A Comparative Intertidal Study and User Survey, Point Pinos, California

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Intertidal Study and User Survey, Point Pinos, California Monterey Bay National Marine Sanctuary A Comparative Intertidal Study and User Survey, Point Pinos, California July 31, 2003 Submitted to: Mr. Dennis Long, Executive Director Monterey Bay Sanctuary Foundation 299 Foam Street Monterey, CA 93940 Prepared and Submitted by: Environmental 225 Prado Rd., Suite D, San Luis Obispo, CA 93401 805.541.0310, FAX: 805.541.0421 Preface In April 2000, the City of Pacific Grove contracted with the Monterey Bay Sanctuary Foundation (MBSF) to serve as the neutral fiscal sponsor for a project to study the impacts of human activities on the rocky intertidal shore and tidepools at Point Pinos. The City created a Point Pinos Tidepool Task Force Subcommittee on Research to develop and oversee the research project and interface with the MBSF. The Subcommittee members were appointed from numerous interested parties with differing views on potential impacts resulting from visitor use. The Subcommittee was responsible for: developing a Request for Proposals (RFP), distributing the RFP to solicit research proposals, and selecting a contractor based on proposed methods and qualifications. The Subcommittee was also responsible for approving the final and more detailed study plan submitted by the selected contractor, reviewing quarterly progress reports, and approving the final report on the project. The RFP, designed to address four primary questions concerning patterns of visitor use, activities, impacts, and past changes at Point Pinos, was circulated to the coastal and marine science communities for solicitation of proposals. Throughout the entire process of proposal review and contractor selection, including project implementation, the Subcommittee required that rigorous science be incorporated into the project plans. Proposals were received from four outstanding investigators and institutions. In addition to the Subcommittee review of the proposals, five external review scientists with backgrounds in marine science provided their views on the proposals and the likelihood of the project’s objectives being achieved. Ultimately, the contract was awarded to Tenera Environmental of San Francisco and San Luis Obispo, CA. The feedback from the external reviewers and the Subcommittee was then incorporated into the final and more detailed study plan submitted by Tenera Environmental. All project decisions were made by consensus among the Subcommittee members, and the assessment of impacts was reached according to the analysis of findings discussed with the contractor. The members of the Subcommittee and the Tenera research team should be commended for their objectivity, collaborative approach, and substantial commitment of time throughout the process. This final report may be viewed as the completion of the specific research project, yet also may serve as the baseline for future projects. We are grateful to The David and Lucile Packard Foundation for their generous funding support of the project, and also to the Monterey Bay National Marine Sanctuary and the City of Pacific Grove for their financial contributions. Dennis J. Long Executive Director Monterey Bay Sanctuary Foundation ESLO2003-014 i 7/31/03 Acknowledgments This study could not have been completed without the assistance of many people. The David and Lucile Packard Foundation, the Monterey Bay National Marine Sanctuary, and the City of Pacific Grove, California funded the project. The project and funding were administered by the Monterey Bay Sanctuary Foundation. We especially thank Milos Radakovich and the volunteers of Bay Net for completing the visitor census surveys and field questionnaires. This project relied on their assistance, and could not have been completed without them. We are also in great appreciation to Dr. Joe Wible and Ms. Joan Parker for their help in the library searches for past studies completed at Point Pinos. Sarah Clowes and Luke Hunt also provided valuable assistance in the set up of our biological sampling stations. Numerous other people were contacted and provided relevant information. We reference their names as personal communications where appropriate in the body of the report. Their names and affiliations are included in Appendix A. ESLO2003-014 ii 7/31/03 Project Organization Point Pinos Tidepool Task Force, Research Subcommittee Chuck Davis Andrew DeVogelaere, Ph.D Chris Harrold, Ph.D Kris Lindstrom Norbert Wu Tenera Environmental Scott Kimura - Program Manager/Principal Investigator John Steinbeck - Biostatistician Field Team Jay Carroll Rich Moran Joel Carter Gery Cox Jeff Reinhardt Contract Manager and Fiscal Sponsor Dennis Long – Monterey Bay Sanctuary Foundation Additional Assistance Steve Lonhart, Ph.D – Science Advisor, Monterey Bay National Marine Sanctuary ESLO2003-014 iii 7/31/03 Table of Contents Table of Contents Preface ............................................................................................................................ i Acknowledgements..........................................................................................................ii Project Organization ............................................................................................... iii SUMMARY............................................................................................................1 1.0 INTRODUCTION..................................................................................................... 5 1.1 Purpose ......................................................................................................... 