Identifying Monophyletic Groups Within Bugula Sensu Lato (Bryozoa, Buguloidea)

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Monophyletic Groups Within Bugula Sensu Lato (Bryozoa, Buguloidea) CORE Metadata, citation and similar papers at core.ac.uk Provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Centro de Biologia Marinha - CEBIMar Artigos e Materiais de Revistas Científicas - CEBIMar 2015-05 Identifying monophyletic groups within Bugula sensu lato (Bryozoa, Buguloidea) http://www.producao.usp.br/handle/BDPI/49614 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo Zoologica Scripta Identifying monophyletic groups within Bugula sensu lato (Bryozoa, Buguloidea) KARIN H. FEHLAUER-ALE,JUDITH E. WINSTON,KEVIN J. TILBROOK,KARINE B. NASCIMENTO & LEANDRO M. VIEIRA Submitted: 5 December 2014 Fehlauer-Ale, K.H., Winston, J.E., Tilbrook, K.J., Nascimento, K.B. & Vieira, L.M. (2015). Accepted: 8 January 2015 Identifying monophyletic groups within Bugula sensu lato (Bryozoa, Buguloidea). —Zoologica doi:10.1111/zsc.12103 Scripta, 44, 334–347. Species in the genus Bugula are globally distributed. They are most abundant in tropical and temperate shallow waters, but representatives are found in polar regions. Seven species occur in the Arctic and one in the Antarctic and species are represented in continental shelf or greater depths as well. The main characters used to define the genus include bird’s head pedunculate avicularia, erect colonies, embryos brooded in globular ooecia and branches comprising two or more series of zooids. Skeletal morphology has been the primary source of taxonomic information for many calcified bryozoan groups, including the Buguloidea. Several morphological characters, however, have been suggested to be homoplastic at dis- tinct taxonomic levels, in the light of molecular phylogenies. Our purpose was to investigate the phylogenetic interrelationships of the genus Bugula, based on molecular phylogenetics and morphology. A Bayesian molecular phylogeny was constructed using original and previ- ously published sequences of the mitochondrial genes cytochrome c oxidase subunit 1 (COI) and the large ribosomal RNA subunit (16S). Morphological characteristics from scanning electron and light microscopy were used to confirm the clades detected by the molecular phylogeny. Our results suggest that the genus is composed of four clades, for which we pro- vide diagnoses: Bugula sensu stricto (30 species), Bugulina (24 species), Crisularia (23 species) and the monotypic Virididentula gen. n. Ten species could not be assigned to any of those genera, so they remain as genus incertae sedis. Our findings highlight the importance of using molecular phylogenies in association with morphological characters in systematic revi- sions of bryozoan taxa. Corresponding author: Karin H. Fehlauer-Ale, Laboratorio de Bentos, Centro de Estudos do Mar, Universidade Federal do Parana, Avenida Beira-Mar, s/n, Caixa Postal 61, CEP 83255-976, Pontal do Sul, Pontal do Parana, PR, Brazil. E-mail: [email protected] Karin H. Fehlauer-Ale, Laboratorio de Bentos, Centro de Estudos do Mar, Universidade Federal do Parana, Avenida Beira-Mar, s/n, Caixa Postal 61, CEP 83255-976, Pontal do Sul, Pontal do Parana, PR, Brazil and Laboratorio de Sistematica e Evolucß~ao de Bryozoa, Centro de Biologia Marinha, Universidade de S~ao Paulo, Rodovia Manoel Hypolito do Rego, km 131,5 Praia do Cabelo Gordo, CEP 05588-000, S~ao Sebasti~ao, SP, Brazil Judith E. Winston, Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. E-mail: [email protected] Kevin J. Tilbrook, Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, UK. E-mail: [email protected] Karine B. Nascimento, Laboratorio de Sistematica e Evolucß~ao de Bryozoa, Centro de Biologia Marinha, Universidade de S~ao Paulo, Rodovia Manoel Hypolito do Rego, km 131, 5 Praia do Cabelo Gordo, CEP 05588-000, S~ao Sebasti~ao, SP, Brazil. E-mail: [email protected] Leandro M. Vieira, Departamento de Zoologia, Centro de Ci^encias Biologicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, CEP 