Redesign of PCR Primers for Mitochondrial Cytochrome C Oxidase Subunit I for Marine Invertebrates and Application in All-Taxa Biotic Surveys

Total Page:16

File Type:pdf, Size:1020Kb

Redesign of PCR Primers for Mitochondrial Cytochrome C Oxidase Subunit I for Marine Invertebrates and Application in All-Taxa Biotic Surveys Molecular Ecology Resources (2013) doi: 10.1111/1755-0998.12138 Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys J. GELLER,* C. MEYER,† M. PARKER† and H. HAWK*1 *Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing CA 95309, USA, †Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, Washington DC 20013-7012, USA Abstract DNA barcoding is a powerful tool for species detection, identification and discovery. Metazoan DNA barcoding is primarily based upon a specific region of the cytochrome c oxidase subunit I gene that is PCR amplified by primers HCO2198 and LCO1490 (‘Folmer primers’) designed by Folmer et al. (Molecular Marine Biology and Biotechnology,3, 1994, 294). Analysis of sequences published since 1994 has revealed mismatches in the Folmer primers to many meta- zoans. These sequences also show that an extremely high level of degeneracy would be necessary in updated Folmer primers to maintain broad taxonomic utility. In primers jgHCO2198 and jgLCO1490, we replaced most fully degener- ated sites with inosine nucleotides that complement all four natural nucleotides and modified other sites to better match major marine invertebrate groups. The modified primers were used to amplify and sequence cytochrome c oxi- dase subunit I from 9105 specimens from Moorea, French Polynesia and San Francisco Bay, California, USA repre- senting 23 phyla, 42 classes and 121 orders. The new primers, jgHCO2198 and jgLCO1490, are well suited for routine DNA barcoding, all-taxon surveys and metazoan metagenomics. Keywords: biotic surveys, cytochrome c oxidase subunit I, DNA barcoding, Moorea, universal primers Received 20 March 2013; revision received 22 May 2013; accepted 5 June 2013 databases at the Web of Science on 21 February 2013 Introduction revealed 2967 citations of the Folmer et al. (1994) paper. The mitochondrial cytochrome c oxidase subunit I gene DNA barcoding, the use of diagnostic nucleotide (COI) has been used extensively for studies of popula- variation to identify species, is a further development tion genetics, phylogeography, speciation and systemat- that has used the COI gene as a primary tool (Savolai- ics. For many species and genera, genetic variation at nen et al. 2005; Stoeckle & Hebert 2008; Ward et al. this locus is sufficient to study processes that occur over 2009; Bucklin et al. 2011). Where interspecific variation relatively short and recent time intervals. Despite this does not overlap intraspecific variation, species can variation, some regions of the gene are sufficiently con- be reliably identified by DNA sequences. Studies served to design primers for the polymerase chain reac- have shown that this condition often, but not always, tion (PCR) that match a broad spectrum of organisms applies to COI. DNA barcoding, therefore, includes a (Hebert et al. 2003; Kress & Erickson 2012). Conse- degree of uncertainty (Meyer & Paulay 2005). The quently, for many studies, COI occupies a ‘sweet spot’ of method both relies upon and is improved by large variation allowing for meaningful population and inter- data sets, and formal protocols for DNA barcoding species studies while conserved enough for practicality. have been proposed to promote uniformity of data Two primers (LCO1490 and HCO2198), commonly quality (Ratnasingham & Hebert 2007; Kress & Erick- referred to as the ‘Folmer primers’, have been used son 2012). For animal taxa, the region of COI flanked extensively (Folmer et al. 1994). Query of citation by the Folmer primers has been designated as a DNA barcode region (barcodeoflife.org), and records with sufficient metadata are given the keyword BARCODE Correspondence: Jonathan Geller, Fax: 1-831-632-4403; E-mail: by GenBank. [email protected] Despite the popularity and success of the Folmer 1Present address: Departement de Biologie, Universite Laval, primers described above, they are not truly ‘universal’ 1045 Avenue de la Medecine, Quebec QC G1V 0A6, Canada in applicability. Our own experience and informal © 2013 John Wiley & Sons Ltd 2 J. GELLER