JMS 70 1 031-041 Eyh003 FINAL

Total Page:16

File Type:pdf, Size:1020Kb

JMS 70 1 031-041 Eyh003 FINAL PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date. Divergence of the two major clades likely occurred as far back as the early Cretaceous. The phylogeny also suggests that nine principal geographic clades were formed during the late Mesozoic to early Cenozoic in association with the disruption of Pangea, which gave rise to new oceans and seaways. INTRODUCTION limpet shells and that they could be used for generic and familial classification. Thus, the diagnostic characters of shell micro­ The limpets of the order Patellogastropoda are of particular structure provide reliable palaeontological evidence for esti­ evolutionary interest, because they are recognized as a basal mating divergence times of clades (Lindberg & Hickman, 1986; branch of the extant Gastropoda, as revealed by cladistic analy­ Lindberg, 1988; Kase, 1994; Rase & Shigeta, 1996). sis of morphological characters (Haszprunar, 1988; Ponder & The first attempt to incorporate all available data from anato­ Lindberg, 1997). They are abundant and familiar inhabitants of my and shell ultrastructure in a cladistic analysis of patellids was intertidal rocky shores throughout the world oceans from tropi­ that of Ridgway (1994) ; however, this work was largely limited to cal to polar regions, and they play an important role in littoral northern Atlantic species. Later, Ridgway, Reid, Taylor, Branch & marine ecosystems (Branch, 1985a, b). Hodgson (1998) constructed a cladogram of species of Patellidae Historically, taxonomical studies of limpets have used exter­ based on all available sets of informative morphological charac­ nal shell morphology, but the high degree of variability of these ters. In their analysis, geographical distributions were superim­ characters has led to taxonomic confusion. It has been recog­ posed on the cladogram to infer historical biogeography. The nized that the radula is a useful character for species-level resulting phylogenetic tree revealed the existence of several distinctions (Pilsbry, 1891; Thiele, 1929). Other characters that monophyletic clades which were treated taxonomically as gen­ have been successfully used to differentiate species are col­ era: Helcion, Cymbula, Scutellastra and Patella in the superfamily oration of the foot and palliai tentacles (Evans, 1947; Bowman, Patellidae. This analysis also suggested that ancestral forms of the 1981), coloration of the egg (Habe, 1944), sperm ultrastracture Patellidae had been widely distributed in southern African (Healy, 1988; Hodgson & Bernard, 1988; Hodgson, Ridgway, waters, and probably in the Tethyan Sea as well. Morphological Branch & Hawkins, 1996), and karyotype of the chromosomes analysis, however, has so far been unable to resolve the phylogeny (Nakamura, 1987; Cervella, Ramella, Robotti & Sella, 1988). of the Patellidae satisfactorily; some unsolved problems, such as Despite numerous studies on the taxonomy of limpets, evolu­ the divergence time of the clades, remain. tionary relationships among them are poorly known. This is largely Molecular techniques can provide important information due to the scant fossil record, reflecting that the high-energy con­ about phylogenetic relationships and divergence times of evolu­ dition of their habitat on intertidal rocky shores is unfavorable for tionary lineages and clades. A molecular phylogenetic study of preservation of shells. Even if a fossil shell is preserved, it is often Patellidae using m itochondorial 12S and 16S ribosomal RNA difficult to make generic and even familial assignments based genes was done recently by Koufopanou, Reid, Ridgway & on the shell structure. However, MacClintock (1967) showed that Thomas (1999). This study clarified, in some detail, the phylo­ shell microstructures were often