50670-901, Recife, Pernambuco, Brazil and Laboratorio de Sistematica e Evolucß~ao de Bryozoa, Centro de Biologia Marinha, Universidade de S~ao Paulo, Rodovia Manoel Hypolito do Rego, km 131,5 Praia do Cabelo Gordo, CEP 05588-000, S~ao Sebasti~ao, SP, Brazil. E-mail: [email protected] 334 ª 2015 Royal Swedish Academy of Sciences, 44, 3, May 2015, pp 334–347 K. H. Fehlauer-Ale et al. Monophyletic groups within Bugula sensu lato Introduction laid down in the International Code made a decision negat- Bryozoans are suspension feeding, colonial and mostly ses- ing the use of Bugula Oken. Opinion 417 (Hemming 1956) sile aquatic invertebrates, represented by approximately stated that names introduced by Oken (1815) were not 5870 described living (Bock & Gordon 2013) and 15 000 available because Oken’s work was not consistently binomi- fossil species (Gordon 2009). Within the order Cheilosto- nal. To change the long-used name of this speciose and mata, Bugula Oken, 1815 (Buguloidea, Bugulidae) is one of abundant group of bryozoans at this point would have been the most familiar and well-studied genera, represented by disruptive to bryozoan taxonomy. To maintain stability, more than 80 valid species (Bock & Hayward 2014). John Ryland (Ryland 1967) petitioned the Commision of Species in the genus Bugula are globally distributed, Zoological Nomenclature to make the genus name Bugula inhabiting shallow water in tropical to cold water regions Oken available for use. Sertularia neritina Linnaeus, 1758; (Kluge 1962; Hayward 1995; Hayward & Ryland 1998; was subsequently designated the type by the ICZN under Winston & Woollacott 2008; Vieira et al. 2012), with some its plenary powers (Opinion 902); thus, Bugula is an objec- representatives reported from deeper waters of the conti- tive senior synonym of Acamarchis. Since then, the genus nental shelf and beyond (Hayward 1981). Some species are name Bugula has been applied in its broad sense to species known from fouling communities and also may form well- with a variety of morphological character states with established introduced populations (Mackie et al. 2006; respect to branching pattern, spines and ooecia (e.g. Johnson & Woollacott 2012; Karlson & Osman 2012; Hayward & Ryland 1998; Winston & Woollacott 2008; Fehlauer-Ale et al. 2014); others are apparently endemic to Vieira et al. 2012). particular regions (Ryland 1960; Winston & Woollacott The genus has been characterized by bird’s head pedun- 2008; Vieira et al. 2012). culate avicularia, erect colonies and branches comprising The genus Bugula has a long and complicated taxonomic two or more series of boat-shaped zooids (Ryland 1960). history. The name, Bugula, was introduced by Oken (1815) Almost all species have pedunculate bird’s head avicularia, to accommodate three species: Cellularia neritina, Cellularia the type species Bugula neritina (Linnaeus, 1758) being a avicularia and Bugula avicularia (Linnaeus, 1758). Later tax- remarkable exception. The patterns of branch bifurcation onomists used different names or grouped species in differ- in biserial species are usually one of three types described ent ways. Harmer (1923, 1926) synonymized nine generic by Harmer (1923): types 3, 4 or 5 (Fig. 1; see also Harmer names under Bugula: Acamarchis Lamouroux, 1816 (type 1926; Winston & Woollacott 2008; Vieira et al. 2012). species Sertularia neritina Linnaeus, 1758; objective junior The basal and lateral walls of zooids are lightly calcified, symonym of Bugula, see below); Halophila Gray, 1843 (type and most of the frontal wall is membranous, providing flex- species Halophila johnstonae Gray, 1843); Avicularia Gray, ibility to the branches. The majority of species have spines 1848 (junior homonym of spider genus Avicularia Lamarck, on the distal angles of the zooids; in some species, the 1818); Bugulina Gray, 1848 (type species Sertularia avicular- spines are merely pointed extensions of the distal edges of ia Linnaeus, 1758); Crisularia Gray, 1848 (type species zooids, but in others, they are articulated (Winston & Sertularia fastigata Linnaeus, 1758; =Cellularia plumosa Woollacott 2008). The ooecia may be crescentic to globu- Pallas, 1766; see Harmer, 1923); Avicella Van Beneden, lar or helmet shaped (Ramalho et al. 2005; Winston & 1848 (no type species selected); Ornithopora d’Orbigny, Woollacott 2008). 