ET AL. conversations with colleagues indicate that the Folmer programs exist that include algorithms for some of these primers often fail or perform poorly, producing faint factors [e.g. PRIMER3 (Rozen & Skaletsky 2000), PRIMER PRE- products despite attempts at optimization. Failures of MIER 6 (Premier Biosoft, Palo Alto, CA, USA), AMPLICON the Folmer primers are at least in part due to mis- (Jarman 2004)]. However, these computer programs usu- matches with the target annealing position for many ally are meant to design primers for single sequences or taxa. Relatively few full-length COI gene sequences for groups of similar sequences. Design of primers for were available in 1994, when the primers were pub- alignments of highly divergent sequences is a more lished. Present-day analysis of full-length COI difficult task. sequences often reveals mismatches with the primers. In this study, we describe changes to the standard For this reason, a common strategy has been to obtain Folmer primers that were meant to correct mismatches a few sequences using Folmer primers under nonstrin- for many marine invertebrate species. In alignments of gent annealing temperatures, with additives, or with COI, variation in 3rd codon positions is extensive, and reamplification of weak products, then to design new no primer of 20–30 bp can be suggested that is 100% primers specific for the particular study (e.g. lepidopt- conserved across animal phyla. However, degeneracy in erans: Hebert et al. 2004; fishes: Ward et al. 2005; bry- the PCR primer can accommodate this variation in the ozoans: Mackie et al. 2006). This primer customization priming region. Degeneracy is created during primer is tolerable for focal taxon studies, but workflows for synthesis by mixing nucleotides at the variable sites, major biodiversity surveys, routine DNA barcoding or thereby creating a pool of primers containing all variants. identification of unknowns preclude frequent primer This has the downside of diluting the effective primers: redesign. only a small proportion of the primer mix will be an More universal COI primers would be useful for exact match to any template, and many primers in the biodiversity and barcoding studies. The existing body of pool will poorly match the target sequence. Further, data and the literature for the fragment flanked by sequence variation in the primer pool makes it difficult the Folmer primers places a positional constraint on pri- to predict interprimer interactions or the potential for mer design. A few alternative primers have been sug- mispriming. A different approach is to use inosine gested. Meyer (2003) redesigned the Folmer primers, nucleotides (dITP) at variable positions. Inosine nucleo- using sequences in the Folmer et al. (1994) paper to make tides form pair bonds with all natural nucleotides, them degenerate in the 3′ region (dgLCO1490 and thus increasing potential target sequences (PTS) without dgHCO2198). Meusnier et al. (2008) proposed ‘mini increasing degeneracy. barcode’ primers that amplify an internal fragment of In this study, we suggest a more universal version of the standard barcode region from a broader swath of the Folmer primers using degenerate positions and inter- taxa at the cost of sequence length. A 21 February 2013 nal inosines and show its applicability to biotic surveys survey of the BOLDSystems public primer database, the in Moorea, French Polynesia and San Francisco Bay, CA. repository for DNA barcoding primers maintained by We conclude that the redesigned primers are broadly the Barcode of Life Database, revealed minimally 418 dif- applicable and complement the standard Folmer primers ferent primers targeting the COI gene for various taxa. in DNA barcoding applications. An alternative to the Folmer primers is thus highly desirable. Methods Fortunately, mitochondrial genomics has flourished in recent years, and over 3000 complete or nearly com- Cytochrome c oxidase subunit I sequences for represen- plete mitochondrial genomes were known in 2011 from tative marine invertebrate taxa were acquired from Gen- 28 phyla (http://mi.caspur.it/mitozoa) (Lupi et al. 2010). Bank using available complete mitochondrial genomes This allows more comprehensive alignments of the COI in 2009. Sequences were aligned in Geneious (Biomatters, gene and identification of mismatches in