ISOLATION and IDENTIFICATION of SECONDARY METABOLITES from the BRYOZOAN Cryptosula Zavjalovensis from HOKKAIDO, JAPAN

Total Page:16

File Type:pdf, Size:1020Kb

ISOLATION and IDENTIFICATION of SECONDARY METABOLITES from the BRYOZOAN Cryptosula Zavjalovensis from HOKKAIDO, JAPAN LOVEILLE JUN AMARILLE GONZAGA ISOLATION AND IDENTIFICATION OF SECONDARY METABOLITES FROM THE BRYOZOAN Cryptosula zavjalovensis FROM HOKKAIDO, JAPAN UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2017 LOVEILLE JUN AMARILLE GONZAGA ISOLATION AND IDENTIFICATION OF SECONDARY METABOLITES FROM THE BRYOZOAN Cryptosula zavjalovensis FROM HOKKAIDO, JAPAN Erasmus Mundus MSc in Chemical Innovation and Regulation Mestrado Erasmus Mundus em Inovação Química e Regulamentação Trabalho efetuado sob a orientação de: Work supervised by: Prof. Isabel Cavaco (Universidade do Algarve) Prof. Helena Fortunato (Hokkaido University) UNIVERSIDADE DO ALGARVE FACULDADE DE CIÊNCIAS E TECNOLOGIA 2017 DECLARATION OF AUTHORSHIP ISOLATION AND IDENTIFICATION OF SECONDARY METABOLITES FROM THE BRYOZOAN Cryptosula zavjalovensis FROM HOKKAIDO, JAPAN I declare that I am the author of this work, which is original. The work cites other authors and works, which are adequately referred in the text and are listed in the bibliography. ____________________________________ Loveille Jun A. Gonzaga Copyright: Loveille Jun A. Gonzaga. The University of Algarve has the right to keep and publicize this work through printed copies in paper of digital form, or any other means of reproduction, to disseminate it in scientific repositories and to allow its copy and distribution with educational and/or research objectives, as long as they are non- commercial and give credit to the author and editor. I ACKNOWLEDGEMENTS I would like to extend my heartfelt gratitude to everyone who have been part of my Erasmus Mundus journey. The academic part of it might be concluded with this research work but the journey continues. This work wouldn’t have been possible without the immense help of such amazing people, so I would like to take this opportunity to thank: The European Commission and the EMMC-ChIR program for giving me this opportunity to pursue a relevant and timely international master’s program. Prof. Isabel Cavaco and Prof. Helena Fortunato for their unwavering guidance and supervision throughout this research process; for their time, effort and support. This research study wouldn’t have been possible without you. My family: Ma, Pa, and Vyrnj for being my huge source of encouragement, love and support. My Coca-Cola family, especially Ma’am Sha, Ate Rachel, and Sarrah for your all-out support. I wouldn’t be here without you. Shella Talampas, who was my big sister, friend, adviser, cook, counsellor all rolled into one, and; Wubshet Belay Abagero, my brother from another mother. Thank you for being not just great travel buddies but being my family during this journey. My awesome classmates: Dj Donn, Diana, Yemataw, Ester, Mulatu, Ana, Boryana, Kseniia, Miguel, Diego, Sufian, Zohreh, Pegah, and Erica. This is group is nothing but special. I am so lucky to have been part of this awesome group of friends. Prof. Emilio Tagliavini, and all our professors during our first year in Bologna. Thank you for your warm welcome and all the knowledge you have imparted. Grazie mille! Prof. Tatsufumi Okino, Kuya Julius, Annisa, Julie, and the entire Okino Laboratory for the guidance during my stay at Hokkaido University. Also, Samia Quaiyum for being a great colleague and good friend while I was in Sapporo. (Arigatou gozaimasu!) Prof. Maria da Conceição Monteiro André Oliveira and Ms. Ana Dias of the Mass Spectrometry Facility, Centro de Química Estrutural, Instituto Superior Técnico for their guidance and knowledge with the LC-MS and MS/MS analyses and interpretation; Prof. José Paulo da Silva for assisting with the LC-MS at UAlg; Prof. Vera Ribeiro for her immeasurable support and guidance with the cytotoxicity tests, and; Ms. Nataliya Butenko and everyone at the University of Algarve and Faro who helped a lot during my research year and made my stay in Portugal a memorable one. Muito obrigado! To be honest, this page wouldn’t be enough to thank everyone who have contributed and have been part of my journey. To everyone, maraming maraming salamat! Loveille II TABLE OF CONTENTS DECLARATION OF AUTHORSHIP ....................................................................................................... I ACKNOWLEDGEMENTS ................................................................................................................... II ABSTRACT ..................................................................................................................................... IV RESUMO ......................................................................................................................................... V LIST OF FIGURES ............................................................................................................................ VI LIST OF ABBREVIATIONS AND ACRONYMS ................................................................................... VIII 1. INTRODUCTION ...................................................................................................................... 