Nemertea – Ribbon Worms Martin Thiel & Jon Norenburg

Total Page:16

File Type:pdf, Size:1020Kb

Nemertea – Ribbon Worms Martin Thiel & Jon Norenburg Nemertea – Ribbon Worms Martin Thiel & Jon Norenburg 369 Nemertea – Ribbon Worms Martin Thiel & Jon Norenburg General Introduction Morphology and Biology Development can be direct (in the Hoplonemertea) Nemerteans, also called ribbon worms, are slender or indirect. Direct development can be via a non- Phylum Nemertea Phylum worms without external body appendages (Figs. 1&2). feeding planktonic larva or an encapsulated larva with They range in length from a few millimetres to several a benthic crawl-away juvenile. Indirect development meters, while their body diameter rarely exceeds a few is typical for the Pilidiophora (which includes the old mm, but can be up to 20 mm. One nemertean species, order Heteronemertea) and usually involves a feeding Lineus longissimus (Fig. 3), has been recorded in the planktonic larval stage (Pilidium) of variable duration book of Guinness 1995 as the longest living animal on (days to weeks), but this may be modified as a non- earth. In this species, individuals of more than 30 m body feeding benthic or planktonic development (e.g., Iwata length with a body diameter of a few mm have been or Desor’s larva). recorded. However, the common nemerteans that one All nemerteans have an eversible proboscis, which typically finds are several cm up to 50 cm in length. Most they employ in prey capture and sometimes for escape. nemerteans are marine but there are also a few freshwater Some species actively forage for their more sedentary and fully terrestrial species. With the exception of a few prey, while others hide in strategic positions, e.g. in hermaphroditic species, nemerteans are gonochoric. mussel or algal patches, waiting for their mobile prey Fig. 1 370 Epidermis Subepidermal musculature Dermal Glands Dermal connective tissue Rhynchocoel Mid-dorsal blood vessel Intestine Lateral blood vessel Lateral nerve cord Longitudinal musculature Circular musculature Fig. 2 species. Due to the lack of any external appendages, which comprise the Monostilifera (with one functional nemerteans move either by cilia (in the smaller species) stylet) and the Polystilifera (with several functional stylets). or peristaltic contractions of the body musculature Based on their results, these authors abandoned the (in the larger species). Consequently, nemerteans are Anopla but created the Pilidiophora, which includes all relatively slow-moving organisms, comparable in speeds of the Heteronemertea and some former Paleonemertea. to snails, sea stars and sea urchins. Upon encountering a The Pilidiophora and the Hoplonemertea form the prey organism, however, a nemertean can rapidly evert new clade Neonemertea, which is separated from the its proboscis and immobilize prey with highly potent remaining taxa previously belonging to the class Anopla, toxins. Nemerteans of one major group (Hoplonemertea) namely the Paleonemertea, which apparently is not possess a stylet in the proboscis, which they use to monophyletic. puncture the hard exoskeleton of prey, mainly small crustaceans. Nemerteans without such a stylet prey on Collection and Identification other worms, mainly polychaetes, but also on bivalves. Nemerteans should be collected alive, because when A few nemerteans are obligate symbionts, living either they are preserved without appropriate treatment their in association with marine decapod crustaceans (mainly posterior identification may be severely compromised. crabs) and preying on their developing embryos or living When fixed in formalin or ethanol, most species contract in the mantle cavity of bivalves and feeding on particles or fragment, evert the proboscis and moreover lose brought in by the host. their colour. Thus, in preserved samples one often finds nemerteans, but these are usually impossible to identify. Phylogeny Large species from intertidal or shallow subtidal hard Based on morphological characteristics, two classes bottoms can be found by turning over rocks and small of nemerteans had been previously distinguished: the boulders. Upon encountering a nemertean, it should be Enopla with one or more stylets on the proboscis and the carefully transferred into a sampling jar with the aid of a styletless Anopla. Recent molecular analyses confirmed spatula, soft forceps or a paint brush. Smaller species (less that the Enopla are monophyletic but challenged the than 5 cm in body length) can best be obtained alive by monophyly of the Anopla. Thollesson & Norenburg transferring benthic substrata (gravel, coral rubble, mussel (2003) distinguished the Enopla (=Hoplonemertea), patches, kelp holdfasts) to the laboratory (in large buckets 371 or trays) and maintaining them in standing seawater for a to prepare these delicate worms for histology, they must few hours. The agitation during sample transfer usually