the region tar- New Zealand), and the consensus of nucleotides at the geted by the Folmer primers. These alignments are the positions that correspond to LCO1490 and HCO2198 was basis for the design of new or improved primers for the determined. Positions with fourfold degeneracy were COI region. The molecular interactions involved in replaced with dITP. Positions with twofold degeneracy primer annealing are complex and involve nucleotide were synthesized with mixed nucleotides to create a pri- complementarity to the target, primer homoduplex and mer pool. Resulting primers were named jgLCO1490 and heteroduplex formation, potential for secondary struc- jgHCO2198 to make the relationship to the original tures in incompletely denatured template, ionic strength Folmer primers explicit. of the PCR buffer and nucleotide-neighbour effects in the All morphologically discernable invertebrate species target region. Ideal primer design would include an were collected from settling plates placed in San accurate model for these effects, and several computer Francisco
Recommended publications
  • Ciona Intestinalis (Linnaeus, 1767) in an Invading Population from Placentia Bay Newfoundland and Labrador
    Recruitment patterns and post-metamorphic attachment by the solitary ascidian, Ciona intestinalis (Linnaeus, 1767) in an invading population from Placentia Bay Newfoundland and Labrador By ©Vanessa N. Reid A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE AQUACULTURE MEMORIAL UNIVERSITY OF NEWFOUNDLAND JANUARY 2017 ST. JOHN’S NEWFOUNDLAND AND LABRADOR CANADA ABSTRACT Ciona intestinalis (Linneaus, 1767) is a non-indigenous species discovered in Newfoundland (NL) in 2012. It is a bio-fouler with potential to cause environmental distress and economic strain for the aquaculture industry. Key in management of this species is site-specific knowledge of life history and ecology. This study defines the environmental tolerances, recruitment patterns, habitat preferences, and attachment behaviours of C. intestinalis in Newfoundland. Over two years of field work, settlement plates and surveys were used to determine recruitment patterns, which were correlated with environmental data. The recruitment season extended from mid June to late November. Laboratory experiments defined the growth rate and attachment behaviours of Ciona intestinalis. I found mean growth rates of 10.8% length·d-1. The ability for C. intestinalis to undergo metamorphosis before substrate attachment, forming a feeding planktonic juvenile, thus increasing dispersal time was also found. These planktonic juveniles were then able to attach to available substrates post-metamorphosis. ii TABLE OF CONTENTS
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Development of Species-Specific Edna-Based Test Systems For
    REPORT SNO 7544-2020 Development of species-specific eDNA-based test systems for monitoring of non-indigenous Decapoda in Danish marine waters © Henrik Carl, Natural History Museum, Denmark History © Henrik Carl, Natural NIVA Denmark Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlensgate 53 D Njalsgade 76, 4th floor NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway DK 2300 Copenhagen S, Denmark Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (45) 39 17 97 33 Internet: www.niva.no Title Serial number Date Development of species-specific eDNA-based test systems for monitoring 7544-2020 22 October 2020 of non-indigenous Decapoda in Danish marine waters Author(s) Topic group Distribution Steen W. Knudsen and Jesper H. Andersen – NIVA Denmark Environmental monitor- Public Peter Rask Møller – Natural History Museum, University of Copenhagen ing Geographical area Pages Denmark 54 Client(s) Client's reference Danish Environmental Protection Agency (Miljøstyrelsen) UCB and CEKAN Printed NIVA Project number 180280 Summary We report the development of seven eDNA-based species-specific test systems for monitoring of marine Decapoda in Danish marine waters. The seven species are 1) Callinectes sapidus (blå svømmekrabbe), 2) Eriocheir sinensis (kinesisk uldhånds- krabbe), 3) Hemigrapsus sanguineus (stribet klippekrabbe), 4) Hemigrapsus takanoi (pensel-klippekrabbe), 5) Homarus ameri- canus (amerikansk hummer), 6) Paralithodes camtschaticus (Kamchatka-krabbe) and 7) Rhithropanopeus harrisii (østameri- kansk brakvandskrabbe).