1852 (type species Sertularia avicularia); Ornithoporina Skeletal morphology has been the primary source of taxo- d’Orbigny, 1852 (type species Ornithoporina avicularia nomic information for many calcified bryozoan groups (e.g. d’Orbigny, 1852; =Avicularia flabellata Gray, 1848; see Har- McKinney & Jackson 1989; Jackson & Cheetham 1990; mer 1923); and Dendrobeania Levinsen, 1909 (type species Hayward & Ryland 1998, 1999; Tilbrook 2006; Cheetham Flustra murrayana Johnston, 1847). Two of these genera, et al. 2007; Vieira et al. 2012, 2013, 2014). Several morpho- however, are currently considered distinct genera in Bugu- logical characters, however, have been recently revealed to lidae: Dendrobeania (see Hayward & Ryland 1998) and be homoplastic at distinct taxonomic levels in the light of Halophila (see Winston 2005); although Ornithopora was molecular phylogenies, suggesting that the overall current previously considered as a synonym of Bugula (Harmer bryozoan classification requires revision. Examples include 1923), it is an objective junior synonym of Bugulina (see calcified
Recommended publications
  • Energetics of Larval Swimming and Metamorphosis in Four Species of Bugula (Bryozoa)
    Energetics of Larval Swimming and Metamorphosis in Four Species of Bugula (Bryozoa) DEAN E. WENDT* Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 Abstract. The amount of energy available to larvae dur­ Introduction ing swimming, location of a suitable recruitment site, and metamorphosis influences the length of time they can spend The larval life of many marine invertebrates is character­ in the plankton. Energetic parameters such as swimming ized by three distinct phases. The first, a swimming phase, speed, oxygen consumption during swimming and meta­ is both a means of dispersal and, in planktotrophic larvae, a morphosis, and elemental carbon and nitrogen content were time to sequester the energy needed for larval development measured for larvae of four species of bryozoans, Bugula and metamorphosis. The two subsequent phases—settle­ neritina, B. simplex, B. stolonifera, and B. turrita. The ment and metamorphosis—can be temporally distinct, as in larvae of these species are aplanktotrophic with a short some echinoderm larvae (e.g., Strathmann, 1974), or tightly free-swimming phase ranging from less than one hour to a coupled, as in bryozoan larvae (e.g., Ryland, 1974). That the maximum of about 36 hours. There is about a fivefold duration of the larval swimming phase can have detrimental difference in larval volume among the four species, which effects on the latter two phases of the life cycle has been scales linearly with elemental carbon content and, presum­ demonstrated for several species in at least three phyla, ably, with the amount of endogenous reserves available for including bryozoans (Nielson, 1981; Woollacott et al., 1989; Orellana and Cancino, 1991; Hunter and Fusetani, swimming and metamorphosis.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Hydrozoa of the Eurasian Arctic Seas 397 S
    THE ARCTIC SEAS CI imatology, Oceanography, Geology, and Biology Edited by Yvonne Herman IOm51 VAN NOSTRAND REINHOLD COMPANY ~ -----New York This work relates to Department of the Navy Grant NOOOI4-85- G-0252 issued by the Office of Naval Research. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein. Copyright © 1989 by Van Nostrand Reinhold Softcover reprint of the hardcover 1st edition 1989 Library of Congress Catalog Card Number 88-33800 ISBN-13 :978-1-4612-8022-4 e-ISBN-13: 978-1-4613-0677-1 DOI: 10.1007/978-1-4613-0677-1 All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems-without written permission of the publisher. Designed by Beehive Production Services Van Nostrand Reinhold 115 Fifth Avenue New York, New York 10003 Van Nostrand Reinhold (International) Limited 11 New Fetter Lane London EC4P 4EE, England Van Nostrand Reinhold 480 La Trobe Street Melbourne, Victoria 3000, Australia Nelson Canada 1120 Birchmount Road Scarborough, Ontario MIK 5G4, Canada 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging in Publication Data The Arctic Seas. Includes index. 1. Oceanography-Arctic Ocean. 2. Geology-ArctiC Ocean. 1. Herman, Yvonne. GC401.A76 1989 551.46'8 88-33800 ISBN-13: 978-1-4612-8022-4 For Anyu Contents Preface / vii Contributors / ix 1.
    [Show full text]
  • 110-Ji Eun Seo.Fm
    Animal Cells and Systems 13: 79-82, 2009 A New Species, Bicellariella fragilis (Flustrina: Cheilostomata: Bryozoa) from Jejudo Island, Korea Ji Eun Seo* Department of Rehabilitation Welfare, College of Health Welfare, Woosuk University, Wanju 565-701, Korea Abstract: A new species of bryozoan, Bicellariella fragilis n. also provided by reviewing the related species to new sp. is reported from Jejudo Island, Korea. It was collected at species. New species is illustrated with SEM photomicrographs, Munseom I. and Supseom I. off Seogwipo city by the fishing the photograph by underwater camera and colony photograph net and SCUBA diving from 1978 to 2009. The new species taken in the laboratory. has characteristics of four to five dorso-distal spines and two proximal spines, whereas ten to twelve spines of B. sinica The materials for this study were collected from Munseom o o are not separated into two groups of the distal and proximal I. (33 13'25''N, 126 33'58''E) and Supseom I. about 1km ones. And this species shows the difference from B. away off the southern coast of Seogwipo, the southern city levinseni in having no avicularium. of Jejudo Island located in the southern end of South Korea, Key words: new species, Flustrina, Bryozoa, Jejudo Island, which shows somewhat subtropical climate. The specimen Korea at first was collected from 30 m in depth in vicinity of Munseom I. by the fishing net dredged on 3 Dec. 1978. It was not until a few years ago that the second and third INTRODUCTION collections in August, 2006 and 2009 were done from 5- 30 m in depth of same area by SCUBA diving.
    [Show full text]
  • 1 Invasive Species in the Northeastern and Southwestern Atlantic
    This is the author's accepted manuscript. The final published version of this work (the version of record) is published by Elsevier in Marine Pollution Bulletin. Corrected proofs were made available online on the 24 January 2017 at: http://dx.doi.org/10.1016/j.marpolbul.2016.12.048. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher. Invasive species in the Northeastern and Southwestern Atlantic Ocean: a review Maria Cecilia T. de Castroa,b, Timothy W. Filemanc and Jason M Hall-Spencerd,e a School of Marine Science and Engineering, University of Plymouth & Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. [email protected]. +44(0)1752 633 100. b Directorate of Ports and Coasts, Navy of Brazil. Rua Te filo Otoni, 4 - Centro, 20090-070. Rio de Janeiro / RJ, Brazil. c PML Applications Ltd, Prospect Place, Plymouth, PL1 3DH, UK. d Marine Biology and Ecology Research Centre, Plymouth University, PL4 8AA, UK. e Shimoda Marine Research Centre, University of Tsukuba, Japan. Abstract The spread of non-native species has been a subject of increasing concern since the 1980s when human- as a major vector for species transportation and spread, although records of non-native species go back as far as 16th Century. Ever increasing world trade and the resulting rise in shipping have highlighted the issue, demanding a response from the international community to the threat of non-native marine species. In the present study, we searched for available literature and databases on shipping and invasive species in the North-eastern (NE) and South-western (SW) Atlantic Ocean and assess the risk represented by the shipping trade between these two regions.