sufficiently well preserved in fossil genetic relationships and divergence times of geographical clades among the Patellidae in the Atlantic and southern Africa. Correspondence: T. Ozawa; e-mail : [email protected] Their area of origin, however, rem ained unclear in the analysis. J. Moll. Stud, (2004) 70: 31-41 © The Malacological Society of London 2004 T. NAKANO & T. OZAWA Furthermore, there were some incongruities between the results Table 1. List of species newly sequenced in this study. of the cladistic analysis (Ridgway et al, 1998) and the m olecular analysis (Koufopanou et al, 1999). Species Localities Extant limpets show the highest diversity in southern Africa, Acm aea mitra Rathke, 1833 Boiler Bay, W ashington, USA Australia-New Zealand, the Japanese Islands and the west coast of North America (Powell, 1973; Lindberg, 1988), where kelp Cellana grata (Gould, 1859) 1. Kaino, Mie, Japan forests are well developed in the strong upwelling of nutrient- 2. Cape d’Aguilar, Hong Kong rich deep sea waters. As mentioned above, a great deal of effort Cellana nigrolineata (R eeve,1839) Kaino, Mie, Japan has been made on the phylogeny of the Patellidae derived Cellana orientalis (Pilsbry, 1891 ) Okinawa, Japan from the Atlantic, southern Africa and Australia. However, little Cellana testudinaria (Linnaeus, 1758) 1. Shinzato fishing port, Okinawa, progress has been made on the phylogenies of the Lottiidae and Japan the Acmaeidae in the Pacific Ocean. In a comprehensive review 2. Vietnam of patellogastropods, Lindberg (1988) applied cladistic analysis Cellana toreuma(Ree\/e. 1854) 1. Oga, Akita, Japan to all available character sets, and presented the relationships of the Lottiidae and Acmaeidae from the eastern Pacific and 2. Cape d’Aguilar, Hong Kong the western Atlantic seacoasts of North America; however, no Lottia atrata (Carpenter, 1857) Campus Point, California, USA detailed consideration of the Patellidae was made. The purpose Lottia cassis (Eschscholtz, 1833) Akkeshi, Hokkaido, Japan of the present study is to clarify the molecular phylogenetic rela­ Lottia digitalis (Rathke, 1833) Cattle Point, W ashington, USA tionships of the patellogastropods of the world oceans with par­ Lottia dorsuosa (Gould, 1859) Morozaki, Aichi, Japan ticular reference to the Lottiidae in the Pacific and the Atlantic, Lottia emydia (Dali, 1914) Aininkappu, Hokkaido, Japan using combined mitochondrial 12S and 16S sequence data from Lottia fenestrata (Reeve, 1855) Strawberry Hill, Washington, USA the present study and from previous authors (Koufopanou et al., Lottia gigantea Sowerby, 1834 Royal Palms, Los Angeles, USA 1999). A scenario of the phylogenetic evolution and historical biogeography of the patellogastropods is presented by integrat­ Lottia kogam ogai Sasaki & Okutani, 1994 Hiraiso, Ibaraki, Japan ing molecular, morphological, paleontological and geological Lottia langfordi (Habe. 1994) Goshikinohama, Kochi, Japan data. Lottia lim atula (Carpenter, 1864) Coal Oil Point, California, USA Lottia lindbergi Sasaki & Okutani, 1994 Akkeshi, Hokkaido, Japan MATERIAL AND METHODS Lottia luchuana (Pilsbry, 1901) 1. Ogimi, Okinawa, Japan 2. Cape d’Aguilar, Hong Kong Collection of samples andD N A extraction- Lottia pelta (Rathke, 1833) Cattle Point, W ashington, USA Lottia persona (Rathke, 1833) Cattle Point, W ashington, USA Table 1 lists the species and collection localities of specimens analysed by the present authors. Generic assignments were made Lottia scabra (Gould, 1846) Royal Palms, Los Angeles, USA following Lindberg (1986) and Sasaki (1998a, 1999a) with minorLottia scutum (Rathke, 1833) Cattle Point, W ashington, USA amendments. The new samples include most of the species of Lottiasp. cf. borealis (Lindberg, 1982) Akkeshi, Hokkaido, Japan Lottiidae, two species of Patellidae and five species of Nacellidae Lottia tenuisculpta Sasaki & Okutani, 1994 Kaino, Mie, Japan from the Japanese Islands; two lottiid and three nacellid species
