Bryozoans in Archaeology 1. Introduction 2. Bryozoan Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ventrosia Maritima (Milaschewitsch, 1916) and V. Ventrosa (Montagu
Folia Malacol. 22(1): 61–67 http://dx.doi.org/10.12657/folmal.022.006 VENTROSIA MARITIMA (MILASCHEWITSCH, 1916) AND V. VENTROSA (MONTAGU, 1803) IN GREECE: MOLECULAR DATA AS A SOURCE OF INFORMATION ABOUT SPECIES RANGES WITHIN THE HYDROBIINAE (CAENOGASTROPODA: TRUNCATELLOIDEA) MAGDALENA SZAROWSKA, ANDRZEJ FALNIOWSKI Department of Malacology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland (e-mail: [email protected]) ABSTRACT: Using molecular data (DNA sequences of mitochondrial COI and nuclear ribosomal 18SrRNA genes), we describe the occurrence of two species of Ventrosia Radoman, 1977: V. ventrosa (Montagu, 1803) and V. maritima (Milaschewitsch, 1916) in Greece. These species are found at two disjunct localities: V. ventrosa at the west coast of Peloponnese (Ionian Sea) and V. maritima on Milos Island in the Cyclades (Aegean Sea). Our findings expand the known ranges of both species: we provide the first molecularly confirmed record of V. ventrosa in Greece, and extend the range of the presumably Pontic V. maritima nearly 500 km SSW into the Aegean Sea. Our data confirm the species distinctness of V. maritima. KEY WORDS: Truncatelloidea, COI, 18S rRNA, shell, Ventrosia, species distinctness, species range INTRODUCTION Data on the Greek Hydrobiinae, inhabiting brack- flock of species that are not differentiated morpho- ish waters, are less than scarce. SCHÜTT (1980) did logically or ecologically. Thus, at a species level in not list any species belonging to this subfamily in the Hydrobiinae, molecular characters are inevita- his monograph on the Greek Hydrobiidae. Although bly necessary to distinguish a taxon (e.g. WILKE & MUUS (1963, 1967) demonstrated that the mor- DAVIS 2000, WILKE & FALNIOWSKI 2001, WILKE & phology of the penis and the head pigmentation PFENNIGER 2002). -
Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic
water Review Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic Valentina S. Artamonova 1, Ivan N. Bolotov 2,3,4, Maxim V. Vinarski 4 and Alexander A. Makhrov 1,4,* 1 A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 2 Laboratory of Molecular Ecology and Phylogenetics, Northern Arctic Federal University, 163002 Arkhangelsk, Russia; [email protected] 3 Federal Center for Integrated Arctic Research, Russian Academy of Sciences, 163000 Arkhangelsk, Russia 4 Laboratory of Macroecology & Biogeography of Invertebrates, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Analysis of zoogeographic, paleogeographic, and molecular data has shown that the ancestors of many fresh- and brackish-water cold-tolerant hydrobionts of the Mediterranean region and the Danube River basin likely originated in East Asia or Central Asia. The fish genera Gasterosteus, Hucho, Oxynoemacheilus, Salmo, and Schizothorax are examples of these groups among vertebrates, and the genera Magnibursatus (Trematoda), Margaritifera, Potomida, Microcondylaea, Leguminaia, Unio (Mollusca), and Phagocata (Planaria), among invertebrates. There is reason to believe that their ancestors spread to Europe through the Paratethys (or the proto-Paratethys basin that preceded it), where intense speciation took place and new genera of aquatic organisms arose. Some of the forms that originated in the Paratethys colonized the Mediterranean, and overwhelming data indicate that Citation: Artamonova, V.S.; Bolotov, representatives of the genera Salmo, Caspiomyzon, and Ecrobia migrated during the Miocene from I.N.; Vinarski, M.V.; Makhrov, A.A. -
Bryozoan Studies 2019
BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod -
Zootaxa, Mollusca, Goniodorididae, Okenia
ZOOTAXA 695 Further species of the opisthobranch genus Okenia (Nudibranchia: Goniodorididae) from the Indo-West Pacific W.B. RUDMAN Magnolia Press Auckland, New Zealand W.B. RUDMAN Further species of the opisthobranch genus Okenia (Nudibranchia: Goniodorididae) from the Indo-West Pacific (Zootaxa 695) 70 pp.; 30 cm. 25 October 2004 ISBN 1-877354-68-6 (Paperback) ISBN 1-877354-69-4 (Online edition) FIRST PUBLISHED IN 2004 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2004 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 695: 1–70 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 695 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) Further species of the opisthobranch genus Okenia (Nudibranchia: Goniodorididae) from the Indo-West Pacific W.B. RUDMAN The Australian Museum, 6 College St., Sydney, NSW 2010, Australia. E-mail: [email protected]. Table of Contents Abstract . 3 Introduction. 4 Materials and Methods . 5 Descriptions . 5 Okenia Menke, 1830. 5 Okenia echinata Baba, 1949. 6 Okenia purpurata sp. nov. 9 Okenia vena sp. nov.. 13 Okenia virginiae Gosliner, 2004. -
"Lophophorates" Brachiopoda Echinodermata Asterozoa
Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove -
Bryozoan Genera Fenestrulina and Microporella No Longer Confamilial; Multi-Gene Phylogeny Supports Separation