    [Show full text]
  • On Some Hydroids (Cnidaria) from the Coast of Pakistan
    Pakistan J. Zool., vol. 38(3), pp. 225-232, 2006. On Some Hydroids (Cnidaria) from the Coast of Pakistan NASEEM MOAZZAM AND MOHAMMAD MOAZZAM Institute of Marine Sciences, University of Karachi, Karachi 75270, Pakistan (NM) and Marine Fisheries Department, Government of Pakistan, Fish Harbour, West Wharf, Karachi 74900, Pakistan (MM) Abstract .- The paper deals with the occurrence of eleven species of the hydroids from the coast of Pakistan. All the species are reported for the first time from Pakistan. These species are Hydractinia epidocleensis, Pennaria disticha, Eudendrium capillare, Orthopyxis cf. crenata, Clytia noliformis, C. hummelincki, Dynamena crisioides, D. quadridentata, Sertularia distans, Pycnotheca mirabilis and Macrorhynchia philippina. Key words: Hydroids, Coelenterata, Pakistan, Hydractinia, Pennaria, Eudendrium, Orthopyxis, Clytia, Dynamena, Sertularia, Pycnotheca, Macrorhynchia. INTRODUCTION used in the paper are derived from Millard (1975), Gibbons and Ryland (1989), Ryland and Gibbons (1991). In comparison to other invertebrates, TAXONOMIC ENUMERATION hydroids are one of the least known groups of marine animals from the coast of Pakistan Haque Family BOUGAINVILLIIDAE (1977) reported a few Cnidaria from the Pakistani Genus HYDRACTINIA Van Beneden, 1841 coast including two hydroids i.e. Plumularia flabellum Allman, 1883 (= P. insignis Allman, 1. Hydractinia epidocleensis Leloup, 1931 1883) and Campanularia juncea Allman, 1874 (= (Fig. 1) Thyroscyphus junceus (Allman, 1876) from Keamari and Bhit Island, Karachi, respectively. Ahmed and Hameed (1999), Ahmed et al. (1978) and Haq et al. (1978) have mentioned the presence of hydroids in various habitats along the coast of Pakistan. Javed and Mustaquim (1995) reported Sertularia turbinata (Lamouroux, 1816) from Manora Channel, Karachi. The present paper describes eleven species of Cnidaria collected from the Pakistani coast all of which are new records for Pakistan.
    [Show full text]
  • Individual Autozooidal Behaviour and Feeding in Marine Bryozoans
    Individual autozooidal behaviour and feeding in marine bryozoans Natalia Nickolaevna Shunatova, Andrew Nickolaevitch Ostrovsky Shunatova NN, Ostrovsky AN. 2001. Individual autozooidal behaviour and feeding in marine SARSIA bryozoans. Sarsia 86:113-142. The article is devoted to individual behaviour of autozooids (mainly connected with feeding and cleaning) in 40 species and subspecies of marine bryozoans from the White Sea and the Barents Sea. We present comparative descriptions of the observations and for the first time describe some of autozooidal activities (e.g. cleaning of the colony surface by a reversal of tentacular ciliature beating, variants of testing-position, and particle capture and rejection). Non-contradictory aspects from the main hypotheses on bryozoan feeding have been used to create a model of feeding mechanism. Flick- ing activity in the absence of previous mechanical contact between tentacle and particle leads to the inference that polypides in some species can detect particles at some distance. The discussion deals with both normal and “spontaneous” reactions, as well as differences and similarities in autozooidal behaviour and their probable causes. Approaches to classification of the diversity of bryozoan behav- iour (functional and morphological) are considered. Behavioural reactions recorded are classified using a morphological approach based on the structure (tentacular ciliature, tentacles and entire polypide) performing the reaction. We suggest that polypide protrusion and retraction might be the basis of the origin of some other individual activities. Individual autozooidal behaviour is considered to be a flexible and sensitive system of reactions in which the activities can be performed in different combinations and successions and can be switched depending on the situation.