1 1.1. THE IMPORTANCE OF RESEARCHING NATURAL PRODUCTS ........................................................................ 1 1.2. NATURAL PRODUCTS FROM MARINE ORGANISMS ................................................................................. 3 1.3. BRYOZOANS .................................................................................................................................... 5 1.4. NATURAL PRODUCTS FROM BRYOZOANS ............................................................................................. 8 1.5. CRYPTOSULA ZAVJALOVENSIS ........................................................................................................... 12 1.6. OBJECTIVES AND METHODOLOGY ..................................................................................................... 16 1.6.1. Separation by Solvent Extraction ..................................................................................... 16 1.6.2. Solid Phase Extraction and Reversed-Phase Chromatography ........................................ 16 1.6.3. Analysis by Liquid Chromatography-Mass Spectrometry (Electrospray Ionization) ....... 18 2. EXPERIMENTAL SECTION ...................................................................................................... 20 2.1. GENERAL EXPERIMENTAL PROCEDURES ............................................................................................. 20 2.2. SAMPLE COLLECTION ...................................................................................................................... 21 2.3. PRELIMINARY TESTS AT HOKKAIDO UNIVERSITY ................................................................................... 23 2.3.1. Solvent Extraction ............................................................................................................. 23 2.3.2. Solid Phase Extraction and Reversed-Phase Chromatography ........................................ 24 2.3.3. Cytotoxicity Screening ...................................................................................................... 24 2.3.4. Liquid Chromatography-Mass Spectrometry ................................................................... 26 2.4. ANALYSES AT THE UNIVERSITY OF ALGARVE ........................................................................................ 26 2.4.1. Solvent Extraction ............................................................................................................. 27 2.4.2. Solid Phase Extraction ...................................................................................................... 27 2.4.3. Liquid Chromatography-Mass Spectrometry ................................................................... 27 2.4.4. Tandem Mass Spectrometry ............................................................................................. 28 3. RESULTS AND DISCUSSION ................................................................................................... 29 3.1. PRELIMINARY TESTS ....................................................................................................................... 29 3.1.1. Cytotoxicity Screening ...................................................................................................... 29 3.1.2. Liquid Chromatography-Mass Spectrometry ................................................................... 32 3.2. RESULTS FROM THE UNIVERSITY OF ALGARVE ..................................................................................... 33 3.2.1. Liquid Chromatography-Mass Spectrometry ................................................................... 33 3.2.2. Tandem Mass Spectrometry ............................................................................................. 38 3.2.2.1 Peak m/z = 566 ............................................................................................................................................. 40 3.2.2.2 Peak m/z = 586 ............................................................................................................................................. 41 3.2.2.3 Peak m/z = 612 ............................................................................................................................................. 42 3.2.2.4 Peak m/z = 614 ............................................................................................................................................. 43 3.2.2.5 Peak m/z = 568 ............................................................................................................................................
