPA in the NE Atlantic. This species is characterised by a very small body size, thin and slender paleae, twelve thoracic and eleven abdominal uncinigers, presence of eyes both in the prostomium and the pygidium, the latter provided with a pair of long lateral cirri. -
Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages. -
Annelida, Amphinomidae) in the Mediterranean Sea with an Updated Revision of the Alien Mediterranean Amphinomids
A peer-reviewed open-access journal ZooKeys 337: 19–33 (2013)On the occurrence of the firewormEurythoe complanata complex... 19 doi: 10.3897/zookeys.337.5811 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids Andrés Arias1, Rômulo Barroso2,3, Nuria Anadón1, Paulo C. Paiva4 1 Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, Oviedo 33071, Spain 2 Pontifícia Universidade Católica do Rio de Janeiro , Rio de Janeiro, Brazil 3 Museu de Zoologia da Unicamp, Campinas, SP, Brazil 4 Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, RJ, Brasil Corresponding author: Andrés Arias ([email protected]) Academic editor: C. Glasby | Received 17 June 2013 | Accepted 19 September 2013 | Published 30 September 2013 Citation: Arias A, Barroso R, Anadón N, Paiva PC (2013) On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. ZooKeys 337: 19–33. doi: 10.3897/zookeys.337.5811 Abstract The presence of two species within the Eurythoe complanata complex in the Mediterranean Sea is reported, as well as their geographical distributions. One species, Eurythoe laevisetis, occurs in the eastern and cen- tral Mediterranean, likely constituting the first historical introduction to the Mediterranean Sea and the other, Eurythoe complanata, in both eastern and Levantine basins. Brief notes on their taxonomy are also provided and their potential pathways for introduction to the Mediterranean are discussed. -
SCAMIT Newsletter Vol. 1 No. 2 1982
TAXONOMIC INTERCAL1BRAT10N NEWSLETTER May, 1932 Number 2 Next Scheduled Meeting: June lA, 1982 at 9:30 a.m. Place: Marine Biological Consultants 9^7 Newhal1 Street Costa Mesa, California 92627 Topic Taxonomic Group: Amphinomidae, Euphrosinidae, Phyllodocidae MINUTES FROM MAY 17, 1982 Name Fourteen different names with accompanying acronyms were suggested. Because there were so many, it was decided to vote for a name by ballot and talley the results at the June meeting. One ballot is enclosed in this Newsletter. Please bring it to the next meeting or mail it to Ann Martin by June 11. Make additional copies of the ballot for each member of your Company. Dues Unfortunately dues are going to be ch-arged. The dues will help defray costs incurred for storing the reference collection, paper, postage, and other unforeseen expenses. Dues will be $5.00 per year beginning June, 1982. This amount will be adjusted after six months if it is insufficient. Dues will be collected at the June meeting. For those unable to attend the meeting, dues can be mailed to.Ann Martin and a receipt will be mailed back. Specimen Exchange. Several points concerning the specimen exchange were brought out that will help. - Participants should be responsible for getting their specimens to the meeting, either in person or by mail. - Mark the specimens sequentially to prevent mixing of different groups. - Bring the voucher specimens to meeting to check them with ones from the specimen exchange. - When deciding what species to select for the specimen exchange, first call Tony Phillips, (213) 322-3131 extension 269, and tell him what you plan to bring in. -
Eunicida and Amphinomida Polychaetes (Annelida) Inhabiting Dead Coral Fragments in the Chinchorro Bank Biosphere Reserve, Mexican Caribbean
Eunicida and Amphinomida polychaetes (Annelida) inhabiting dead coral fragments in the Chinchorro Bank Biosphere Reserve, Mexican Caribbean Pablo Hernández-Alcántara1, Ismael Narciso Cruz-Pérez2 & Vivianne Solís-Weiss3 1. Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Cd. Universitaria, Ciudad de México, 04510, México, [email protected] 2. Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla 5 de mayo S/N esquina Fuerte de Loreto, Colonia Ejército de Oriente, C.P. 09230, Ciudad de México, México, [email protected] 3. Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. Prol. Av. Niños Héroes s/n Puerto Morelos Quintana Roo, 77580, México, [email protected] Received 08-VII-2018. Corrected 20-V-2019. Accepted 30-VI-2019. ABSTRACT. Introduction: The polychaete fauna inhabiting Chinchorro Bank has been poorly studied and only 35 species have been previously reported. Objective: To examine the taxonomic composition of the Eunicida and Amphinomida associated to dead coral substrates from this coral reef atoll, a Biosphere Reserve located in the southern Mexican Caribbean. Methods: In April 2008, dead coral fragments of the genus Porites were manually collected by SCUBA diving at eight stations between 4-16.2 m depth. Results: A total of 714 individuals belonging to 17 genera and 48 species of the families Amphinomidae, Dorvilleidae, Eunicidae, Lumbrineridae, Oenonidae and Onuphidae were identified. Eunicidae was clearly the more diverse (29 species; 60.4 %) and abundant family (479 individuals; 67.1 %), while the Oenonidae and Onuphidae were represented by only one individual-species each. -