    [Show full text]
  • Cnidaria: Hydrozoa) Associated to a Subtropical Sargassum Cymosum (Phaeophyta: Fucales) Bed
    ZOOLOGIA 27 (6): 945–955, December, 2010 doi: 10.1590/S1984-46702010000600016 Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed Amanda Ferreira Cunha1 & Giuliano Buzá Jacobucci2 1 Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14, 101, Cidade Universitária, 05508-900 São Paulo, SP, Brazil. E-mail: [email protected] 2 Instituto de Biologia, Universidade Federal de Uberlândia. Rua Ceará, Campus Umuarama, 38402-400 Uberlândia, MG, Brazil. E-mail: [email protected] ABSTRACT. Hydroids are broadly reported in epiphytic associations from different localities showing marked seasonal cycles. Studies have shown that the factors behind these seasonal differences in hydroid richness and abundance may vary significantly according to the area of study. Seasonal differences in epiphytic hydroid cover and richness were evaluated in a Sargassum cymosum C. Agardh bed from Lázaro beach, at Ubatuba, Brazil. Significant seasonal differences were found in total hydroid cover, but not in species richness. Hydroid cover increased from March (early fall) to February (summer). Most of this pattern was caused by two of the most abundant species: Aglaophenia latecarinata Allman, 1877 and Orthopyxis sargassicola (Nutting, 1915). Hydroid richness seems to be related to S. cymosum size but not directly to its biomass. The seasonal differences in hydroid richness and algal cover are shown to be similar to other works in the study region and in the Mediterranean. Seasonal recruitment of hydroid species larvae may be responsible for their seasonal differences in algal cover, although other factors such as grazing activity of gammarid amphipods on S.
    [Show full text]
  • News from the Membership New Members IBA Awards N
    BBuulllleleeetttiinn Volume 6, Number 1 April 2010 (Use bookmarks to navigate around this document) News from the Membership New Members IBA Awards News from Concepción Digital Libraries ICZN Case 3507 New Bryozoan Website Conference Honoring David Hughes Announcement of POGO Opportunities Planning for the 2016 IBA Conference Bryozoan Bookstall (Thai Freshwater Bryozoans) Featured Bryozoan Journal Cover Upcoming Meetings Recent publications Copyright © 2010 by the International Bryozoology Association. Judith Winston, President Eckart Håkansson, President-elect Timothy S. Wood, Secretary Abigail Smith, Treasurer ISSN 1941-7918 Comments regarding this Bulletin should be addressed to the IBA Secretary: [email protected]@wright.edu Further information at wwww.bryozoa.net/ibaww.bryozoa.net/iba News from the Membership Andrew Ostrovsky. I've got a personal web-page at the Department of Invertebrate Zoology, St Petersburg State University. It is in Russian, but you will easily find the list of my scientific papers and their pdf-s on the bottom of the page. http://zoology.bio.pu.ru/People/Staff/r_ostrovsky.html Dra. Laís V. Ramalho My student, Luciana M. Julio, defended the MSc thesis entitled “Taxonomy and Distribution of Bryozoan in harbor areas from Sepetiba Bay (Rio de Janeiro State) with emphasis in the detection of introduced species”. In this study she described 9 new occurrences to this area and a new species to science. These results will be published as soon as possible. Besides, she studied something about ecology and introduced species sampled in this area. Judy Winston: I was searching Google this morning for Conopeum –checking current family placement. This is what I got: “Lazy Crust Bryozoan?” To add insult to injury when I looked at the site, although it did say “lacy crust bryozoan,” it showed a lovely picture of Membranipora membranacea on kelp, not any species of Conopeum.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Colony-Wide Water Currents in Living Bryozoa