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • 29 November 2005
    University of Auckland Institute of Marine Science Publications List maintained by Richard Taylor. Last updated: 31 July 2019. This map shows the relative frequencies of words in the publication titles listed below (1966-Nov. 2017), with “New Zealand” removed (otherwise it dominates), and variants of stem words and taxonomic synonyms amalgamated (e.g., ecology/ecological, Chrysophrys/Pagrus). It was created using Jonathan Feinberg’s utility at www.wordle.net. In press Markic, A., Gaertner, J.-C., Gaertner-Mazouni, N., Koelmans, A.A. Plastic ingestion by marine fish in the wild. Critical Reviews in Environmental Science and Technology. McArley, T.J., Hickey, A.J.R., Wallace, L., Kunzmann, A., Herbert, N.A. Intertidal triplefin fishes have a lower critical oxygen tension (Pcrit), higher maximal aerobic capacity, and higher tissue glycogen stores than their subtidal counterparts. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. O'Rorke, R., Lavery, S.D., Wang, M., Gallego, R., Waite, A.M., Beckley, L.E., Thompson, P.A., Jeffs, A.G. Phyllosomata associated with large gelatinous zooplankton: hitching rides and stealing bites. ICES Journal of Marine Science. Sayre, R., Noble, S., Hamann, S., Smith, R., Wright, D., Breyer, S., Butler, K., Van Graafeiland, K., Frye, C., Karagulle, D., Hopkins, D., Stephens, D., Kelly, K., Basher, Z., Burton, D., Cress, J., Atkins, K., Van Sistine, D.P., Friesen, B., Allee, R., Allen, T., Aniello, P., Asaad, I., Costello, M.J., Goodin, K., Harris, P., Kavanaugh, M., Lillis, H., Manca, E., Muller-Karger, F., Nyberg, B., Parsons, R., Saarinen, J., Steiner, J., Reed, A. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units.
    [Show full text]
  • Butterfly Checklist 08
    Family Hesperiwidae (Skippers) Subfamily Hesperiinae (Grass Skippers) Subfamily Pyrginae (Spread-wing Skippers) ____Julia’s Skipper Nastra julia ____ Guava Skipper Phocides polbius ____Pale-rayed Skipper Vidius perigenes ____Mercurial Skipper Proteides mercurius ____Fawn-spotted Skipper Cymaenes odilia ____White-striped Longtail Chioides catillus ____Clouded Skipper Lerema accius ____Zilpa Longtail Chioides zilpa ____Orange Skipperling Copaeodes aurantiacia ____Long-tailed Skipper Urbanus proteus ____Southern Skipperling Copaeodes minima ____Teleus Longtail Urbanus teleus ____Fiery Skipper Hylephila phyleus ) ____Brown Longtail Urbanus procne ____Whirlabout Polites vibex ____ Dorantes Longtail Urbanus dorantes ____Southern Broken-Dash Wallengrenia otho ____Coyote Cloudywing Achalarus toxeus ____Sachem Atalopedes campestris ____Mimosa Skipper Cogia calchas ____Celia's Roadside-Skipper Amblyscirtes celia ____Potrillo Skipper Cabares potrillo ____Nysa Roadside-Skipper Amblyscirtes nyhsa ____Two-barred Flasher Astraptes fulgerator ____Dun Skipper Euphyes vestries ____Glazed Pellicia Pellicia arina ____Eufala Skipper Lerodea eufala ____Olive-clouded Skipper Lerodea arabus ____Mazans Scallopwing Staphylus mazans ____Texas Powdered Skipper Systasea pulverulenta ____Brazilian Skipper Calpodes ethlius ____Sickle-winged Skipper Eantis tamenund ____Obscure Skipper Panoquina panoquinoides ____Brown-banded Skipper Timochares ruptifasciatus ____Ocola Skipper Panoquina ocola ____White-patched Skipper Chiomara georgina ____Purple-washed Skipper Panoquina
    [Show full text]
  • Bryozoan Genera Fenestrulina and Microporella No Longer Confamilial; Multi-Gene Phylogeny Supports Separation
