About the Associate Administrator for Commercial Space Transportation (Ast) and the Commercial Space Transportation Advisory Committee (Comstac)

Total Page:16

File Type:pdf, Size:1020Kb

About the Associate Administrator for Commercial Space Transportation (Ast) and the Commercial Space Transportation Advisory Committee (Comstac) 2000 COMMERCIAL SPACE TRANSPORTATION FORECASTS Federal Aviation Administration’s Associate Administrator for Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) May 2000 ABOUT THE ASSOCIATE ADMINISTRATOR FOR COMMERCIAL SPACE TRANSPORTATION (AST) AND THE COMMERCIAL SPACE TRANSPORTATION ADVISORY COMMITTEE (COMSTAC) The Federal Aviation Administration’s senior executives from the U.S. commercial Associate Administrator for Commercial Space space transportation and satellite industries, Transportation (AST) licenses and regulates U.S. space-related state government officials, and commercial space launch activity as authorized other space professionals. by Executive Order 12465, Commercial Expendable Launch Vehicle Activities, and the The primary goals of COMSTAC are to: Commercial Space Launch Act of 1984, as amended. AST’s mission is to license and • Evaluate economic, technological and regulate commercial launch operations to ensure institutional issues relating to the U.S. public health and safety and the safety of commercial space transportation industry property, and to protect national security and foreign policy interests of the United States • Provide a forum for the discussion of issues during commercial launch operations. The involving the relationship between industry Commercial Space Launch Act of 1984 and the and government requirements 1996 National Space Policy also direct the Federal Aviation Administration to encourage, • Make recommendations to the Administrator facilitate, and promote commercial launches. on issues and approaches for Federal policies and programs regarding the industry. The Commercial Space Transportation Advisory Committee (COMSTAC) provides Additional information concerning AST and information, advice, and recommendations to the COMSTAC can be found on AST’s web site, at Administrator of the Federal Aviation http://ast.faa.gov. Administration within the Department of Transportation (DOT) on matters relating to the U.S. commercial space transportation industry. Established in 1985, COMSTAC is made up of Cover Photo Credits (clockwise from top left): Alcatel Space (1999). Artist’s conception of one of the PhotoDisc, Inc. (1999). Ground antennae for satellite WorldSpace system satellites, which will provide digital audio communications signals. broadcasting services via satellite. Sea Launch (1999). Image is of the Zenit 3SL launch on October 9, Boeing Corporation (1999). Image is of the Delta 2 7420 launch 1999, from the Odyssey Sea Launch Platform. It successfully on July 10, 1999, from the Cape Canaveral Air Station. It deployed the DirecTV 1R satellite. successfully orbited four Globalstar communications satellites. International Launch Services (2000). Image is of the Atlas 2AS Orbital Sciences (1998). Image is of the OrbView-2 satellite prior launch on February 3, 2000, from the Cape Canaveral Air Station. to launch. It successfully deployed the HISPASAT 1C communications satellite. Alcatel Space (1999). An engineer working on one of the Globalstar mobile telephony satellites. 2000 COMMERCIAL SPACE TRANSPORTATION FORECASTS TABLE OF CONTENTS Executive Summary ............................................................................................... iii Introduction............................................................................................................. 1 Combined Payload and Launch Projections............................................................ 2 COMSTAC 2000 Commercial Geostationary Launch Demand Model ........... GSO FAA 2000 Commercial Space Transportation Projections.............................NGSO For Non-Geosynchronous Orbits (NGSO) Federal Aviation Administration and the PAGE i Commercial Space Transportation Advisory Committee (COMSTAC) 2000 COMMERCIAL SPACE TRANSPORTATION FORECASTS LIST OF FIGURES Figure 1: Commercial Space Transportation Payload and Launch Projections.............2 Figure 2: GSO Satellite and Launch Demand .............................................................3 Figure 3: NGSO Satellite and Launch Demand ..........................................................3 Figure 4: Combined GSO and NGSO Launch Projections.........................................4 Figure 5: Historical Commercial Space Transportation