be very carefully preserved (after anesthetizing them) in induces the nemerteans to abandon their hiding places, particular liquids and then embedded in paraffin wax. which is when they can be easily found, often crawling The embedded worms are then sectioned and stained for along the wall of the buckets or trays. They can then be better visualization of the relevant internal organs. placed in a petri-dish to observe them under a dissecting These complicated procedures represent an important microscope. Careful observation of the living specimen obstacle to species identification and it is mainly for this allows identifying important body characteristics that reason that for many regions of the world we have no often cannot be seen after preservation, such as body thorough inventory of nemertean diversity. In contrast, it colour, cerebral furrows, number and pattern of eyes, is relatively easy to match unknown nemerteans to those movement patterns and general body shape. described from other regions of the world, which has led to The identification of nemerteans is further complicated many questionable species distributions. The lack of reliable Phylum Nemertea Phylum due to their lack of external body characteristics. species identifications often also impedes studies of their Consequently, their identification is almost entirely biology and ecological role. Nevertheless, when found based on histology, where the number and thickness alive, some of the more common nemertean species can of muscle layers, position of the cerebral ganglia and be easily identified based on their body size and primarily the nerve cords relative to body-wall musculature, on their colouration. While poorly known to the general structure of the rhynchocoel and the proboscis, and public and even to many marine biologists, nemerteans are other characters are of importance (Figs. 1&2). In order ubiquitous predators in most marine habitats. Nemerteans of the Chilean Fjord Region In this chapter four of the best known nemertean Classification species from southern Chile are shown and described. Class Neonemertea Thollesson & Norenburg, 2003 Common names are given by the editors to enhance Order Enopla (=Hoplonemertea) Schultze, 1852 local non-scientific species knowledge. For Chile about Suborder Monostilifera Brinkmann, 1917 45 nemertean species have been recorded (R. Gibson, Family Prosorhochmidae Bürger, 1895 personal comment) and several of these are found in Prosorhochmus nelsoni (Sanchez, 1973) the fjord region of southern Chile. Their identification is Order Pilidiophora (previously Anopla) complicated and next to nothing is known about their Thollesson & Norenburg, 2003 biology. The first records of the Nemertean fauna from Suborder Heteronemertea Bürger, 1892 Chile come from Bürger, Isler and Coe (for references Family Baseodiscidae Bürger, 1904 see Friedrich, 1970). These records were synthesized Baseodiscus aureus (Bürger, 1896) by Friedrich (1970), who also examined the nemerteans Family Lineidae McIntosh, 1873–74 collected in 1948–1949 during the Lund University Lineus atrocaerulus (Schmarda, 1859) Chile Expedition (unfortunately most of these samples Parborlasia corrugatus (McIntosh, 1876) were preserved without particular procedures, making a correct identification improbable). During the 1980s, Order Enopla (=Hoplonemertea) Dr. Malva Sanchez added several new records to this As in all other hoplonemerteans, esophagus opens internally list. She and her co-workers also described several new from the rhynchodaeum (Fig. 1) — consequently there is species, including Prosorhochmus nelsoni (originally no external mouth opening in P. nelsoni (and in most other described as Amphiporus nelsoni) and Procephalothrix enoplans). 2-layered body-wall musculature with outer circular hermaphroditicus, both also known from southern Chile. muscle layer and interior longitudinal muscle layer (Fig. 2). The complete species list presented in Appendix 2 is Lateral nerve cords medial to body-wall muscle layers. mainly based on the records by Friedrich (1970). Most of these records need to be interpreted with great caution Genus Prosorhochmus and require reconfirmation or re-descriptions. Externally visible characters are an anterior frontal furrow (transverse across the snout), giving the appearance of a 372 smile; 2 pairs of eyes, and lateral, dorso-ventrally oriented, Genus Baseodiscus cephalic furrows. Rhynchocoel extends throughout body Externally visible characters are presence of ventral mouth, length, proboscis armed with 1 central stylet and 2 pouches and pair of lateral, dorso-ventrally oriented, cephalic of accessory stylets. Dermis and body-wall musculature furrows mark back of so-called head region, with pore to moderately thick. Frontal
Recommended publications
  • Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
    July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment.
