UC Berkeley UC Berkeley Previously Published Works
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix 1 Table A1
OIK-00806 Kordas, R. L., Dudgeon, S., Storey, S., and Harley, C. D. G. 2014. Intertidal community responses to field-based experimental warming. – Oikos doi: 10.1111/oik.00806 Appendix 1 Table A1. Thermal information for invertebrate species observed on Salt Spring Island, BC. Species name refers to the species identified in Salt Spring plots. If thermal information was unavailable for that species, information for a congeneric from same region is provided (species in parentheses). Response types were defined as; optimum - the temperature where a functional trait is maximized; critical - the mean temperature at which individuals lose some essential function (e.g. growth); lethal - temperature where a predefined percentage of individuals die after a fixed duration of exposure (e.g., LT50). Population refers to the location where individuals were collected for temperature experiments in the referenced study. Distribution and zonation information retrieved from (Invertebrates of the Salish Sea, EOL) or reference listed in entry below. Other abbreviations are: n/g - not given in paper, n/d - no data for this species (or congeneric from the same geographic region). Invertebrate species Response Type Temp. Medium Exposure Population Zone NE Pacific Distribution Reference (°C) time Amphipods n/d for NE low- many spp. worldwide (Gammaridea) Pacific spp high Balanus glandula max HSP critical 33 air 8.5 hrs Charleston, OR high N. Baja – Aleutian Is, Berger and Emlet 2007 production AK survival lethal 44 air 3 hrs Vancouver, BC Liao & Harley unpub Chthamalus dalli cirri beating optimum 28 water 1hr/ 5°C Puget Sound, WA high S. CA – S. Alaska Southward and Southward 1967 cirri beating lethal 35 water 1hr/ 5°C survival lethal 46 air 3 hrs Vancouver, BC Liao & Harley unpub Emplectonema gracile n/d low- Chile – Aleutian Islands, mid AK Littorina plena n/d high Baja – S. -
Download Download
Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives. -
JMS 70 1 031-041 Eyh003 FINAL
PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo logical events and the fossil record to determine a reference date. -
Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: .................................................................................................................................................. -
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
Malacofauna Marina Del Parque Nacional “Los Caimanes”, Villa Clara, Cuba
Tesis de Diploma Malacofauna Marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Junio, 2011 Universidad Central “Marta Abreu” de Las Villas Facultad Ciencias Agropecuaria TESIS DE DIPLOMA Malacofauna marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Tutor: M. C. Ángel Quirós Espinosa Investigador Auxiliar y Profesor Auxiliar [email protected] Centro de Estudios y Servicios Ambientales, CITMA-Villa Clara Carretera Central 716, Santa Clara Consultante: Dr.C. José Espinosa Sáez Investigador Titular Instituto de Oceanología Junio, 2011 Pensamiento “La diferencia entre una mala observación y una buena, es que la primera es errónea y la segunda es incompleta.” Van Hise Dedicatoria Dedicatoria: A mis padres, a Yandy y a mi familia: por las innumerables razones que me dan para vivir, y por ser fuente de inspiración para mis metas. Agradecimientos Agradecimientos: Muchos son los que de alguna forma contribuyeron a la realización de este trabajo, todos saben cuánto les agradezco: Primero quiero agradecer a mis padres, que aunque no estén presentes sé que de una forma u otra siempre estuvieron allí para darme todo su amor y apoyo. A mi familia en general: a mi abuela, hermano, a mis tíos por toda su ayuda y comprensión. A Yandy y a su familia que han estado allí frente a mis dificultades. Agradecer a mi tutor el M.Sc. Ángel Quirós, a mi consultante el Dr.C. José Espinosa y a la Dra.C. María Elena, por su dedicación para el logro de esta tesis. A mis compañeros de grupo por estos cinco años que hemos compartidos juntos, que para mí fueron inolvidables. -
ESLO2014-002, "NPDES Receiving Water Monitoring Program: 2013