Projections .............................4 PAGE ii Federal Aviation Administration and the Commercial Space Transportation Advisory Committee (COMSTAC) 2000 COMMERCIAL SPACE TRANSPORTATION FORECASTS EXECUTIVE SUMMARY The Federal Aviation Administration’s Together, the COMSTAC and FAA forecasts Associate Administrator for Commercial Space project that an average of 41.4 commercial space Transportation (FAA/AST) and the Commercial launches worldwide will occur annually through Space Transportation Advisory Committee 2010. This is an increase of 15 percent from the (COMSTAC) have prepared projections of 36 commercial launches conducted worldwide in global demand for commercial space launch 1999. However, the forecast is down close to 20 services for the period 2000 to 2010. The 2000 percent from last year, which projected an Commercial Space Transportation Forecasts average of 51 launches per year. This downturn combines: in expectations is the result of difficulties encountered by NGSO systems over the last year, • The COMSTAC 2000 Commercial Geosta- such as the failure of Iridium and bankruptcy of tionary Launch Demand Model, which ICO. projects demand for commercial satellites that operate in geosynchronous orbit (GSO) Specifically, the forecasts project that on and the resulting launch demand to average the following type and number of geosynchronous transfer orbit (GTO); and launches will be conducted each year: • The FAA’s 2000 Commercial Space • 23.5 launches of medium-to-heavy launch Transportation Projections For Non- vehicles to GSO Geosynchronous Orbits (NGSO), which projects commercial launch demand for all • 7.5 launches of medium-to-heavy launch space systems in non-geosynchronous orbits, vehicles to LEO, or NGSO orbits such as low Earth orbit (LEO), medium Earth orbit (MEO), and elliptical orbits (ELI). • 10.4 launches of small vehicles to LEO. Federal Aviation Administration and the PAGE iii Commercial Space Transportation Advisory Committee (COMSTAC) 2000 COMMERCIAL SPACE TRANSPORTATION FORECASTS INTRODUCTION The Federal Aviation Administration’s Associate About the COMSTAC 2000 Commercial Administrator for Commercial Space Transportation Geostationary Launch Demand Model (FAA/AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) At the request of the Federal Aviation have prepared projections of global demand for Administration, COMSTAC compiles the commercial space launch services for the period 2000 Commercial Geostationary Launch Demand to 2010. The jointly published 2000 Commercial Model, forecasting worldwide demand for Space Transportation Forecasts includes: commercial launches of spacecraft which operate in geosynchronous orbit. First compiled in 1993, the · The COMSTAC 2000 Commercial model is updated annually and is prepared using plans Geostationary Launch Demand Model, which and projections supplied by U.S. and international projects demand for commercial satellites that commercial satellite and launch companies. Projected operate in geosynchronous orbit (GSO) and the payload and launch demand is limited to those resulting launch demand to geosynchronous spacecraft and launches that are open to transfer orbit (GTO); and internationally competed launch services procurements. Since 1998, the model has also · The FAA’s 2000 Commercial Space included a projection of launch vehicle demand, which Transportation Projections For Non- is derived from the payload demand due to dual Geosynchronous Orbits (NGSO), which projects manifesting of satellites on some launch vehicles. commercial launch demand for all space systems in non-geosynchronous orbits (NGSO), such as About the FAA NGSO Commercial Space low Earth orbit (LEO), medium Earth orbit Transportation Projections (MEO), and elliptical orbits (ELI). Since 1994, the FAA has compiled an assessment Growth of Commercial Space Transportation of demand for commercial launch services to non- geosynchronous orbits, i.e. those not covered by the Commercial launch activity has steadily increased COMSTAC GSO forecast. The NGSO forecast is since the early 1980s, and now represents over 40 based on an assessment of multi-satellite percent of worldwide launches conducted annually, communications systems being developed to service ending the domination of space by government the low data rate communications, telephony, and activities. Until the last couple of years, commercial broadband data markets, as well as remote sensing spacecraft were almost exclusively and other spacecraft using commercial launch telecommunications satellites located in services. geosynchronous orbit. In 1997, however, full-scale deployment began of the first of several The NGSO Commercial Market Projections communications constellations consisting of multiple develops two scenarios for deployment of NGSO spacecraft in low Earth orbit. While there were 18 satellite systems—a “baseline” scenario, considered launches to GSO in 1999, there were an additional 18 the most likely to occur, and a “robust market” launches to LEO to deploy global satellite scenario, considered likely to occur if demand for communications systems, remote sensing spacecraft, LEO satellite services is sufficiently greater. For and scientific