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • A New Species of Bathyal Nemertean, Proamphiporus Kaimeiae Sp
    Species Diversity 25: 183–188 Published online 8 August 2020 DOI: 10.12782/specdiv.25.183 A New Species of Bathyal Nemertean, Proamphiporus kaimeiae sp. nov., off Tohoku, Japan, and Molecular Systematics of the Genus (Nemertea: Monostilifera) Natsumi Hookabe1,2,5, Shinji Tsuchida3, Yoshihiro Fujiwara3, and Hiroshi Kajihara4 1 Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan E-mail: [email protected] 2 Present address: Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa 238-0225, Japan E-mail: [email protected] 3 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan 4 Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan 5 Corresponding author (Received 21 October 2019; Accepted 15 April 2020) http://zoobank.org/71D0D145-2CE7-4592-BD82-C67EAA0A41E5 The monostiliferous hoplonemertean Proamphiporus kaimeiae sp. nov. is described based on a single specimen collect- ed from the bottom of the Northwest Pacific, 262 m deep, off Tohoku in Japan, by use of a remotely operated vehicle during a cruise organized by Tohoku Ecosystem-Associated Marine Sciences (TEAMS) research project in 2019. The position of the cerebral organs in the new species, being posterior to the proboscis insertion, is unusual for Eumonostilifera, which is one of the diagnostic traits of the so-far monospecific Proamphiporus Chernyshev and Polyakova, 2019, and Amphiporus rectangulus Strand, Herrera-Bachiller, Nygren, and Kånneby, 2014. The latter is herein transferred to Proamphiporus to yield a new combination, Proamphiporus rectangulus comb. nov., based on the reported internal morphology. Molecular phylo- genetic analyses based on 16S rRNA, cytochrome c oxidase subunit I, 18S rRNA, 28S rRNA, and histone H3 genes placed P.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Fauna Ryukyuana ISSN 2187-6657
    Fauna Ryukyuana ISSN 2187-6657 http://w3.u-ryukyu.ac.jp/naruse/lab/Fauna_Ryukyuana.html Records of Notospermus tricuspidatus (Quoy & Gaimard, 1833) (Nemertea: Pilidiophora) in Japanese waters, with a review of warm-water green-bodied heteronemerteans from the Indo–West-Pacific Hiroshi Kajihara1, Ira Hosokawa2, 3, Koji Hosokawa3 & Ryuta Yoshida4 1Faculty of Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan (e-mail: [email protected]) 2Kamiyama Elementary School, Hara 3-1, Yakushima, Kumage 891-4403, Kagoshima, Japan 3Mugio 318-9, Yakushima, Kumage 891-4402, Kagoshima, Japan 4Iriomote Station, Tropical Biosphere Research Centre, University of the Ryukyus, Uehara 870, Taketomi, Yaeyama 907-1541, Okinawa, Japan Abstract. The heteronemertean Notospermus Actually, however, no nemertean with a zigzag tricuspidatus (Quoy & Gaimard, 1833) [new marking has ever been reported from Japanese Japanese name: mitsuyari-midori-himomushi] is waters, meaning that there is no formal record of N. known to be distributed in the tropical Indo–West- tricuspidatus in Japan if it is a different species from Pacific, but has not been formally reported from L. albovittatus (Kajihara 2007). Whether or not these Japanese waters based on voucher material. We two forms belong to a single biological entity should summarize records of the species based on recently be tested in future molecular studies, but we collected specimens in the Nansei Islands. A tentatively regard N. tricuspidatus s.str. as specimen collected on Yakushima Island (ca. 30°N) represented by individuals with a zigzag marking, represents the northern limit of the species’ while L. albovittatus as having a straight band. distribution.
    [Show full text]
  • Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
    Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1.