5 1.2 Rationale for the Study .................................................................................. 5 1.3 Goals and Objectives..................................................................................... 9 1.4 Environmental Setting.................................................................................. 10 1.5 Regulatory Setting ....................................................................................... 11 1.6 Report Organization..................................................................................... 13 2.0 VISITOR USE DESCRIPTIONS..................................................................15 2.1 Visitor Distribution........................................................................................ 15 2.2 Visitor Activities in the Intertidal Zone .......................................................... 22 2.3 Demographics and Other Personal Visitor Information ................................ 24 2.4 Bus Visits..................................................................................................... 26 2.5 Surveillance, Collecting Violations, and Advisories ...................................... 31 2.6 Use Associated with Tidal Conditions and Time of Year .............................. 35 2.7 Comparison of Visitor Numbers with Other Areas........................................ 37 3.0 BIOLOGICAL DESCRIPTIONS..................................................................43 3.1 Tidepool Study............................................................................................. 46 3.2 Tidepool Perimeter Study ............................................................................ 54 3.3 Band Transect Study ................................................................................... 63 3.4 Owl Limpet and Black Abalone Shell Measurements ................................... 78 3.5 Invertebrate Composition Associated With Habitats Under Turnable Substrates ................................................................................................... 82 3.6 1977-2002 Site Comparison ........................................................................ 87 3.7 Trampling Effects Supplemental Study ........................................................ 92 3.8 Scientist Interviews ...................................................................................... 96 ESLO2003-014 iv 7/31/03 Table of Contents 4.0 INTEGRATED DISCUSSION OF VISITOR USE AND BIOLOGICAL IMPACTS ....................................................................................................99 4.1 Assessment of Visitor Impacts..................................................................... 99 4.2 Assessment of Ecological Significance of Findings.................................... 110 4.3 Conclusions............................................................................................... 112 5.0 LITERATURE CITED................................................................................ 115 APPENDICES A Contact List B Regulations C Visitor Surveys D Enforcement and Advisories E Literature Search for Baseline Studies F Species Lists G Tidepool Study H Tidepool Perimeter Study I Band Transect Study J Statistical Summaries K Owl Limpet and Black Abalone Study L Scientist Interviews ESLO2003-014 v 7/31/03 Table of Contents List of Tables Table 2-1. Number of fishing collecting citations and advisories in the Pacific Grove Marine Life Gardens Fish Refuge (1991-2002). ............... 34 Table 2-2. Visitor use among popular intertidal areas in central and southern California................................................................................. 40 Table 3-1. Station name abbreviations in MDS figures............................................ 51 Table 3-2. Algae observed in 1977 and 2000 at five sites ....................................... 89 Table 3-3. Invertebrates observed in 1977 and 2002 at five sites ........................... 90 Table 3-4. Summary of anecdotal observations
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • The-Minnesota-Seaside-Station-Near-Port-Renfrew.Pdf
    The Minnesota Seaside Station near Port Renfrew, British Columbia: A Photo Essay Erik A. Moore and Rebecca Toov* n 1898, University of Minnesota botanist Josephine Tilden, her sixty-year-old mother, and a field guide landed their canoe on Vancouver Island at the mouth of the Strait of Juan de Fuca. This Iconcluded one journey – involving three thousand kilometres of travel westward from Minneapolis – and began another that filled a decade of Tilden’s life and that continues to echo in the present. Inspired by the unique flora and fauna of her landing place, Tilden secured a deed for four acres (1.6 hectares) along the coast at what came to be known as Botanical Beach in order to serve as the Minnesota Seaside Station (Figure 1). Born in Davenport, Iowa, and raised in Minneapolis, Minnesota, Josephine Tilden attended the University of Minnesota and completed her undergraduate degree in botany in 1895. She continued her graduate studies there, in the field of phycological botany, and was soon ap- pointed to a faculty position (the first woman to hold such a post in the sciences) and became professor of botany in 1910. With the support of her department chair Conway MacMillan and others, Tilden’s research laboratory became the site of the Minnesota Seaside Station, a place for conducting morphological and physiological work upon the plants and animals of the west coast of North America. It was inaugurated in 1901, when some thirty people, including Tilden, MacMillan, departmental colleagues, and a researcher from Tokyo, spent the summer there.1 * Special thanks to this issue’s guest editors, Alan D.