Recommended publications
  • Lockheed Martin Space Systems Company NASA SBIR Overview
    Lockheed Martin Space Systems Company NASA SBIR Overview and Engagement Craig Owens Program Manager, SBIR Lockheed Martin Aeronautics Space Systems Company Portfolio Special Strategic & Missile Defense Civil Space Programs NASA Human Adv Programs Strategic Missiles Missile Defense Planetary Weather & Exploration Exploration Environment Military Space Mission Solutions Protected Narrowband Navigation Weather Early Space End-to-End Geospatial Comms Comms Warning Protection Mission Systems Technologies Commercial Space Advanced Technology Center Subsidiaries Remote Commercial Wind Energy Optics, RF Adv. Materials Space Sciences Sensing SATCOM Management & Photonics & Nano Systems & Instruments LM SBIR Team Mission 1. Collaborate with small businesses to get advanced technology to our customers 2. Build strategic, long term relationships with small businesses by leveraging Gov’t SBIR/STTR R&D funding 3. Understand what small business technologies are potentially coming to the market 4. Align discriminating small business technologies to LM programs and future opportunities to reduce cost and win new business 5. Complement our small business supply chain and support the Gov’t initiative to leverage small businesses © 2016 Lockheed Martin Corporation, All Rights Reserved LM SBIR Engagement • Strong engagement in the SBIR/STTR Program – Seeking technology maturation supporting program needs – 5-10 year outlook – TRL 6 needed for potential LM investment – Expect small businesses to be informed on LM • Benefits to LM – Innovation & Affordability – Strategic partnerships – Complements LM investments – Help drive innovation into next generation systems © 2016 Lockheed Martin Corporation, All Rights Reserved LMSSC Endorsement Process • LM SME’s assess all concepts • Leadership aware of engagements • Process allows for relationship building © 2016 Lockheed Martin Corporation, All Rights Reserved 5 6.
    [Show full text]
  • Lockheed Martin Space Advanced Programs
    Lockheed Martin Space Advanced Programs Requirements in NASA Science Missions © 2019 Lockheed Martin. All Rights Reserved Performance and Operational Measurement Requirements Emitted radiance Detect photons; Convert to e- Calibrate Data Science Data Quantized Photons Electrons Science Data Radiances § Orbit § Wavelength band § Detection § Science question § Signal photons § Integration time § Navigation analysis § Background scene § Quantum efficiency § Radiometric calibration § Field of View § Dark current § Resolution § Read noise § Solar intrusion Mission Requirements Performance Requirements • Duration • Environment • Electrical • Mechanical Iterate • Reliability • Operational • Thermal • Structural Evolve Requirements Constraints Resource Requirements • Spacecraft • Mass • Thermal interface • Power • Data rate • Launch vehicle • Size • Alignment Concept Design 2 Example Requirements Tree Implementing NASA Level 1s Institution/NASA Center Level 1 Reqts Program Level 2 Launch Environmental Mission Assurance Mission Reqts Doc Project Vehicle IRD Reqts Requirements (MAR) Flight System Level 3 Mission Ops & Element- Payload Spacecraft Flight to Ground Payload Reqts to SC ICDs Ground Developed, Requirements Doc ICD System Reqts Project Approved Payload/ Level 4 Spacecraft Ground Instrument Testbeds Element-Controlled Subsystems Subsystems Subsystems 3 Mars Atmosphere and Volatile EvolutioN (MAVEN) v Objective: Characterize Mars’ atmospheric escape v PI: Dr. Bruce Jakosky, CU LASP v Implementing Institution: NASA Goddard Space Flight Center v Spacecraft and Mission Ops: Lockheed Martin v Instruments: UCB SSL, CU/LASP, NASA GSFC, CNES v Mars relay: Jet Propulsion Laboratory v Launched November 18th 2013 v MOI September 22nd 2014 v Currently in third mission extension Image Credit: NASA/B. Ingalls 5 Science Missions Across the Solar System 6 © 2019 Lockheed Martin. All Rights Reserved.