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • Nemertean Taxonomy—Implementing Changes in the Higher Ranks, Dismissing Anopla and Enopla
    Received: 27 August 2018 | Accepted: 28 August 2018 DOI: 10.1111/zsc.12317 LETTER TO THE EDITOR Nemertean taxonomy—Implementing changes in the higher ranks, dismissing Anopla and Enopla Dear Editor, José E. Alfaya3 Nemertean classification has closely followed Stiasny‐ Fernando Ángel Fernández‐Álvarez4 Wijnhoff’s scheme (1936) that was based on Schultze’s Håkan S Andersson5 (1851) division of the taxon into the two classes Anopla and Sonia C. S. Andrade6 Enopla. In August 2018, the 9th International Conference of Thomas Bartolomaeus7 Nemertean Biology took place in the Wadden Sea Station of Patrick Beckers7 the Alfred Wegener Institute in List auf Sylt, Germany. At Gregorio Bigatti3 this meeting, the community reached consensus to revise ne- Irina Cherneva8 mertean taxonomy at the class level, based on the compiled Alexey Chernyshev9,10 evidence from studies on nemertean systematics published Brian M. Chung11 in the last 15 years (Andrade et al., 2014, 2012 ; Thollesson Jörn von Döhren7 & Norenburg, 2003). Previous classifications (e.g., Stiasny‐ Gonzalo Giribet12 Wijnhoff, 1936) are not based on phylogenetic grounds, and Jaime Gonzalez‐Cueto13 the use of these names is therefore nowadays not wholly in- Alfonso Herrera‐Bachiller14 formative. With the purpose of facilitating the practical use Terra Hiebert15 of the nemertean taxonomy and also making nemertean tax- Natsumi Hookabe16 onomy reflect a wealth of more recent information, we con- Juan Junoy14 clude that the ranks Anopla and Enopla should be eliminated Hiroshi Kajihara16 with the following argumentation: “Enopla” has for long Daria Krämer7 held no more information than the name “Hoplonemertea”. Sebastian Kvist17,18 “Anopla” is paraphyletic and the name usually corresponds Timur Yu Magarlamov9 to the following traits: (a) not bearing stylet; and (b) mouth Svetlana Maslakova15 and proboscis having separate openings.
    [Show full text]
  • Phylum Nemertea)
    THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Biology Chair: Dr. Qiristopher'Tudge m Dr.David C r. Jon L. Norenburg Dean of the College of Arts and Sciences JuK4£ __________ Date 2004 American University Washington, D.C. 20016 AMERICAN UNIVERSITY LIBRARY 1 1 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1421360 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1421360 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger ABSTRACT Most nemerteans are studied from poorly preserved museum specimens.
    [Show full text]
  • Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologin Simone Faller aus Frankfurt am Main Berichter: Privatdozent Dr. Rudolf Loesel Universitätsprofessor Dr. Peter Bräunig Tag der mündlichen Prüfung: 09. März 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 General Introduction 1 Deep Metazoan Phylogeny 1 Neurophylogeny 2 Mollusca 5 Nemertea 6 Aim of the thesis 7 2 Neuroanatomy of Minor Mollusca 9 Introduction 9 Material and Methods 10 Results 12 Caudofoveata 12 Scutopus ventrolineatus 12 Falcidens crossotus 16 Solenogastres 16 Dorymenia sarsii 16 Polyplacophora 20 Lepidochitona cinerea 20 Acanthochitona crinita 20 Scaphopoda 22 Antalis entalis 22 Entalina quinquangularis 24 Discussion 25 Structure of the brain and nerve cords 25 Caudofoveata 25 Solenogastres 26 Polyplacophora 27 Scaphopoda 27 i CONTENTS Evolutionary considerations 28 Relationship among non-conchiferan molluscan taxa 28 Position of the Scaphopoda within Conchifera 29 Position of Mollusca within Protostomia 30 3 Neuroanatomy of Nemertea 33 Introduction 33 Material and Methods 34 Results 35 Brain 35 Cerebral organ 38 Nerve cords and peripheral nervous system 38 Discussion 38 Peripheral nervous system 40 Central nervous system 40 In search for the urbilaterian brain 42 4 General Discussion 45 Evolution of higher brain centers 46 Neuroanatomical glossary and data matrix – Essential steps toward a cladistic analysis of neuroanatomical data 49 5 Summary 53 6 Zusammenfassung 57 7 References 61 Danksagung 75 Lebenslauf 79 ii iii 1 General Introduction Deep Metazoan Phylogeny The concept of phylogeny follows directly from the theory of evolution as published by Charles Darwin in The origin of species (1859).
    [Show full text]
  • Visceral and Cutaneous Larva Migrans PAUL C
    Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption.
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]