Recommended publications
  • Zootaxa, Mollusca, Goniodorididae, Okenia
    ZOOTAXA 695 Further species of the opisthobranch genus Okenia (Nudibranchia: Goniodorididae) from the Indo-West Pacific W.B. RUDMAN Magnolia Press Auckland, New Zealand W.B. RUDMAN Further species of the opisthobranch genus Okenia (Nudibranchia: Goniodorididae) from the Indo-West Pacific (Zootaxa 695) 70 pp.; 30 cm. 25 October 2004 ISBN 1-877354-68-6 (Paperback) ISBN 1-877354-69-4 (Online edition) FIRST PUBLISHED IN 2004 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2004 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 695: 1–70 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 695 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) Further species of the opisthobranch genus Okenia (Nudibranchia: Goniodorididae) from the Indo-West Pacific W.B. RUDMAN The Australian Museum, 6 College St., Sydney, NSW 2010, Australia. E-mail: [email protected]. Table of Contents Abstract . 3 Introduction. 4 Materials and Methods . 5 Descriptions . 5 Okenia Menke, 1830. 5 Okenia echinata Baba, 1949. 6 Okenia purpurata sp. nov. 9 Okenia vena sp. nov.. 13 Okenia virginiae Gosliner, 2004.
    [Show full text]
  • Bryozoan Genera Fenestrulina and Microporella No Longer Confamilial; Multi-Gene Phylogeny Supports Separation
    Zoological Journal of the Linnean Society, 2019, 186, 190–199. With 2 figures. Bryozoan genera Fenestrulina and Microporella no longer confamilial; multi-gene phylogeny supports separation RUSSELL J. S. ORR1*, ANDREA WAESCHENBACH2, EMILY L. G. ENEVOLDSEN3, Downloaded from https://academic.oup.com/zoolinnean/article/186/1/190/5096936 by guest on 29 September 2021 JEROEN P. BOEVE3, MARIANNE N. HAUGEN3, KJETIL L. VOJE3, JOANNE PORTER4, KAMIL ZÁGORŠEK5, ABIGAIL M. SMITH6, DENNIS P. GORDON7 and LEE HSIANG LIOW1,3 1Natural History Museum, University of Oslo, Oslo, Norway 2Department of Life Sciences, Natural History Museum, London, UK 3Centre for Ecological & Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway 4Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot Watt University, Edinburgh, UK 5Department of Geography, Technical University of Liberec, Czech Republic 6Department of Marine Science, University of Otago, Dunedin, New Zealand 7National Institute of Water and Atmospheric Research, Wellington, New Zealand Received 25 March 2018; revised 28 June 2018; accepted for publication 11 July 2018 Bryozoans are a moderately diverse, mostly marine phylum with a fossil record extending to the Early Ordovician. Compared to other phyla, little is known about their phylogenetic relationships at both lower and higher taxonomic levels. Hence, an effort is being made to elucidate their phylogenetic relationships. Here, we present newly sequenced nuclear and mitochondrial genes for 21 cheilostome bryozoans. Combining these data with existing orthologous molecular data, we focus on reconstructing the phylogenetic relationships of Fenestrulina and Microporella, two species-rich genera. They are currently placed in Microporellidae, defined by having a semicircular primary orifice and a proximal ascopore.