    [Show full text]
  • An Experiment to Guide Sustainable Exploitation of An
    BALANCING CONSERVATION WITH COMMERCIAL USE: AN EXPERIMENT TO GUIDE SUSTAINABLE EXPLOITATION OF AN ECOLOGICALLY VULNERABLE KELP by Sarah Ann Thompson A thesis submitted to Sonoma State University In partial fulfillment of the requirements for the degree of Master of Science in Biology _________________________________ Dr. Karina J. Nielsen _________________________________ Dr. J. Hall Cushman _________________________________ Dr. Eric Sanford _________________________________ Date ii Copyright 2007 by Sarah Ann Thompson iii AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS I grant permission for the reproduction of this thesis in its entirety, without further authorization from me, on the condition that the person or agency requesting reproduction absorb the cost and provide proper acknowledgment of authorship. DATE: ___________________ ______________________________ Sarah Ann Thompson iv BALANCING CONSERVATION WITH COMMERCIAL USE: EXPERIMENTS TO GUIDE SUSTAINABLE EXPLOITATION OF AN ECOLOGICALLY VULNERABLE KELP Thesis by Sarah Ann Thompson ABSTRACT The Sea Palm, Postelsia palmaeformis, is an intertidal kelp of the Order Laminariales, has a heteromorphic life history, and is endemic to the wave- exposed rocky shorelines of the Northeast Pacific. Postelsia is also among the most valued of seaweeds collected for the health- and wild-foods industry, and it is collected commercially in Oregon and California. When collectors cut fronds leaving the meristem intact they will regrow, allowing multiple collections per season to be made from the same individuals. Commercial collection takes place in California with minimal management or regulation, despite the fact that Postelsia’s life history characteristics make it especially vulnerable to overexploitation. Though many California collectors advocate and use this cutting method and maintain that it is sustainable, there is no scientific evidence to support this claim.
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
    (seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R.
    [Show full text]
  • Final Study Report
    OCS Study BOEMRE 2010-05 Multi-Agency Rocky Intertidal Network (MARINe) Study of Rocky Intertidal Communities Adjacent to OCS Activities – Final report (2007-2010) Final Technical Summary Final Study Report U.S. Department of the Interior BOEMRE Bureau of Ocean Energy Management, Regulation and Enforcement Pacific OCS Region OCS Study BOEMRE 2010-05 Multi-Agency Rocky Intertidal Network (MARINe) Study of Rocky Intertidal Communities Adjacent to OCS Activities – Final report (2007-2010) Final Technical Summary Final Study Report Project Manager Peter T. Raimondi Principal Investigators Richard Ambrose Jack Engle Steve Murray Jayson Smith Study design, oversight, and funding were provided by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Environmental Studies Program, Washington, DC under Agreement Number M07AC12503 by Center for Ocean Health Long Marine Laboratory University of California Santa Cruz, CA 93106 Disclaimer This report has been reviewed by the Pacific Outer Continental Shelf Region, Bureau of Ocean Energy Management, Regulation and Enforcement, U.S. Department of the Interior and approved for publication. The opinions, findings, conclusions, and recommendations in this report are those of the authors, and do not necessarily reflect the views and policies of the Bureau of Ocean Energy Management, Regulation and Enforcement. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use. This report has not been edited for conformity with Bureau of Ocean Energy Management, Regulation and Enforcement editorial standards. Availability of Report Extra copies of the report may be obtained from: U.S. Dept. of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement Pacific OCS Region 770 Paseo Camarillo Camarillo, CA 93010 Phone: 805-389-7621 Suggested Citation The suggested citation for this report is: Raimondi, P.T.