    [Show full text]
  • Federal Communications Commission Record 9 FCC Red No
    DA 94-203 Federal Communications Commission Record 9 FCC Red No. 6 4. PanAmSat also contends that, in violation of Section Before the 202 of the Communications Act, 47 U.S.C. § 202, Comsat Federal Communications Commission offers a "new" service in Transmittal 20 to a single cus Washington, D.C. 20554 tomer under terms not available to other Comsat cus tomers. PanAmSat Petition at 1-3. Comsat replies that because the reservation request for this particular service In the Matter of was made prior to an April 1993 cut-off date contained in its tariff,3 Comsat correctly applied the pre-April 1993 tariffed terms. Comsat Reply at 2-3.4 Comsat Corporation Transmittal Nos. 20 and 22 5. Finally, PanAmSat contends that, contrary to the Comsat World Systems Commission©s rules, Comsat©s Transmittal 20 omits a ma terial term: the power level for Comsat©s 54 MHz digital Tariff F.C.C. No. 1 video service. Absent such information, PanAmSat argues, the fairness of Comsat©s charges and the adequacy of Comsat©s offering to meet specific customer needs cannot ORDER be determined. PanAmSat Petition at 3-5. Comsat responds that its transmittal implicitly incorporates by reference all Adopted: March 3, 1994; Released: March 4, 1994 relevant provisions in Comsat Tariff No. 1 and that, in cluded among those provisions, is a reference to an By the Chief, Tariff Division, Common Carrier Bureau: INTELSAT document from which the power level can be calculated. Comsat Reply at 4-5. 1. On January 6, 1994, Comsat Corporation -- Comsat 6.
    [Show full text]
  • 6. the INTELSAT 17 Satellite
    TWO COMMUNICATIONS SATELLITES READY FOR LAUNCH Arianespace will orbit two communications satellite on its fifth launch of the year: INTELSAT 17 for the international satellite operator Intelsat, and HYLAS 1 for the European operator Avanti Communications. The choice of Arianespace by leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads. Arianespace and Intelsat have built up a long-standing relationship based on mutual trust. Since 1983, Arianespace has launched 48 satellites for Intelsat. Positioned at 66 degrees East, INTELSAT 17 will deliver a wide range of communication services for Europe, the Middle East, Russia and Asia. Built by Space Systems/Loral of the United States, this powerful satellite will weigh 5,540 kg at launch. It will also enable Intelsat to expand its successful Asian video distrubution neighborhood. INTELSAT 17 will replace INTELSAT 702. HYLAS 1 is Avanti Communications’ first satellite. A new European satellite operator, Avanti Communications also chose Arianespace to orbit its HYLAS 2 satellite, scheduled for launch in the first half of 2012. HYLAS 1 was built by an industrial consortium formed by EADS Astrium and the Indian Space Research Organisation (ISRO), using a I-2K platform. Fitted with Ka-band and Ku-band transponders, the satellite will be positioned at 33.5 degrees West, and will be the first European satellite to offer high-speed broadband services across all of Europe.
    [Show full text]
  • Jjmonl 1712.Pmd
    alactic Observer John J. McCarthy Observatory G Volume 10, No. 12 December 2017 Holiday Theme Park See page 19 for more information The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT"............................... 3 REFERENCES ON DISTANCES ................................................ 18 SINUS IRIDUM ................................................................ 4 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES ............. 18 EXTRAGALACTIC COSMIC RAYS ........................................ 5 SOLAR ACTIVITY ............................................................... 18 EQUATORIAL ICE ON MARS? ...........................................
    [Show full text]
  • Space in Central and Eastern Europe
    EU 4+ SPACE IN CENTRAL AND EASTERN EUROPE OPPORTUNITIES AND CHALLENGES FOR THE EUROPEAN SPACE ENDEAVOUR Report 5, September 2007 Charlotte Mathieu, ESPI European Space Policy Institute Report 5, September 2007 1 Short Title: ESPI Report 5, September 2007 Editor, Publisher: ESPI European Space Policy Institute A-1030 Vienna, Schwarzenbergplatz 6 Austria http://www.espi.or.at Tel.: +43 1 718 11 18 - 0 Fax - 99 Copyright: ESPI, September 2007 This report was funded, in part, through a contract with the EUROPEAN SPACE AGENCY (ESA). Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “source: ESPI Report 5, September 2007. All rights reserved” and sample transmission to ESPI before publishing. Price: 11,00 EUR Printed by ESA/ESTEC Compilation, Layout and Design: M. A. Jakob/ESPI and Panthera.cc Report 5, September 2007 2 EU 4+ Executive Summary ....................................................................................... 5 Introduction…………………………………………………………………………………………7 Part I - The New EU Member States Introduction................................................................................................... 9 1. What is really at stake for Europe? ....................................................... 10 1.1. The European space community could benefit from a further cooperation with the ECS ................................................................. 10 1.2. However, their economic weight remains small in the European landscape and they still suffer from organisatorial and funding issues .... 11 1.2.1. Economic weight of the ECS in Europe ........................................... 11 1.2.2. Reality of their impact on competition ............................................ 11 1.2.3. Foreign policy issues ................................................................... 12 1.2.4. Internal challenges ..................................................................... 12 1.3.