    [Show full text]
  • List of Marine Alien and Invasive Species
    Table 1: The list of 96 marine alien and invasive species recorded along the coastline of South Africa. Phylum Class Taxon Status Common name Natural Range ANNELIDA Polychaeta Alitta succinea Invasive pile worm or clam worm Atlantic coast ANNELIDA Polychaeta Boccardia proboscidea Invasive Shell worm Northern Pacific ANNELIDA Polychaeta Dodecaceria fewkesi Alien Black coral worm Pacific Northern America ANNELIDA Polychaeta Ficopomatus enigmaticus Invasive Estuarine tubeworm Australia ANNELIDA Polychaeta Janua pagenstecheri Alien N/A Europe ANNELIDA Polychaeta Neodexiospira brasiliensis Invasive A tubeworm West Indies, Brazil ANNELIDA Polychaeta Polydora websteri Alien oyster mudworm N/A ANNELIDA Polychaeta Polydora hoplura Invasive Mud worm Europe, Mediterranean ANNELIDA Polychaeta Simplaria pseudomilitaris Alien N/A Europe BRACHIOPODA Lingulata Discinisca tenuis Invasive Disc lamp shell Namibian Coast BRYOZOA Gymnolaemata Virididentula dentata Invasive Blue dentate moss animal Indo-Pacific BRYOZOA Gymnolaemata Bugulina flabellata Invasive N/A N/A BRYOZOA Gymnolaemata Bugula neritina Invasive Purple dentate mos animal N/A BRYOZOA Gymnolaemata Conopeum seurati Invasive N/A Europe BRYOZOA Gymnolaemata Cryptosula pallasiana Invasive N/A Europe BRYOZOA Gymnolaemata Watersipora subtorquata Invasive Red-rust bryozoan Caribbean CHLOROPHYTA Ulvophyceae Cladophora prolifera Invasive N/A N/A CHLOROPHYTA Ulvophyceae Codium fragile Invasive green sea fingers Korea CHORDATA Actinopterygii Cyprinus carpio Invasive Common carp Asia CHORDATA Ascidiacea
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • Marine Bryozoans (Ectoprocta) of the Indian River Area (Florida)
    MARINE BRYOZOANS (ECTOPROCTA) OF THE INDIAN RIVER AREA (FLORIDA) JUDITH E. WINSTON BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 173 : ARTICLE 2 NEW YORK : 1982 MARINE BRYOZOANS (ECTOPROCTA) OF THE INDIAN RIVER AREA (FLORIDA) JUDITH E. WINSTON Assistant Curator, Department of Invertebrates American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 173, article 2, pages 99-176, figures 1-94, tables 1-10 Issued June 28, 1982 Price: $5.30 a copy Copyright © American Museum of Natural History 1982 ISSN 0003-0090 CONTENTS Abstract 102 Introduction 102 Materials and Methods 103 Systematic Accounts 106 Ctenostomata 106 Alcyonidium polyoum (Hassall), 1841 106 Alcyonidium polypylum Marcus, 1941 106 Nolella stipata Gosse, 1855 106 Anguinella palmata van Beneden, 1845 108 Victorella pavida Saville Kent, 1870 108 Sundanella sibogae (Harmer), 1915 108 Amathia alternata Lamouroux, 1816 108 Amathia distans Busk, 1886 110 Amathia vidovici (Heller), 1867 110 Bowerbankia gracilis Leidy, 1855 110 Bowerbankia imbricata (Adams), 1798 Ill Bowerbankia maxima, New Species Ill Zoobotryon verticillatum (Delle Chiaje), 1828 113 Valkeria atlantica (Busk), 1886 114 Aeverrillia armata (Verrill), 1873 114 Cheilostomata 114 Aetea truncata (Landsborough), 1852 114 Aetea sica (Couch), 1844 116 Conopeum tenuissimum (Canu), 1908 116 IConopeum seurati (Canu), 1908 117 Membranipora arborescens (Canu and Bassler), 1928 117 Membranipora savartii (Audouin), 1926 119 Membranipora tuberculata (Bosc), 1802 119 Membranipora tenella Hincks,
    [Show full text]
  • Miscellaneous Publications N.Z. Oceanographic Institute 107 (1992