Download Full Article 2.4MB .Pdf File
Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries. -
In Worms Geoff Read NIWA New Zealand
Brussels, 28-30 September Polychaeta (Annelida) in WoRMS Geoff Read NIWA New Zealand www.marinespecies.org/polychaeta/index.php Context interface Swimming — an unexpected skill of Polychaeta Acrocirridae Alciopidae Syllidae Nereididae Teuthidodr ilus = squidworm Acrocirridae Polynoidae Swima bombiviridis Syllidae Total WoRMS Polychaeta records, excluding fossils 91 valid families. Entries >98% editor checked, except Echiura (69%) Group in WoRMS all taxa all species valid species names names names Class Polychaeta 23,872 20,135 11,615 Subclass Echiura 296 234 197 Echiura were recently a Subclass Errantia 12,686 10,849 6,210 separate phylum Subclass Polychaeta incertae sedis 354 265 199 Subclass Sedentaria 10,528 8,787 5,009 Non-marine Polychaeta 28 16 (3 terrestrial) Class Clitellata* 1601 1086 (279 Hirudinea) *Total valid non-leech clitellates~5000 spp, 1700 aquatic. (Martin et al. 2008) Annelida diversity "It is now clear that annelids, in addition to including a large number of species, encompass a much greater disparity of body plans than previously anticipated, including animals that are segmented and unsegmented, with and without parapodia, with and without chaetae, coelomate and acoelomate, with straight guts and with U-shaped digestive tracts, from microscopic to gigantic." (Andrade et al. 2015) Andrade et al (2015) “Articulating “archiannelids”: Phylogenomics and annelid relationships, with emphasis on meiofaunal taxa.” Molecular Biology and Evolution, efirst Myzostomida (images Summers et al)EV Nautilus: Riftia Semenov: Terebellidae Annelida latest phylogeny “… it is now well accepted that Annelida includes many taxa formerly considered different phyla or with supposed affiliations with other animal groups, such as Sipuncula, Echiura, Pogonophora and Vestimentifera, Myzostomida, or Diurodrilida (Struck et al. -
Spatial Variation in the Reproductive Biology of Paralvinella Palmiformis (Polychaeta: Alvinellidae) from a Vent Field on the Juan De Fuca Ridge
MARINE ECOLOGY PROGRESS SERIES Vol. 255: 171–181, 2003 Published June 24 Mar Ecol Prog Ser Spatial variation in the reproductive biology of Paralvinella palmiformis (Polychaeta: Alvinellidae) from a vent field on the Juan de Fuca Ridge Jonathan T. P. Copley1,*, Paul A. Tyler 1, Cindy L. Van Dover 2, Steven J. Philp1 1School of Ocean and Earth Science, Southampton Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom 2Biology Department, College of William & Mary, Williamsburg, Virginia 23187, USA ABSTRACT: The microdistribution and dynamics of deep-sea hydrothermal vent communities often reflect the extreme heterogeneity of their environment. Here we present an assessment of spatial variation in the reproductive development of the alvinellid polychaete Paralvinella palmiformis at the High Rise vent field (Endeavour Segment, Juan de Fuca Ridge, NE Pacific). Samples collected from different locations across the vent field suggest patchy reproductive development for this species. Males and females from several locations contained few or no developing gametes, while gametes were abundant in samples collected at the same time from other locations. Samples lacking gametes were distinguished by body size-frequency distributions with peaks at smaller sizes and the presence or absence of other fauna consistent with early stage assemblages in a successional mosaic model previously proposed for Endeavour Segment communities. Where gametes were present, synchrony of reproductive development between females within samples and between samples was evident. Reproductive synchrony between pairs of samples initially declined over a 7 d interval between sam- ples, suggesting a rapid rate of reproductive development for P. palmiformis. Samples collected 1 mo apart, however, displayed similar frequency distributions of developing gametes. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Trophic Upgrading of Long-Chain Polyunsaturated Fatty Acids By