    [Show full text]
  • HISPASAT Renews Designations of Its Satellite Fleet
    Communications management HISPASAT renews designations of its satellite fleet The operator seeks to provide more precise and direct information through the designations used for its satellite system. All satellites will use Hispasat as their primary name, to which complementary information will be added in reference to each satellite’s orbital position and order of arrival. Madrid, 1 March 2016.- Spanish satellite communications operator HISPASAT has defined a new designation system for its satellite fleet. The change comes as a response to the Group’s growing number of satellites and orbital positions and reflects efforts to maintain designation coherency. The company seeks to establish a logical method to automate future satellite designations and provide informative content regarding satellites’ position and age and, therefore, has established the following system: all satellites will use Hispasat as their primary name, to which complementary information will be added in reference to each satellite’s orbital position and their order of arrival. Hence, when a satellite changes its location, its designation will also change, adapting it to the satellite’s new orbital position. In establishing HISPASATt’s new satellite designations, consideration has been given to the satellites that have already completed their useful life cycle and, therefore, been deorbited, such that numbering system will be linked to the history of the company’s satellites. The Amazonas satellites will keep their designation Excluded from this system will be satellites located at 61º West, which will keep the name Amazonas, since they are fully established on the market and well-known by all of the actors in the sector.
    [Show full text]
  • APSCC Monthly E-Newsletter AUGUST 2017
    APSCC Monthly e-Newsletter AUGUST 2017 The Asia-Pacific Satellite Communications Council (APSCC) e-Newsletter is produced on a monthly basis as part of APSCC’s information services for members and professionals in the satellite industry. Subscribe to the APSCC monthly newsletter and be updated with the latest satellite industry news as well as APSCC activities! To renew your subscription, please visit www.apscc.or.kr/sub4_5.asp. To unsubscribe, send an email to [email protected] with a title “Unsubscribe.” News in this issue has been collected from July 1 to July 31. INSIDE APSCC APSCC 2017 Satellite Conference & Exhibition, 10-12 October, Tokyo, Japan EARLY BIRD REGISTRATION IS NOW OPEN! The APSCC Satellite Conference and Exhibition is Asia’s must-attend executive conference for the satellite and space industry, where business leaders come together to gain market insight, strike partnerships and conclude major deals. Celebrating its 20th annual event APSCC 2017 #SATECHexplorer will incorporate industry veterans and new players through the 3-day of in-depth conference program to reach out to a broader audience. Join APSCC 2017 and expand your business network while hearing from a broad range of thought-provoking panels and speakers representing visionary ideas and years of business experience in the industry. For more information, please visit www.apscc2017.com SATELLITE BUSINESS Geoscience Australia Renews Life-Saving Connectivity Contracts with Speedcast July 5, 2017 - Speedcast International Limited announced Geoscience Australia, Australia’s pre-eminent public sector geoscience organization, has renewed its contract with Speedcast for life-saving connectivity applications. Speedcast provides VSAT connectivity for Geoscience Australia’s seismic reading and GPS land movement applications.