    THE LIBRARIAN Miscellaneous Publications MAP FISHERIES N.Z. Oceanographic Institute 107 (1992) : 1-52. GRETA POINT P.0. BOX 297, WELLINGTON NEW ZEALAND Atlas of Marine-fouling Bryozoa of New Zealand Ports and Harbours Dennis P. Gordon1 & Shunsuke F. Mawatari2 ABSTRACT New records of marine-fouling species for New Zealand include (after adjustment for synonymies) Forty species of native and exotic marine bryozoans Aeverrillia armata, Buskia socialis, Electra tenella, Bugula are currently recognised as foulers of vessels and simplex, and Schizoporella errata. submerged artificial surfaces in New Zealand ports and harbours. Some 42% of species mentioned in a The report discusses the biology of bryozoan larvae 1965 OECD catalogue of main marine-fouling at the time of settlement and metamorphosis, the organisms of European waters now occur in New most critical and susceptible phase in marine fouling, Zealand and more may yet come to be recorded, as well as the invasive strategies of marine-fouling based on past trends — exotic bryozoans have been species. Descriptions and illustrations are provided coming into New Zealand at least since the 1890s, for each of the 40 species as well as a key to including nine species not recorded in the OECD identification and information on reproduction and catalogue. The most ubiquitous fouling bryozoans in settlement season where these are known. Suggestions New Zealand, occurring at a significant number of are aiso given on ameliorating the problem of marine- the ports and smaller harbours, are seven well-known bryozoan fouling. subcosmopolitan species — in order of their chronological introductions these are Cryptosula pallasiana, Bugula neritina, Bugula flabellata, Tricellaria occidentalis, Bugula stolonifera, Conopeum seurati, and INTRODUCTION Watersipora subtorquata.
    [Show full text]
  • Abstract Ts & P Prog Gram
    ABSTRACTS & PROGRAM 25th – 28th May 2017 University of Vienna Vienna Austria Welcome to the 14th Larwood Symposium in Vienna! ‘Servus’ as we Austrians say. It’s my pleasure to welcome almost 50 colleagues and friends from 15 different countries to Vienna, the capitol of Austria. It is the third time the IBA will come to this city for exchange of new scientific results and new ideas for future research projects. In 1983, Norbert Vávra first invited our community to the 6th international meeting followed 25 years later by the 8th Larwood meeting organized by Norbert Vávra and Andrew Ostrovsky. With this meeting, Vienna will be the venue with most IBA-meetings so far. Kind of surprising considering that the amount of active bryozoologists was never very high when compared to other locations. Vienna is an extraordinary city and an excellent location for conferences and meetings. This is also reflected in the amount of international meetings in this city. Just in 2015 statistics count 3.685 congresses and business events. Organizing a meeting commonly turns out to be more work than expected and I’d like to thank all persons involved in making this meeting possible: Our secretaries Anita Morth and Doris Nemeth, our IT-technician Sonja Matus and my helping hands and students Hannah Schmibaur (who also designed the logo for this meeting), Nati Gawin, Philipp Pröts and Basti Decker. I hope that everyone will have a pleasant stay in Vienna and look forward to an exciting new IBA-meeting. Best wishes, Thomas Scientific program Friday 26.05.2017 08:30‐09:00 Registration 1st session chair: Tim Wood 09:00‐09:10 Thomas Schwaha Welcome in Vienna 09:10‐09:25 Paul Taylor & Loic Villier Turnover time: bryozoans from the type Campanian (Upper Cretaceous) of south‐west France 09:25‐09:40 Mark Wilson et al.