    Zoological Journal of the Linnean Society, 2019, 186, 190–199. With 2 figures. Bryozoan genera Fenestrulina and Microporella no longer confamilial; multi-gene phylogeny supports separation RUSSELL J. S. ORR1*, ANDREA WAESCHENBACH2, EMILY L. G. ENEVOLDSEN3, Downloaded from https://academic.oup.com/zoolinnean/article/186/1/190/5096936 by guest on 29 September 2021 JEROEN P. BOEVE3, MARIANNE N. HAUGEN3, KJETIL L. VOJE3, JOANNE PORTER4, KAMIL ZÁGORŠEK5, ABIGAIL M. SMITH6, DENNIS P. GORDON7 and LEE HSIANG LIOW1,3 1Natural History Museum, University of Oslo, Oslo, Norway 2Department of Life Sciences, Natural History Museum, London, UK 3Centre for Ecological & Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway 4Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot Watt University, Edinburgh, UK 5Department of Geography, Technical University of Liberec, Czech Republic 6Department of Marine Science, University of Otago, Dunedin, New Zealand 7National Institute of Water and Atmospheric Research, Wellington, New Zealand Received 25 March 2018; revised 28 June 2018; accepted for publication 11 July 2018 Bryozoans are a moderately diverse, mostly marine phylum with a fossil record extending to the Early Ordovician. Compared to other phyla, little is known about their phylogenetic relationships at both lower and higher taxonomic levels. Hence, an effort is being made to elucidate their phylogenetic relationships. Here, we present newly sequenced nuclear and mitochondrial genes for 21 cheilostome bryozoans. Combining these data with existing orthologous molecular data, we focus on reconstructing the phylogenetic relationships of Fenestrulina and Microporella, two species-rich genera. They are currently placed in Microporellidae, defined by having a semicircular primary orifice and a proximal ascopore.
    [Show full text]
  • Spira 5(1–2), 53–57 (2013)
    Spira 5(1–2), 53–57 (2013) www.molluscat.com SPIRA Catálogo de los Urocoptidae Pilsbry, 1898 (Gastropoda: Pulmonata) conservados en el Ateneo Científico, Literario y Artístico de Mahón (Menorca, Islas Baleares) Josep Quintana Cardona1,2,* 1Gustau Mas 79, 1er, 07760 Ciutadella de Menorca, Illes Balears, Spain; 2Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICP, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain. Rebut el 25 de setembre de 2013. Acceptat el 6 d’octubre de 2013 ____________________________________________________________________________________________________________________ Resum L’estudi de la col·lecció d’urocòptids conservada en l’Ateneu de Maó ha permès identificar 20 géneres i 29 espècies procedents de Cuba, Jamaica i Puerto Rico, de les quals es presenta el catàleg iconogràfic complet. En un dels lots (Aten-256), la identificació original era errònia. Tampoc ha estat possible localitzar els exemplars identificats originalment com Cylindrella brooksiana (Aten-252), actualment Brachypodella (Gyraxis) brooksiana. Aquest treball representa la tercera actualització taxonòmica parcial de les col·leccions malacològiques històriques conservades a Menorca, i la primera que fa referència a un grup de pulmonats terrestres. Paraules clau: Normalització museogràfica i taxonòmica; Col·leccions malacològiques històriques; Segle XIX; Francesc Cardona i Orfila; Illes Balears. Abstract The study of the urocoptid collection housed at the Mahon Atheneum has enabled the identification of 20 genera and 29 species from Cuba, Jamaica and Puerto Rico, of which a complete iconographic catalog is presented. For one of the lots (Aten-256), the original identification was erroneous. It has not been possible to locate the specimens originally attributed to Cylindrella brooksiana (Aten-252), currently Brachypodella (Gyraxis) brooksiana.