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Ministério Da Educação Universidade Federal Rural Da Amazônia
    MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso (TCC) apresentado ao curso de Graduação em Engenharia de Pesca da Universidade Federal Rural da Amazônia (UFRA) como requisito necessário para obtenção do grau de Bacharel em Engenharia de Pesca. Área de concentração: Ecologia Aquática. Orientador: Prof. Dr. rer. nat. Marko Herrmann. Coorientadora: Dra. Maria Carla de Aranzamendi. BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso apresentado à Universidade Federal Rural da Amazônia, como parte das exigências do Curso de Graduação em Engenharia de Pesca, para a obtenção do título de bacharel. Área de concentração: Ecologia Aquática. ______________________________________ Data da aprovação Banca examinadora __________________________________________ Presidente da banca Prof. Dr. Breno Gustavo Bezerra Costa Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 1 Prof. Dr. Lauro Satoru Itó Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 2 Profa. Msc. Rosália Furtado Cutrim Souza Universidade Federal Rural da Amazônia - UFRA Aos meus sobrinhos, Tháina, Kauã e Laura. “Cabe a nós criarmos crianças que não tenham preconceitos, crianças capazes de ser solidárias e capazes de sentir compaixão! Cabe a nós sermos exemplos”. AGRADECIMENTOS Certamente algumas páginas não irão descrever os meus sinceros agradecimentos a todos aqueles que cooperaram de alguma forma, para que eu pudesse realizar este sonho.
    [Show full text]
  • Appendix 1 Table A1
    OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S.
    [Show full text]
  • ECOLOGICAL ENERGETICS of TROPICAL LIMPET Cellana Testudinaria (Linnaeus, 1758) LIVING on the ROCKY SHORE of OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA
    Journal of Coastal Deveolpment ISSN : 1410-5217 Volume 11, Number 2, February 2008 : 89-96 ECOLOGICAL ENERGETICS OF TROPICAL LIMPET Cellana testudinaria (Linnaeus, 1758) LIVING ON THE ROCKY SHORE OF OHOIWAIT, SOUTHEAST MOLUCCAS, INDONESIA Abraham Seumel Khouw Faculty of Fisheries and Marine Sciences, Pattimura University, Ambon Indonesia Received : November, 2, 2007 ; Accepted :January,4, 2008 ABSTRACT Study on ecological energetics of tropical limpet C. testudinaria has been carried out at approximately one year from October 2001 to September 2002. Population energy budgets estimated on the assumption of steady state conditions for C. testudinaria (Linnaeus, 1758) on the rocky shore of Ohoiwait, are presented. Large difference in population structure, and hence energetics, occurred at different localities along the rocky shore. Relatively high proportions (98 %) of the assimilated energy was lost via metabolism. Assimilation efficiency is 39 %, net growth efficiency is 1.8 %, and ecological efficiency 0.3 %. Production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy component for which data on size frequency and density are available. Key words: ecological energetics, cellana testudinaria, energy components Correspondence: Phone : +6281343044295, e-mail: [email protected] INTRODUCTION Cellana testudinaria is intertidal, grazing Little has been published on the gastropod abundant on medium to very ecology of C. testudinaria. Khouw (2002) exposed rocky shores of Ohoiwait. The discussed their growth pattern and shell species shows marked zonation, with only a shape variation in relation to zonal little overlap between zones. C. testudinaria distribution. Distribution, abundance, and occurs at several spatial and temporal scales biomass were investigated by Khouw from the extreme low water spring tide (2006a) and presented evidence for the (ELWST) to the extreme high water spring effects of drying.