    COLONY-WIDE WATER CURRENTS IN LIVING BRYOZOA by Patricia L Cook British Museum (Natural History), Cromwell Rd., London, SW7 5BD, Gt.Brltain. Résumé Les divers types de courants d'eau des colonies de Bryozoaires sont décrits et analysés. Pour les formes encroûtantes, il en existe au moins trois à l'heure actuelle. Pour les petites colonies de Cyclostomes (Lichenopora), il n'existe qu'un courant centripète se dirigeant vers l'extérieur. Chez certaines Chéilostomes (Hippoporidra) et Cténostomes (Alcyonidium nodosum), des «monticules» sont formés par des groupes de zoïdes dont les couronnes de tentacules sont absentes, réduites ou ne se nourrissent pas. Les « monticules » sont le siège de courants passifs, dirigés vers l'extérieur. Chez d'autres Chéilostomes (Schizoporella, Hippo- porina et Cleidochasma) et des Cténostomates (Flustrellidra hispida), des groupes de zoïdes à couronnes de tentacules hétéromorphes constituent des « cheminées » produisant des courants actifs se dirigeant vers l'extérieur. Des suggestions sont faites concernant une suite d'observations sur les colonies vivantes. Introduction Observation of living colonies is increasingly becoming an essential feature in the study of Bryozoa. Not only is it the primary method of discovering the function of zooids or parts of zooids, it is the first step in testing the established inferences about analogous and homologous structures in preserved material. The study of the functions of whole colonies and the degree and kind of integrative factors contributing to colony-control of these functions is in its early stages. These primary observations can only be made on living colonies. The wide variation in astogeny and ontogeny of structures and their functions in Bryozoa require much further work on many species before any general patterns may become obvious.
    [Show full text]
  • A New Species of Caulibugula (Bryozoa: Cheilostomatida) from France
    '' BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE, BIOLOGIE, 75: 8 I- 87, 2005 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCI-IAPPEN, BIOLOGIE, 75: 8I-87, 2005 A new species of Caulibugula (Bryozoa: Cheilostomatida) from France by Hans DE BLAUWE Abstract MATERIAL EXAMINED A new species of the genus Caulibugula (C. arcasounensis sp. nov.) Holotype is described from the Bay of Arcachon (France) and compared with A colony stored in alcohol (KBIN n° 30481 ), August I I, other species. 2003, collected on pontoons at Arcachon, east of Quai De Goslar. Key words: Bryozoa, Caulibugu/a, taxonomy, France. Paratypes Several colonies stored in alcohol (KBIN n° I. G. 3048 I), Resume August I I, 2003, collected from between drifting seaweeds at Arcachon, north of Quai De Goslar. Une es pece nouvelle du genre Caulibugula (C. arcasounensis sp. nov.) est decrite du Bassin d' Arcachon (France), et comparee avec d'autres especes. Other material Two ancestrulas with succeeding zooids, marginal vesicles, Mots-des: Bryozoa, Caulibugula, taxonomie, France. branch with ovicellated zooids, fans with pseudo-ancestrula, all stored dry and coated for SEM., August 11, 2003, col­ lected from between drifting seaweeds at Arcachon, north of Introduction Quai De Goslar. (KBIN no I.G. 30297) Presently 28 species of Caulibugula are known around the ETYMOLOGY world, especially in warmer waters, some species may be in­ vasive taxa outside their native range. The new species With reference to the type locality, Arcachon. Arcasoun is the Caulibugula arcasounensis, hereby described, extends the Celtic name for resin pot referring to the nearby pinewoods di stribution of the genus to the coast of Europe.
    [Show full text]