    [Show full text]
  • Recreational Vessels As Vectors for Non-Native Marine Species in California 2012
    Aquatic Invasive Species Vector Risk Assessments: Recreational vessels as vectors for non-native marine species in California Final Report July 2012 Submitted to the California Ocean Science Trust Funded by the California Ocean Protection Council By: The Aquatic Bioinvasion Research & Policy Institute A Partnership between Portland State University & the Smithsonian Environmental Research Center Gail Ashton, Chela Zabin, Ian Davidson & Greg Ruiz TableofContents 1.ExecutiveSummary.............................................................................................................2 2.Introduction........................................................................................................................5 2.1.TheRecreationalVesselVector...................................................................................6 2.2.HistoryoftheVector....................................................................................................8 3.Aims....................................................................................................................................8 4.Methods..............................................................................................................................9 4.1.InvasionHistory...........................................................................................................9 4.2.ContemporaryVectorOperationinCalifornia..........................................................12 5.Results...............................................................................................................................14
    [Show full text]
  • Marine Ecology Progress Series 378:113
    Vol. 378: 113–124, 2009 MARINE ECOLOGY PROGRESS SERIES Published March 12 doi: 10.3354/meps07850 Mar Ecol Prog Ser Independent evolution of matrotrophy in the major classes of Bryozoa: transitions among reproductive patterns and their ecological background Andrew N. Ostrovsky1, 4,*, Dennis P. Gordon2, Scott Lidgard3 1Department of Invertebrate Zoology, Faculty of Biology & Soil Science, St. Petersburg State University, Universitetskaja nab. 7/9, 199034, St. Petersburg, Russia 2National Institute of Water & Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand 3Department of Geology, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, Illinois 60605, USA 4Present address: Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria ABSTRACT: Bryozoa are unique among invertebrates in possessing placenta-like analogues and exhibiting extraembryonic nutrition in all high-level (class) taxa. Extant representatives of the classes Stenolaemata and Phylactolaemata are evidently all placental. Within the Gymnolaemata, placenta- like systems have been known since the 1910s in a few species, but are herein reported to be wide- spread within this class. Placental forms include both viviparous species, in which embryonic devel- opment occurs within the maternal body cavity, and brooding species, in which development proceeds outside the body cavity. We have also identified an unknown reproductive pattern involv- ing macrolecithal oogenesis and placental nutrition from a new, taxonomically extensive anatomical study of 120 species in 92 genera and 48 families of the gymnolaemate order Cheilostomata. Results support the hypothesis of evolution of oogenesis and placentation among Cheilostomata from oligolecithal to macrolecithal oogenesis, followed by brooding, through incipient matrotrophy com- bining macrolecithal oogenesis and placentation, to oligolecithal oogenesis with subsequent placen- tal brooding.
    [Show full text]
  • Bryozoans in Archaeology 1. Introduction 2. Bryozoan Biology
    Reprinted from Internet Archaeology, 35 (2013) Bryozoans in Archaeology Matthew Law School of History, Archaeology and Religion, Cardiff University, Colum Drive, Cardiff, CF10 3EU. Email: [email protected] ORCID: 0000-0002-6127-5353 Summary Bryozoans (Phylum Bryozoa) are colony-forming invertebrates found in marine and freshwater contexts. Many are calcified, while some others have chitinous buds, and so have archaeological potential, yet they are seldom investigated, perhaps due to considerable difficulties with identification. This article presents an overview of bryozoans, as well as summarising archaeological contexts in which bryozoans might be expected to occur, and highlighting some previous work. It also presents methods and directions to maximise the potential of bryozoans in archaeological investigations. Features o Keywords: Bryozoa, environmental archaeology, palaeoecology, biological remains, marine shells, freshwater sediments, marine sediments 1. Introduction Bryozoans (Phylum Bryozoa), also known as sea mats or moss animals and formerly as Polyzoa or Entroprocta, are colony-forming sessile invertebrates, comprising communities of separate individuals known as zooids. There are around 6000 living species known in the world (Benton and Harper 2009, 314). Most are marine, although brackish and freshwater species exist. Generally, they occur on hard substrates such as rocks, shells and the fronds of seaweeds, although there are forms that live on mud and sand. Many are calcified, and others have chitinous buds, and have the potential to be preserved in archaeological contexts, yet they are seldom investigated, perhaps due to considerable difficulties with identification. Considerably more work has been done on geological assemblages and more still on living colonies; however, in general the group is not well known (Francis 2001, 106).