Pacific Gas and Electric Company Diablo Canyon Power Plant NPDES RECEIVING WATER MONITORING PROGRAM: 2013 ANNUAL REPORT March 31, 2014 Submitted to: Pacific Gas and Electric Company Diablo Canyon Power Plant Avila Beach, CA 93424 Preparedby: 0 TiNiR Environmental 141 Suburban Rd., Suite A2 San Luis Obispo, CA 93401 ESL02014-002 Table of Contents Table of Contents 1.0 INTRODUCTION .................................................................................................................... 1 2.0 TEMPERATURE M ONITORING ............................................................................................. 4 3.0 INTERTIDAL ALGAE AND INVERTEBRATES .................................................................... 9 4.0, INTERTIDAL FISHES ........................................................... 11 5.0 SUBTIDAL ALGAE AND INVERTEBRATES ..................................................................... 12 6.0 SURFACE CANOPY K ELPS ................................................................................................. 14 7.0 SUBTIDAL FISHES ......................................................................................................... 15 8.0 RWMP PROJECT PERSONNEL ...................................................................................... 17 9.0 LITERATURE CITED ...................................................................................................... 18 APPENDIX A. Intertidal Temperatures APPENDIX B. Subtidal Temperatures APPENDIX C. Intertidal Algae, Invertebrates and Substrates -
Genetic Evidence for the Cryptic Species Pair, Lottia Digitalis and Lottia Austrodigitalis and Microhabitat Partitioning in Sympatry
Mar Biol (2007) 152:1–13 DOI 10.1007/s00227-007-0621-4 RESEARCH ARTICLE Genetic evidence for the cryptic species pair, Lottia digitalis and Lottia austrodigitalis and microhabitat partitioning in sympatry Lisa T. Crummett · Douglas J. Eernisse Received: 8 June 2005 / Accepted: 3 January 2007 / Published online: 14 April 2007 © Springer-Verlag 2007 Abstract It has been proposed that the common West rey Peninsula, CA to near Pigeon Point, CA, where L. digi- Coast limpet, Lottia digitalis, is actually the northern coun- talis previously dominated. terpart of a cryptic species duo including, Lottia austrodigi- talis. Allele frequency diVerences between southern and northern populations at two polymorphic enzyme loci pro- Introduction vided the basis for this claim. Due to lack of further evi- dence, L. austrodigitalis is still largely unrecognized in the Sibling species are deWned as sister species that are impos- literature. Seven additional enzyme loci were examined sible or extremely diYcult to distinguish based on morpho- from populations in proposed zones of allopatry and symp- logical characters alone (Mayr and Ashlock 1991). Marine atry to determine the existence of L. austrodigitalis as a sibling species are ubiquitous, found from the poles to the sibling species to L. digitalis. SigniWcant allele frequency tropics, in most known habitats, and at depths ranging from diVerences were found at Wve enzyme loci between popula- intertidal to abyssal (Knowlton 1993). We will refer to spe- tions in Laguna Beach, southern California, and Bodega cies that are indistinguishable morphologically, whether or Bay, northern California; strongly supporting the existence not they are sister species, as “cryptic species” and will of separate species. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
A Comparative Intertidal Study and User Survey, Point Pinos, California
Monterey Bay National Marine Sanctuary A Comparative Intertidal Study and User Survey, Point Pinos, California July 31, 2003 Submitted to: Mr. Dennis Long, Executive Director Monterey Bay Sanctuary Foundation 299 Foam Street Monterey, CA 93940 Prepared and Submitted by: Environmental 225 Prado Rd., Suite D, San Luis Obispo, CA 93401 805.541.0310, FAX: 805.541.0421 Preface In April 2000, the City of Pacific Grove contracted with the Monterey Bay Sanctuary Foundation (MBSF) to serve as the neutral fiscal sponsor for a project to study the impacts of human activities on the rocky intertidal shore and tidepools at Point Pinos. The City created a Point Pinos Tidepool Task Force Subcommittee on Research to develop and oversee the research project and interface