    [Show full text]
  • A Simple 2D Non-Parametric Resampling Statistical Approach To
    A Simple 2D Non-Parametric Resampling Statistical Approach to Assess Confidence in Species Identification in DNA Barcoding—An Alternative to Likelihood and Bayesian Approaches Qian Jin1, Li-Jun He2, Ai-Bing Zhang1* 1 College of Life Sciences, Capital Normal University, Beijing, P. R. China, 2 State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, P. R. China Abstract In the recent worldwide campaign for the global biodiversity inventory via DNA barcoding, a simple and easily used measure of confidence for assigning sequences to species in DNA barcoding has not been established so far, although the likelihood ratio test and the Bayesian approach had been proposed to address this issue from a statistical point of view. The TDR (Two Dimensional non-parametric Resampling) measure newly proposed in this study offers users a simple and easy approach to evaluate the confidence of species membership in DNA barcoding projects. We assessed the validity and robustness of the TDR approach using datasets simulated under coalescent models, and an empirical dataset, and found that TDR measure is very robust in assessing species membership of DNA barcoding. In contrast to the likelihood ratio test and Bayesian approach, the TDR method stands out due to simplicity in both concepts and calculations, with little in the way of restrictive population genetic assumptions. To implement this approach we have developed a computer program package (TDR1.0beta) freely available from ftp://202.204.209.200/education/video/TDR1.0beta.rar. Citation: Jin Q, He L-J, Zhang A-B (2012) A Simple 2D Non-Parametric Resampling Statistical Approach to Assess Confidence in Species Identification in DNA Barcoding—An Alternative to Likelihood and Bayesian Approaches.
    [Show full text]
  • ISOLATION and IDENTIFICATION of SECONDARY METABOLITES from the BRYOZOAN Cryptosula Zavjalovensis from HOKKAIDO, JAPAN
    LOVEILLE JUN AMARILLE GONZAGA ISOLATION AND IDENTIFICATION OF SECONDARY METABOLITES FROM THE BRYOZOAN Cryptosula zavjalovensis FROM HOKKAIDO, JAPAN UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2017 LOVEILLE JUN AMARILLE GONZAGA ISOLATION AND IDENTIFICATION OF SECONDARY METABOLITES FROM THE BRYOZOAN Cryptosula zavjalovensis FROM HOKKAIDO, JAPAN Erasmus Mundus MSc in Chemical Innovation and Regulation Mestrado Erasmus Mundus em Inovação Química e Regulamentação Trabalho efetuado sob a orientação de: Work supervised by: Prof. Isabel Cavaco (Universidade do Algarve) Prof. Helena Fortunato (Hokkaido University) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2017 DECLARATION OF AUTHORSHIP ISOLATION AND IDENTIFICATION OF SECONDARY METABOLITES FROM THE BRYOZOAN Cryptosula zavjalovensis FROM HOKKAIDO, JAPAN I declare that I am the author of this work, which is original. The work cites other authors and works, which are adequately referred in the text and are listed in the bibliography. ____________________________________ Loveille Jun A. Gonzaga Copyright: Loveille Jun A. Gonzaga. The University of Algarve has the right to keep and publicize this work through printed copies in paper of digital form, or any other means of reproduction, to disseminate it in scientific repositories and to allow its copy and distribution with educational and/or research objectives, as long as they are non- commercial and give credit to the author and editor. I ACKNOWLEDGEMENTS I would like to extend my heartfelt gratitude to everyone who have been part of my Erasmus Mundus journey. The academic part of it might be concluded with this research work but the journey continues. This work wouldn’t have been possible without the immense help of such amazing people, so I would like to take this opportunity to thank: The European Commission and the EMMC-ChIR program for giving me this opportunity to pursue a relevant and timely international master’s program.