    [Show full text]
  • Larval Development of Scyra Acutifrons (Crustacea: Decapoda: Epialtidae)
    Animal Cells and Systems Vol. 14, No. 4, December 2010, 333Á341 Larval development of Scyra acutifrons (Crustacea: Decapoda: Epialtidae) with a key from the northern Pacific Seong Mi Oh and Hyun Sook Ko* Department of Biological Science, Silla University, Busan 617-736, Korea (Received 23 June 2010; received in revised form 28 July 2010; accepted 2 August 2010) The larvae of Scyra acutifrons are described and illustrated for the first time. The larval stage consists of two zoeal and a megalopal stages. The zoea of S. acutifrons is compared with those of other known species of the Epialtidae from the northern Pacific. The zoea of Scyra acutifrons can be easily distinguished from that of S. compressipes by having a longer rostral carapace spine and an endopod of maxillule with three setae. It is found that the genus Scyra (Pisinae) shows a great similarity to Pisoides bidentatus (Pisinae) and the genus Pugettia (Epialtinae) in the family Epialtidae; especially, S. acutidens coincides well with two Pugettia species (Pugettia incisa and P. gracilis) in the characteristics of the zoeal mouthpart appendages. To facilitate the study of plankton-collected material, a provisional key to the known zoeae of the Epialtidae from the northern Pacific is provided. Keywords: Epialtidae; larva; Scyra acutifrons; Pugettia; zoeal morphology; key; northern Pacific Introduction individually at a water temperature of 15918 and The majoid family Epialtidae contains four subfami- salinity of 29.790.6. Each of the individually reared lies; Epialtinae, Pisinae, Pliosomatinae, and Tychinae zoeae was held in a plastic well containing 5Á6ml of (see Ng et al. 2008).
    [Show full text]
  • Malacofauna Marina Del Parque Nacional “Los Caimanes”, Villa Clara, Cuba
    Tesis de Diploma Malacofauna Marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Junio, 2011 Universidad Central “Marta Abreu” de Las Villas Facultad Ciencias Agropecuaria TESIS DE DIPLOMA Malacofauna marina del Parque Nacional “Los Caimanes”, Villa Clara, Cuba. Autora: Liliana Olga Quesada Pérez Tutor: M. C. Ángel Quirós Espinosa Investigador Auxiliar y Profesor Auxiliar [email protected] Centro de Estudios y Servicios Ambientales, CITMA-Villa Clara Carretera Central 716, Santa Clara Consultante: Dr.C. José Espinosa Sáez Investigador Titular Instituto de Oceanología Junio, 2011 Pensamiento “La diferencia entre una mala observación y una buena, es que la primera es errónea y la segunda es incompleta.” Van Hise Dedicatoria Dedicatoria: A mis padres, a Yandy y a mi familia: por las innumerables razones que me dan para vivir, y por ser fuente de inspiración para mis metas. Agradecimientos Agradecimientos: Muchos son los que de alguna forma contribuyeron a la realización de este trabajo, todos saben cuánto les agradezco: Primero quiero agradecer a mis padres, que aunque no estén presentes sé que de una forma u otra siempre estuvieron allí para darme todo su amor y apoyo. A mi familia en general: a mi abuela, hermano, a mis tíos por toda su ayuda y comprensión. A Yandy y a su familia que han estado allí frente a mis dificultades. Agradecer a mi tutor el M.Sc. Ángel Quirós, a mi consultante el Dr.C. José Espinosa y a la Dra.C. María Elena, por su dedicación para el logro de esta tesis. A mis compañeros de grupo por estos cinco años que hemos compartidos juntos, que para mí fueron inolvidables.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Microsatellite) Markers for the Kelp Postelsia Palmaeformis (Laminariales
    Molecular Ecology Notes (2004) 4, 372–375 doi: 10.1111/j.1471-8286.2004.00657.x PRIMERBlackwell Publishing, Ltd. NOTE Dominant (AFLP) and co-dominant (microsatellite) markers for the kelp Postelsia palmaeformis (Laminariales) HANDOJO T. KUSUMO, CATHERINE A. PFISTER and J. TIMOTHY WOOTTON Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA Abstract To aid in understanding the structure, dispersal and genetic dynamics of their populations, we developed microsatellite and amplified fragment length polymorphism (AFLP) markers for the sea palm, Postelsia palmaeformis (Laminariales) for samples taken from nine sites in the area of Cape Flattery, Washington State, USA. We identified two AFLP primers that yielded 798 variable fragments and five microsatellite markers with three to seven alleles each. We also report patterns of allelic variation for four previously identified microsatellite markers in this species and several new alleles. Keywords: AFLP, algae, kelp, microsatellite, Postelsia palmaeformis, seaweed Received 29 December 2003; revision received 28 January 2003; accepted 2 March 2004 The sea palm, Postelsia palmaeformis (Laminariales), occurs logically important non-model organisms. However, as a widely on rocky wave-swept shores of the northeast Pacific dominant marker system, AFLP suffers from problems in Ocean from Monterey Bay, California to the northern identifying homologous alleles, which is essential for some end of Vancouver Island, British Columbia (Abbott & analytical studies (e.g. heterozygosity analyses; Mueller & Hollenberg 1976). In areas where it occurs, it is an extre- Wolfenbarger 1999). Therefore, microsatellite markers were mely productive annual plant (Leigh et al. 1987), and it is also developed as a potential supplement and methodological also harvested in parts of its range, making it an important check for the AFLP approaches.