    [Show full text]
  • Title Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere
    Biogeography in Cellana (Patellogastropoda, Nacellidae) with Title Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species González-Wevar, Claudio A.; Nakano, Tomoyuki; Palma, Author(s) Alvaro; Poulin, Elie Citation PLOS ONE (2017), 12(1) Issue Date 2017-01-18 URL http://hdl.handle.net/2433/218484 © 2017 González-Wevar et al. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species Claudio A. GonzaÂlez-Wevar1,2*, Tomoyuki Nakano3, Alvaro Palma4, Elie Poulin1 1 GAIA-AntaÂrtica, Universidad de Magallanes, Punta Arenas, Chile, 2 Instituto de EcologõÂa y Biodiversidad Ä a1111111111 (IEB), Departamento de Ciencias EcoloÂgicas, Facultad de Ciencias, Universidad de Chile, Nuñoa, Santiago, Chile, 3 Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, a1111111111 Nishimuro, Wakayama, Japan, 4 Universidad Gabriela Mistral, Facultad de IngenierõÂa y Negocios, a1111111111 Providencia, Santiago, Chile a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Oceanic islands lacking connections to other land are extremely isolated from sources of Citation: GonzaÂlez-Wevar CA, Nakano T, Palma A, potential colonists and have acquired their biota mainly through dispersal from geographi- Poulin E (2017) Biogeography in Cellana cally distant areas. Hence, isolated island biota constitutes interesting models to infer bio- (Patellogastropoda, Nacellidae) with Special geographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species.
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • PROGRAMME 4 - 7 July 2017 • Boardwalk Convention Centre • Port Elizabeth • South Africa
    SAMssPORT ELIZABETH 2017 THE 16TH SOUTHERN AFRICAN MARINE SCIENCE SYMPOSIUM PROGRAMME 4 - 7 July 2017 • www.samss2017.co.za Boardwalk Convention Centre • Port Elizabeth • South Africa Theme: Embracing the blue l Unlocking the Ocean’s economic potential whilst maintaining social and ecological resilience SAMSS is hosted by NMMU, CMR and supported by SANCOR WELCOME PLENARY SPEAKERS It is our pleasure to welcome all SAMSS 2017 participants on behalf of the ROBERT COSTANZA - The Australian National University - Australia Institute for Coastal and Marine Research at Nelson Mandela Metropolitan University and the city of Port Elizabeth. NMMU has a long tradition of marine COSTANZA has an H-index above 100 and >60 000 research and its institutional marine and maritime strategy is coming to citations. His area of specialisation is ecosystem goods fruition, which makes this an ideal time for us to host this triennial meeting. and services and ecological economics. Costanza’s Under the auspices of SANCOR, this is the second time we host SAMSS in PE and the transdisciplinary research integrates the study of theme ‘Embracing the blue – unlocking the ocean’s potential whilst maintaining social humans and nature to address research, policy, and and ecological resilience’ is highly topical and appropriate, aligning with Operation management issues. His work has focused on the Phakisa, which is the national approach to developing a blue economy. South Africa is interface between ecological and economic systems, at a cross roads and facing economic challenges. Economic growth and lifting people particularly at larger temporal and spatial scales, from out of poverty is a priority and those of us in the ‘marine’ community need to be part small watersheds to the global system.
    [Show full text]
  • Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
    Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: ..................................................................................................................................................
    [Show full text]
  • Malacofauna Marina Del Parque Nacional “Los Caimanes”, Villa Clara, Cuba
    Tesis de Diploma Malacofauna Marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Junio, 2011 Universidad Central “Marta Abreu” de Las Villas Facultad Ciencias Agropecuaria TESIS DE DIPLOMA Malacofauna marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Tutor: M. C. Ángel Quirós Espinosa Investigador Auxiliar y Profesor Auxiliar [email protected] Centro de Estudios y Servicios Ambientales, CITMA-Villa Clara Carretera Central 716, Santa Clara Consultante: Dr.C. José Espinosa Sáez Investigador Titular Instituto de Oceanología Junio, 2011 Pensamiento “La diferencia entre una mala observación y una buena, es que la primera es errónea y la segunda es incompleta.” Van Hise Dedicatoria Dedicatoria: A mis padres, a Yandy y a mi familia: por las innumerables razones que me dan para vivir, y por ser fuente de inspiración para mis metas. Agradecimientos