    [Show full text]
  • Of Cheilostome Bryozoans (Bryozoa: Gymnolaemata): Structure, Research History, and Modern Problematics A
    Russian Journal of Marine Biology, Vol. 30, Suppl. 1, 2004, pp. S43–S55. Original Russian Text Copyright © 2004 by Biologiya Morya, Ostrovskii. IINVERTEBRATE ZOOLOGY Brood Chambers (Ovicells) of Cheilostome Bryozoans (Bryozoa: Gymnolaemata): Structure, Research History, and Modern Problematics A. N. Ostrovskii Faculty of Biology & Soil Science, Saint-Petersburg State University, Saint Petersburg, 199034 Russia e-mail: [email protected] Received December 24, 2003 Abstract—The basic stages characterizing research of brood chambers (ovicells) in cheilostome bryozoans are reviewed, from their first description by J. Ellis in 1755 up to the present. The problems concerning contradic- tory views of researchers on the structure, formation, and function of ovicells are considered in detail. Special attention was paid to the development of modern terminology. Based on recent data, including paleontological data, the prospects are displayed of studying brood structures in Cheilostomata in order to better understand the phylogeny and evolution of their reproductive strategies. Key words: brooding, ovicells, anatomy, Bryozoa, Cheilostomata, evolution. Bryozoa is a widespread group of fouling suspension its reproductive strategies, in particular. Moreover, as feeders, mostly marine, with a long geological history the vast majority of cheilostome bryozoans brood their stretching back to the Early Ordovician [10]. Their colo- larvae in special brood chambers called ovicells, the nies form a significant part of the fouling in many marine presence of ovicells and their morphology are consid- biotopes, from upper sublittoral horizons to depths ered relevant taxonomic characters in bryozoology. exceeding 6000 m. Many bryozoans are extremely important components of such biotopes; they form shel- Several morphological types of brood chambers ter and are food for a broad spectrum of organisms have been distinguished, but the most widespread are inhabiting the sea floor.
    [Show full text]
  • Transoceanic Rafting of Bryozoa (Cyclostomata, Cheilostomata, and Ctenostomata) Across the North Pacific Ocean on Japanese Tsunami Marine Debris
    Aquatic Invasions (2018) Volume 13, Issue 1: 137–162 DOI: https://doi.org/10.3391/ai.2018.13.1.11 © 2018 The Author(s). Journal compilation © 2018 REABIC Special Issue: Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011 Research Article Transoceanic rafting of Bryozoa (Cyclostomata, Cheilostomata, and Ctenostomata) across the North Pacific Ocean on Japanese tsunami marine debris Megan I. McCuller1,2,* and James T. Carlton1 1Williams College-Mystic Seaport Maritime Studies Program, Mystic, Connecticut 06355, USA 2Current address: Southern Maine Community College, South Portland, Maine 04106, USA Author e-mails: [email protected] (MIM), [email protected] (JTC) *Corresponding author Received: 3 April 2017 / Accepted: 31 October 2017 / Published online: 15 February 2018 Handling editor: Amy E. Fowler Co-Editors’ Note: This is one of the papers from the special issue of Aquatic Invasions on “Transoceanic Dispersal of Marine Life from Japan to North America and the Hawaiian Islands as a Result of the Japanese Earthquake and Tsunami of 2011." The special issue was supported by funding provided by the Ministry of the Environment (MOE) of the Government of Japan through the North Pacific Marine Science Organization (PICES). Abstract Forty-nine species of Western Pacific coastal bryozoans were found on 317 objects (originating from the Great East Japan Earthquake and Tsunami of 2011) that drifted across the North Pacific Ocean and landed in the Hawaiian Islands and North America. The most common species were Scruparia ambigua (d’Orbigny, 1841) and Callaetea sp.
    [Show full text]