Zoological Journal of the Linnean Society, 2019, 186, 190–199. With 2 figures. Bryozoan genera Fenestrulina and Microporella no longer confamilial; multi-gene phylogeny supports separation RUSSELL J. S. ORR1*, ANDREA WAESCHENBACH2, EMILY L. G. ENEVOLDSEN3, Downloaded from https://academic.oup.com/zoolinnean/article/186/1/190/5096936 by guest on 29 September 2021 JEROEN P. BOEVE3, MARIANNE N. HAUGEN3, KJETIL L. VOJE3, JOANNE PORTER4, KAMIL ZÁGORŠEK5, ABIGAIL M. SMITH6, DENNIS P. GORDON7 and LEE HSIANG LIOW1,3 1Natural History Museum, University of Oslo, Oslo, Norway 2Department of Life Sciences, Natural History Museum, London, UK 3Centre for Ecological & Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway 4Centre for Marine Biodiversity and Biotechnology, School of Life Sciences, Heriot Watt University, Edinburgh, UK 5Department of Geography, Technical University of Liberec, Czech Republic 6Department of Marine Science, University of Otago, Dunedin, New Zealand 7National Institute of Water and Atmospheric Research, Wellington, New Zealand Received 25 March 2018; revised 28 June 2018; accepted for publication 11 July 2018 Bryozoans are a moderately diverse, mostly marine phylum with a fossil record extending to the Early Ordovician. Compared to other phyla, little is known about their phylogenetic relationships at both lower and higher taxonomic levels. Hence, an effort is being made to elucidate their phylogenetic relationships. Here, we present newly sequenced nuclear and mitochondrial genes for 21 cheilostome bryozoans. Combining these data with existing orthologous molecular data, we focus on reconstructing the phylogenetic relationships of Fenestrulina and Microporella, two species-rich genera. They are currently placed in Microporellidae, defined by having a semicircular primary orifice and a proximal ascopore. -
Bryozoa of the Caspian Sea
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339363855 Bryozoa of the Caspian Sea Article in Inland Water Biology · January 2020 DOI: 10.1134/S199508292001006X CITATIONS READS 0 90 1 author: Valentina Ivanovna Gontar Russian Academy of Sciences 58 PUBLICATIONS 101 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Freshwater Bryozoa View project Evolution of spreading of marine invertebrates in the Northern Hemisphere View project All content following this page was uploaded by Valentina Ivanovna Gontar on 19 February 2020. The user has requested enhancement of the downloaded file. ISSN 1995-0829, Inland Water Biology, 2020, Vol. 13, No. 1, pp. 1–13. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2020, published in Biologiya Vnutrennykh Vod, 2020, No. 1, pp. 3–16. AQUATIC FLORA AND FAUNA Bryozoa of the Caspian Sea V. I. Gontar* Institute of Zoology, Russian Academy of Sciences, St. Petersburg, Russia *e-mail: [email protected] Received April 24, 2017; revised September 18, 2018; accepted November 27, 2018 Abstract—Five bryozoan species of the class Gymnolaemata and a single Plumatella emarginata species of the class Phylactolaemata are found in the Caspian Sea. The class Gymnolaemata is represented by bryozoans of the orders Ctenostomatida (Amathia caspia, Paludicella articulata, and Victorella pavida) and Cheilostoma- tida (Conopeum grimmi and Lapidosella ostroumovi). Two species (Conopeum grimmi and Amatia caspia) are Caspian endemics. Lapidosella ostroumovi was identified in the Caspian Sea for the first time. The systematic position, illustrated morphological descriptions, and features of ecology of the species identified are pre- sented. -
Ctenostomatous Bryozoa from São Paulo, Brazil, with Descriptions of Twelve New Species
Zootaxa 3889 (4): 485–524 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3889.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:0256CD93-AE8A-475F-8EB7-2418DF510AC2 Ctenostomatous Bryozoa from São Paulo, Brazil, with descriptions of twelve new species LEANDRO M. VIEIRA1,2, ALVARO E. MIGOTTO2 & JUDITH E. WINSTON3 1Departamento de Zoologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil. E-mail: [email protected] 2Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, SP 11600–000, Brazil. E-mail: [email protected] 3Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. E-mail: [email protected] Abstract This paper describes 21 ctenostomatous bryozoans from the state of São Paulo, Brazil, based on specimens observed in vivo. A new family, Jebramellidae n. fam., is erected for a newly described genus and species, Jebramella angusta n. gen. et sp. Eleven other species are described as new: Alcyonidium exiguum n. sp., Alcyonidium pulvinatum n. sp., Alcyonidium torquatum n. sp., Alcyonidium vitreum n. sp., Bowerbankia ernsti n. sp., Bowerbankia evelinae n. sp., Bow- erbankia mobilis n. sp., Nolella elizae n. sp., Panolicella brasiliensis n. sp., Sundanella rosea n. sp., Victorella araceae n. sp. Taxonomic and ecological notes are also included for nine previously described species: Aeverrillia setigera (Hincks, 1887), Alcyonidium hauffi Marcus, 1939, Alcyonidium polypylum Marcus, 1941, Anguinella palmata van Beneden, 1845, Arachnoidella evelinae (Marcus, 1937), Bantariella firmata (Marcus, 1938) n. comb., Nolella sawayai Marcus, 1938, Nolella stipata Gosse, 1855 and Zoobotryon verticillatum (delle Chiaje, 1822). -