Agradecimientos: Muchos son los que de alguna forma contribuyeron a la realización de este trabajo, todos saben cuánto les agradezco: Primero quiero agradecer a mis padres, que aunque no estén presentes sé que de una forma u otra siempre estuvieron allí para darme todo su amor y apoyo. A mi familia en general: a mi abuela, hermano, a mis tíos por toda su ayuda y comprensión. A Yandy y a su familia que han estado allí frente a mis dificultades. Agradecer a mi tutor el M.Sc. Ángel Quirós, a mi consultante el Dr.C. José Espinosa y a la Dra.C. María Elena, por su dedicación para el logro de esta tesis. A mis compañeros de grupo por estos cinco años que hemos compartidos juntos, que para mí fueron inolvidables.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • UC Berkeley UC Berkeley Previously Published Works
    UC Berkeley UC Berkeley Previously Published Works Title Twelve thousand recent patellogastropods from a northeastern Pacific latitudinal gradient. Permalink https://escholarship.org/uc/item/21h48289 Authors Kahanamoku, Sara Hull, Pincelli Lindberg, David et al. Publication Date 2018-01-09 DOI 10.1038/sdata.2017.197 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificdata OPEN Data Descriptor: Twelve thousand recent patellogastropods from a northeastern Pacific latitudinal gradient 13 2017 Received: June 1 2 1 2 1 3 Sara S. Kahanamoku , , Pincelli M. Hull , David R. Lindberg , Allison Y. Hsiang , , Accepted: 17 October 2017 4 2 Erica C. Clites & Seth Finnegan Published: 9 January 2018 Body size distributions can vary widely among communities, with important implications for ecological dynamics, energetics, and evolutionary history. Here we present a dataset of body size and shape for 12,035 extant Patellogastropoda (true limpet) specimens from the collections of the University of California Museum of Paleontology, compiled using a novel high-throughput morphometric imaging method. These specimens were collected over the past 150 years at 355 localities along a latitudinal gradient ranging from Alaska to Baja California, Mexico and are presented here with individual images, 2D outline coordinates, and 2D measurements of body size and shape. This dataset provides a resource for assemblage-scale macroecological questions and documents the size and diversity of recent patellogastropods in the northeastern Pacific. Design Type(s) observation design • image analysis objective Measurement Type(s) morphology Technology Type(s) digital camera Factor Type(s) geographic location Patellogastropoda • State of California • State of Baja California • State of Sample Characteristic(s) Washington • Mexico • State of Alaska • State of Oregon • Province of British Columbia 1 2 Yale University, Department of Geology & Geophysics, New Haven, CT 06511, USA.
    [Show full text]
  • Downloading of the Data
    The spatial ecology of Albula glossodonta in the St. Joseph Atoll, Seychelles A thesis submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE of RHODES UNIVERSITY By Emily Jeanne Moxham February 2017 Abstract Abstract Bonefish (Albula spp.) support valuable recreational and artisanal fisheries worldwide. Declining stocks have been reported at multiple localities, potentially jeopardising numerous multimillion-dollar industries. In particular, tourism generated through bonefish fly fishing contributes considerably to the economies of many isolated tropical islands and atolls. However, despite their economic value, little is known about bonefish in the Indian Ocean. This study aimed to contribute to the understanding of bonefish ecology in the Indian Ocean by (1) reviewing the bonefish literature to identify knowledge gaps; (2) evaluating the post­ release survival of acoustically tagged bonefish and; (3) quantifying the spatial and temporal movements of bonefish at a near-pristine and predator rich atoll in the Seychelles. A review of published literature on bonefish indicated that despite considerable biological and ecological research in the Pacific and Atlantic oceans, virtually no research has been conducted in the Indian Ocean. To help address this research gap, an acoustic telemetry study was initiated at the remote St. Joseph Atoll, within an existing array of 88 automated data­ logging acoustic receivers. Thirty Albula glossodonta were surgically implanted with Vemco V13 acoustic transmitters in May 2015 and tracked for a period of one year. Only 10% of the tagged bonefish were detected for more than two weeks. A comparison of the final 100 hours of movement data from fish that were detected for less than two weeks to fish detected for longer periods revealed distinct differences.
    [Show full text]