    [Show full text]
  • Balanus Glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia
    Phylum: Arthropoda, Crustacea Balanus glandula Class: Multicrustacea, Hexanauplia, Thecostraca, Cirripedia Order: Thoracica, Sessilia, Balanomorpha Acorn barnacle Family: Balanoidea, Balanidae, Balaninae Description (the plate overlapping plate edges) and radii Size: Up to 3 cm in diameter, but usually (the plate edge marked off from the parietes less than 1.5 cm (Ricketts and Calvin 1971; by a definite change in direction of growth Kozloff 1993). lines) (Fig. 3b) (Newman 2007). The plates Color: Shell usually white, often irregular themselves include the carina, the carinola- and color varies with state of erosion. Cirri teral plates and the compound rostrum (Fig. are black and white (see Plate 11, Kozloff 3). 1993). Opercular Valves: Valves consist of General Morphology: Members of the Cirri- two pairs of movable plates inside the wall, pedia, or barnacles, can be recognized by which close the aperture: the tergum and the their feathery thoracic limbs (called cirri) that scutum (Figs. 3a, 4, 5). are used for feeding. There are six pairs of Scuta: The scuta have pits on cirri in B. glandula (Fig. 1). Sessile barna- either side of a short adductor ridge (Fig. 5), cles are surrounded by a shell that is com- fine growth ridges, and a prominent articular posed of a flat basis attached to the sub- ridge. stratum, a wall formed by several articulated Terga: The terga are the upper, plates (six in Balanus species, Fig. 3) and smaller plate pair and each tergum has a movable opercular valves including terga short spur at its base (Fig. 4), deep crests for and scuta (Newman 2007) (Figs.
    [Show full text]
  • Nemertean Taxonomy—Implementing Changes in the Higher Ranks, Dismissing Anopla and Enopla
    Received: 27 August 2018 | Accepted: 28 August 2018 DOI: 10.1111/zsc.12317 LETTER TO THE EDITOR Nemertean taxonomy—Implementing changes in the higher ranks, dismissing Anopla and Enopla Dear Editor, José E. Alfaya3 Nemertean classification has closely followed Stiasny‐ Fernando Ángel Fernández‐Álvarez4 Wijnhoff’s scheme (1936) that was based on Schultze’s Håkan S Andersson5 (1851) division of the taxon into the two classes Anopla and Sonia C. S. Andrade6 Enopla. In August 2018, the 9th International Conference of Thomas Bartolomaeus7 Nemertean Biology took place in the Wadden Sea Station of Patrick Beckers7 the Alfred Wegener Institute in List auf Sylt, Germany. At Gregorio Bigatti3 this meeting, the community reached consensus to revise ne- Irina Cherneva8 mertean taxonomy at the class level, based on the compiled Alexey Chernyshev9,10 evidence from studies on nemertean systematics published Brian M. Chung11 in the last 15 years (Andrade et al., 2014, 2012 ; Thollesson Jörn von Döhren7 & Norenburg, 2003). Previous classifications (e.g., Stiasny‐ Gonzalo Giribet12 Wijnhoff, 1936) are not based on phylogenetic grounds, and Jaime Gonzalez‐Cueto13 the use of these names is therefore nowadays not wholly in- Alfonso Herrera‐Bachiller14 formative. With the purpose of facilitating the practical use Terra Hiebert15 of the nemertean taxonomy and also making nemertean tax- Natsumi Hookabe16 onomy reflect a wealth of more recent information, we con- Juan Junoy14 clude that the ranks Anopla and Enopla should be eliminated Hiroshi Kajihara16 with the following argumentation: “Enopla” has for long Daria Krämer7 held no more information than the name “Hoplonemertea”. Sebastian Kvist17,18 “Anopla” is paraphyletic and the name usually corresponds Timur Yu Magarlamov9 to the following traits: (a) not bearing stylet; and (b) mouth Svetlana Maslakova15 and proboscis having separate openings.
    [Show full text]