Individual Autozooidal Behaviour and Feeding in Marine Bryozoans
Individual autozooidal behaviour and feeding in marine bryozoans Natalia Nickolaevna Shunatova, Andrew Nickolaevitch Ostrovsky Shunatova NN, Ostrovsky AN. 2001. Individual autozooidal behaviour and feeding in marine SARSIA bryozoans. Sarsia 86:113-142. The article is devoted to individual behaviour of autozooids (mainly connected with feeding and cleaning) in 40 species and subspecies of marine bryozoans from the White Sea and the Barents Sea. We present comparative descriptions of the observations and for the first time describe some of autozooidal activities (e.g. cleaning of the colony surface by a reversal of tentacular ciliature beating, variants of testing-position, and particle capture and rejection). Non-contradictory aspects from the main hypotheses on bryozoan feeding have been used to create a model of feeding mechanism. Flick- ing activity in the absence of previous mechanical contact between tentacle and particle leads to the inference that polypides in some species can detect particles at some distance. The discussion deals with both normal and “spontaneous” reactions, as well as differences and similarities in autozooidal behaviour and their probable causes. Approaches to classification of the diversity of bryozoan behav- iour (functional and morphological) are considered. Behavioural reactions recorded are classified using a morphological approach based on the structure (tentacular ciliature, tentacles and entire polypide) performing the reaction. We suggest that polypide protrusion and retraction might be the basis of the origin of some other individual activities. Individual autozooidal behaviour is considered to be a flexible and sensitive system of reactions in which the activities can be performed in different combinations and successions and can be switched depending on the situation. -
Sponges and Bryozoans of Sandusky Bay
Ohio Naturalist. [Vol. 1, No. SPONGES AND BRYOZOANS OF SANDUSKY BAY. F. L. LANDACRE. The two small groups of fresh water sponges and Bryozoa re- ceived some attention at the Lake laboratory during the summer of 1900 All our fresh water sponges belong to one family, the SpongiUidae, which has about seven genera. They differ from the marine sponges- in two particulars. They form skeletons of silicon only, while marine sponges may form silicious or limy or spongin skeletons. The spongin skeleton-is the-one that gives the bath sponge its value.. They also form winter buds or statoblasts which carry the sponge over the winter and reproduce it again in the spring. This peculiar process was probably acquired on account of the changes in temperature and in amount of moisture to which animals living in fresh water streams are subjected. The sponge dies in the fall of the year and its skeleton of silicious spines or spicules can be found with no protoplasm. The character of the spines in the body of the sponge and those surrounding the statoblast differ greatly, and those around the statoblast are the main reliance in identifying sponges. So that if a statoblast is found the sponge from which it came can be determined, and on the other hand it is frequently very difficult to determine the species of a sponge if it has not yet formed its stato- blast. The statoblast is a globular or disc-shaped, nitroginous cell with a chimney-like opening where the protoplasm escapes in the spring. The adult sponge is non-sexual but the statoblasts give rise to ova and spermatozoa which unite and produce a new sponge. -
(Bryozoa, Cheilostomatida) from the Atlantic-Mediterranean Region
European Journal of Taxonomy 536: 1–33 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.536 www.europeanjournaloftaxonomy.eu 2019 · Madurell T. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:EC4DDAED-11A3-45AB-B276-4ED9A301F9FE Revision of the Genus Schizoretepora (Bryozoa, Cheilostomatida) from the Atlantic-Mediterranean region Teresa MADURELL 1,*, Mary SPENCER JONES 2 & Mikel ZABALA 3 1 Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia. 2 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. 3 Department d’Ecologia, Universitat de Barcelona (UB), Diagonal 645, 08028 Barcelona, Catalonia. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:AB9762AB-55CD-4642-B411-BDBE45CA2082 2 urn:lsid:zoobank.org:author:0C8C2EBE-17E1-44DA-8FDB-DC35F615F95B 3 urn:lsid:zoobank.org:author:7E533CE7-92CA-4A17-8E41-5C37188D0CDA Abstract. We examined the type specimens and historical collections holding puzzling Atlantic and Mediterranean material belonging to the genus Schizoretepora Gregory, 1893. We performed a detailed study of the colonial characters and re-describe the resulting species and those that have rarely been found or have poor original descriptions. As a result of this revision, nine species are found in the northeast Atlantic and Mediterranean. Six of them are re-described and illustrated: S. aviculifera (Canu & Bassler, 1930), S. calveti d’Hondt, 1975, S. imperati (Busk, 1884), S. sp. nov.? (= S. -