    [Show full text]
  • (Brachyura, Majoidea) in Nearshore Kelp Habitats in Alaska, U.S.A
    TEMPORAL TRENDS OF TWO SPIDER CRABS (BRACHYURA, MAJOIDEA) IN NEARSHORE KELP HABITATS IN ALASKA, U.S.A. BY BENJAMIN DALY1,3) and BRENDA KONAR2,4) 1) University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, 201 Railway Ave, Seward, Alaska 99664, U.S.A. 2) University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, P.O. Box 757220, Fairbanks, Alaska 99775, U.S.A. ABSTRACT Pugettia gracilis and Oregonia gracilis are among the most abundant crab species in Alaskan kelp beds and were surveyed in two different kelp habitats in Kachemak Bay, Alaska, U.S.A., from June 2005 to September 2006, in order to better understand their temporal distribution. Habitats included kelp beds with understory species only and kelp beds with both understory and canopy species, which were surveyed monthly using SCUBA to quantify crab abundance and kelp density. Substrate complexity (rugosity and dominant substrate size) was assessed for each site at the beginning of the study. Pugettia gracilis abundance was highest in late summer and in habitats containing canopy kelp species, while O. gracilis had highest abundance in understory habitats in late summer. Large- scale migrations are likely not the cause of seasonal variation in abundances. Microhabitat resource utilization may account for any differences in temporal variation between P. gracilis and O. gracilis. Pugettia gracilis may rely more heavily on structural complexity from algal cover for refuge with abundances correlating with seasonal changes in kelp structure. Oregonia gracilis mayrelyonkelp more for decoration and less for protection provided by complex structure. Kelp associated crab species have seasonal variation in habitat use that may be correlated with kelp density.
    [Show full text]
  • UC Berkeley UC Berkeley Previously Published Works
    UC Berkeley UC Berkeley Previously Published Works Title Twelve thousand recent patellogastropods from a northeastern Pacific latitudinal gradient. Permalink https://escholarship.org/uc/item/21h48289 Authors Kahanamoku, Sara Hull, Pincelli Lindberg, David et al. Publication Date 2018-01-09 DOI 10.1038/sdata.2017.197 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificdata OPEN Data Descriptor: Twelve thousand recent patellogastropods from a northeastern Pacific latitudinal gradient 13 2017 Received: June 1 2 1 2 1 3 Sara S. Kahanamoku , , Pincelli M. Hull , David R. Lindberg , Allison Y. Hsiang , , Accepted: 17 October 2017 4 2 Erica C. Clites & Seth Finnegan Published: 9 January 2018 Body size distributions can vary widely among communities, with important implications for ecological dynamics, energetics, and evolutionary history. Here we present a dataset of body size and shape for 12,035 extant Patellogastropoda (true limpet) specimens from the collections of the University of California Museum of Paleontology, compiled using a novel high-throughput morphometric imaging method. These specimens were collected over the past 150 years at 355 localities along a latitudinal gradient ranging from Alaska to Baja California, Mexico and are presented here with individual images, 2D outline coordinates, and 2D measurements of body size and shape. This dataset provides a resource for assemblage-scale macroecological questions and documents the size and diversity of recent patellogastropods in the northeastern Pacific. Design Type(s) observation design • image analysis objective Measurement Type(s) morphology Technology Type(s) digital camera Factor Type(s) geographic location Patellogastropoda • State of California • State of Baja California • State of Sample Characteristic(s) Washington • Mexico • State of Alaska • State of Oregon • Province of British Columbia 1 2 Yale University, Department of Geology & Geophysics, New Haven, CT 06511, USA.
    [Show full text]