Marine Biology (2021) 168:67 https://doi.org/10.1007/s00227-021-03874-3 ORIGINAL PAPER Trophic upgrading of long‑chain polyunsaturated fatty acids by polychaetes: a stable isotope approach using Alitta virens Supanut Pairohakul1,3 · Peter J. W. Olive1 · Matthew G. Bentley2 · Gary S. Caldwell1 Received: 5 August 2019 / Accepted: 4 April 2021 © The Author(s) 2021 Abstract Polychaete worms are rich sources of polyunsaturated fatty acids (PUFA) and are increasingly incorporated into aquaculture broodstock diets. Conventionally, the build-up of PUFA in polychaetes was considered passive, with direct accumulation along the food web, originating with microalgae and other primary producers. However, it has been argued that polychaetes (and other multicellular eukaryotes) are capable of PUFA biosynthesis through the elongation and desaturation of precur- sor lipids. We further test this hypothesis in the ecologically and economically important nereid polychaete Alitta virens by adopting a stable isotope labelling approach. Worms were fed a 13C-1-palmitic acid (C16:0) enriched diet with the resulting isotopically enriched lipid products identifed over a 7-day period. The data showed strong evidence of lipid elongation and desaturation, but with a high rate of PUFA turnover. A putative biosynthetic pathway is proposed, terminating with doco- sahexaenoic acid (DHA) via arachidonic (AA) and eicosapentaenoic acids (EPA) and involving a Δ8 desaturase. Introduction bacteria, protists and even by desaturation and chain elonga- tion in many animals (Nichols 2003; Alhazzaa et al. 2011; Long-chain polyunsaturated fatty acids (PUFA) are essential Hughes et al. 2011; De Troch et al. 2012; Galloway et al. components in human and animal nutrition. -
Identification Guide to the Planktonic Polychaete Larvae Around the Island of Helgoland (German Bight)
HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgol/inder Meeresunters. 48, 1-58 (1994) Identification guide to the planktonic polychaete larvae around the island of Helgoland (German Bight) S. Plate* & E. Husemann* * Biologische Anstalt Helgoland (Meeresstation); D-27483 Helgoland, Federal Republic of Germany ABSTRACT: The purpose of this work is to provide the means of identifying the planktonic larvae of the polychaete species appearing in the plankton around the island of Helgoland (North Sea). During a three-year survey in this area, the larvae of 54 species out of 24 families belonging to the orders Orbiniida, Spionida, Capitelhda, Phyllodocida, Oweniida, Terebelhda, Sabelhda and the former Archiannelida have been recorded. Illustrated keys to the families, genera and species are presented. To facilitate the identification, additional descriptions and information about the seasonal appearance of the species are given. INTRODUCTION More than 13 000 species of polychaetous annelids take part in the marine benthos communities worldwide. Their distribution, species composition and population density are monitored within various benthos surveys. For the North Sea, especially the German Bight and the Wadden Sea, much information about the benthic polychaete fauna is available (Caspers, 1950; Stripp, 1969; DSrjes, 1977; Rachor & Gerlach, 1978; Gillandt, 1979; Salzwedel et al., 1985; Rachor, 1990; Bosselmann, 1991; Kr6ncke, 1991). In contrast, the holoplanktonic polychaete species and the meroplanktonic polychaete larvae, which are only part of the plankton during a more or less expanded phase of their ontogenesis, have never received much attention. Meroplanktonic polychaete larvae are seldomly recorded during studies monitoring the North Sea plankton (Smidt, 1951; Giere, 1968; Fransz, 1981; Bosselmann, 1989; Belgrano et al., 1990). -
Await in Deep-Pelagic Habitats the Remarkable Squidworm Is An
Downloaded from rsbl.royalsocietypublishing.org on November 24, 2010 The remarkable squidworm is an example of discoveries that await in deep-pelagic habitats Karen J. Osborn, Laurence P. Madin and Greg W. Rouse Biol. Lett. published online 24 November 2010 doi: 10.1098/rsbl.2010.0923 Supplementary data "Data Supplement" http://rsbl.royalsocietypublishing.org/content/suppl/2010/11/19/rsbl.2010.0923.DC1.ht ml References This article cites 12 articles, 1 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/early/2010/11/19/rsbl.2010.0923.full.html #ref-list-1 P<P Published online 24 November 2010 in advance of the print journal. Subject collections Articles on similar topics can be found in the following collections taxonomy and systematics (299 articles) evolution (2221 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions This journal is © 2010 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on November 24, 2010 Biol. Lett. mixing with basin water, resulting in long residence doi:10.1098/rsbl.2010.0923 times for water below 1500 m [2].