    [Show full text]
  • De Satélites Geoestacionarios 2.3
    "2015 - )!.ño áe{ (]3icentf!}}ario áe{ klJ!loreso áeIos PueMos £i6res" ".. 1. CA~":i'J"'.AD2DIPUTADOS : 0:= L ,\ h!AC.!Ói~ MESA I)E ENTRADA : i 1 3 y ""1(é ork/; l i, !-,.q,J j I~ ""I">"C' r!O /11 IJonA/6l1í I ~I:.S ,~.f. 1 rvr..~........ CD=153/15 Buenos Aires, 7 de octubre de 2015. Al señor Presidente de la Honorable Cámara de Diputados de la Nación. Tengo el honor de dirigirme al señor Presidente, a fin de comunicarle que el Honorable Senado, en la fecha, ha sancionado el siguiente proyecto de ley que paso en revisión a esa Honorable Cámara: "EL SENADO Y CAMARA DE DIPUTADOS, etc. LEY DE DESARROLLO DE LA INDUSTRIA SATELITAL TÍTULO I DE LOS SATÉLITES GEOSTACIONARIOS DE TELECOMUNICACIONES CAPÍTULO I DE LA INDUSTRIA SATELITAL Artículo 1º- Declárase de interés nacional el desarrollo de la ~ndustria satelital como política de Estado y de prioridad nacional, en .10 que respecta a satélites geoestacionarios de telecomunicaciones. CAPITULO II DEL PLAN SATELITAL GEOESTACIONARIO ARGENTINO 2015-2035 Art. 2º~ Apruébase ~l 'Plan Satelital 6eoestacionario Argentino 2015-2035', que como Anexo I forma parte integrante de la presente ley. Art. 3º- Declárase .de interés público nacional el 'Plan Satelital Geoestacionario Argentino 2015-2035', aprobado mediante el artículo 2º de la presente ley. Art. 4º- El Poder Ejecutivo nacional, por intermedio de la Empresa Argentina de Soluciones Satelitales Sociedad Anónima x I "2015 - ;J.ño de{ (]3icentenario de{ Congreso de ÚJs!Pue6ÚJs£i6res" '2 CD=153/15 AR-SAT, ejecutará las acciones necesarias a fin de implementar el 'Plan Satelital Geoestacionario Argentino 2015-2035'.
    [Show full text]
  • UNA Planetarium Newsletter Vol. 4. No. 2
    UNA Planetarium Image of the Month Newsletter Vol. 4. No. 2 Feb, 2012 I was asked by a student recently why NASA was being closed down. This came as a bit of a surprise but it is somewhat understandable. The retirement of the space shuttle fleet last year was the end of an era. The shuttle serviced the United States’ space program for more than twenty years and with no launcher yet ready to replace the shuttles it might appear as if NASA is done. This is in part due to poor long-term planning on the part of NASA. However, contrary to what This image was obtained by the Cassini spacecraft in orbit around Saturn. It shows some people think, the manned the small moon Dione with the limb of the planet in the background. Dione is spaceflight program at NASA is alive and about 1123km across and the spacecraft was about 57000km from the moon well. In fact NASA is currently taking when the image was taken. Dione, like many of Saturn’s moons is probably mainly applications for the next astronaut corps ice. The shadows of Saturn’s rings appear on the planet as the stripping you see to and will send spacefarers to the the left of Dione. The Image courtesy NASA. International Space Station to conduct research in orbit. They will ride on Russian rockets, but they will be American astronauts. The confusion over the fate of NASA also Astro Quote: “Across the exposes the fact that many of the Calendar for Feb/Mar 2012 important missions and projects NASA is sea of space, the stars involved in do not have the high public are other suns.” Feb 14 Planetarium Public Night profile 0f the Space Shuttles.
    [Show full text]
  • Federal Communications Collll1lwion Record 11 FCC Red No
    DA 96-122 Federal Communications Collll1lWion Record 11 FCC Red No. 4 fore find that the public interest will be served by a grant Before the of Comsat's application for the launch of the INTELSAT Federal Communications Commission 707 satellite as conditioned. Washington, D.C. 20554 5. Accordingly, IT IS ORDERED that Comsat's applica­ tion to participate in the launch and test program of the INTELSAT 707 satellite to be positioned at 359° East Lon­ In the Matter of gitude, IS GRANTED subject to the following terms and conditions: COMSAT CORPORATION File No. CSS-94-005-LA (a) This authorization is limited to the described Application for authority program. Any change in the authorized location due to participate in the launch to a launch delay or other circumstances will be of the INTELSAT VII-A (F-7) considered upon a proper request by Comsat for authority; (b) Comsat shall furnish via the INTELSAT 707 sat­ ellite only those channels of communication for com­ mercial service which have been, or may be, ORDER AND AUTHORIZATION authorized by the Commission under Section 214 of the Communications Act of 1934, as amended; Adopted: January 26, 1996; Released: February 9, 1996 (c) Within 30 days after completion of the testing program, Comsat shall provide the Commission with By the Chief, Satellite and Radiocommunication Divi­ a summary report of its results and, upon request, sion: shall make the detailed test data available; (d) Conduct of the program authorized herein shall 1. The Commission has under consideration the above­ be without interruption of commercial satellite ser­ captioned application filed by the COMSAT Corporation vice now authorized at U.S.
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]