with the MBSF. The Subcommittee members were appointed from numerous interested parties with differing views on potential impacts resulting from visitor use. The Subcommittee was responsible for: developing a Request for Proposals (RFP), distributing the RFP to solicit research proposals, and selecting a contractor based on proposed methods and qualifications. The Subcommittee was also responsible for approving the final and more detailed study plan submitted by the selected contractor, reviewing quarterly progress reports, and approving the final report on the project. The RFP, designed to address four primary questions concerning patterns of visitor use, activities, impacts, and past changes at Point Pinos, was circulated to the coastal and marine science communities for solicitation of proposals. Throughout the entire process of proposal review and contractor selection, including project implementation, the Subcommittee required that rigorous science be incorporated into the project plans. -
Lottia Pelta Class: Gastropoda, Patellogastropoda
Phylum: Mollusca Lottia pelta Class: Gastropoda, Patellogastropoda Order: The shield, or helmet limpet Family: Lottioidea, Lottiidae Taxonomy: A major systematic revision of (Sorensen and Lindberg 1991). May be fouled the northeastern Pacific limpet fauna was with a sabellid (Kuris and Culver 1999). undertaken by MacLean in 1966. Notoac- Interior: Blue gray to white, with mea was at first considered a subgenus and subapical brown spot (fig 3), and horseshoe- then later a full genus (MacLean 1969). Col- shaped muscle scar joined by a thin, faint line lisella was synonymized with Lottia, and lat- (fig. 3) (Keen and Coan 1974). Uses suction er Notoacmea was replaced with Tectura to attach to substratum, as well as a glue that (Lindberg 2007). The current practice in may be helpful in maintaining a seal around The Light and Smith Manual is to use only the edge of their feet on irregular surfaces Acmaea and Lottia to describe Pacific North- (Smith 1991). west species (Lindberg 2007). Possible Misidentifications Description Many species of limpets of the family Size: 25mm (Brusca and Brusca 1978); can Acmaeidae occur on our coast, but only about reach 40 mm farther north (Kozloff 1974b four are found in estuarine conditions. Lottia Yanes and Tyler 2009); illustrated specimen, scutum (=Notoacmaea), which, like Lottia pel- 32.5 mm. ta, have a horseshoe-shaped muscle scar on Color: Extremely variable dependent on the shell interior, joined by a thin curved line, substrata (Sorensen and Lindberg 1991); and various coloration, but not pink-rayed or called the brown and white shield limpet by white. These two genera differ in that L. -
Magnet-Directed Bioadhesive Nanoparticles for Localized Oral Delivery
Magnet-Directed Bioadhesive Nanoparticles for Localized Oral Delivery by Bryan Laulicht B.A. Columbia University, 2005 Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy In the Division of Biology and Medicine at Brown University Providence, Rhode Island May 2010 © Copyright 2010 by Bryan Laulicht This dissertation by Bryan Laulicht is accepted in its present form by the Division of Biology and Medicine as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date _______________ _________________________________ Edith Mathiowitz, Ph.D., Director Recommended to the Graduate Council Date _______________ _________________________________ Anubhav Tripathi, Ph.D., Co-Advior Date _______________ _________________________________ Diane Hoffman-Kim, Ph.D., Reader Date _______________ _________________________________ Jeffrey Morgan, Ph.D., Reader Date _______________ _________________________________ Solomon Steiner, Ph.D., External Reader Approved by the Graduate Council Date _______________ _________________________________ Sheila Bonde Dean of the Graduate School iii Curriculum Vitae Bryan Laulicht Date of Birth: August 26, 1981 Place of Birth: New York, NY EDUCATION Brown University, Providence, RI Expected May, 2010 PhD, Medical Science . Program in Artificial Organs, Biomaterials, and Cellular Technology, Department of Molecular Pharmacology, Physiology, and Biotechnology Advisors: Edith Mathiowitz, PhD and Anubhav Tripathi, PhD Thesis: Magnet-Directed Bioadhesive Nanoparticles