Jjmonl 1712.Pmd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
The Blurring Distinction Between Asteroids and Comets
Answers Research Journal 8 (2015):203–208. www.answersingenesis.org/arj/v8/asteroids-and-comets.pdf The Blurring Distinction between Asteroids and Comets Danny R. Faulkner, Answers in Genesis, PO Box 510, Hebron, Kentucky, 41048. Abstract Asteroids and comets long had been viewed as distinct objects with regards to orbits and composition. However, discoveries made in recent years have blurred those distinctions. Whether there is a continuum on which our older conception of asteroids and comets are extremes or if there still is a gap between them is not entirely clear yet. Some of the newer views of comets and asteroids may challenge the evolutionary theory of the solar system. Additionally, the new information may challenge the idea that the solar system is billions of years old. For readers not versed in nomenclature of small solar system bodies, I discuss that in the appendix. Keywords: small solar system objects, comets, asteroids (minor planets) Introduction the sun, and their orbits frequently are inclined The differences between asteroids and comets considerably to the orbits of the planets. Because of At one time, we thought of asteroids and comets as their highly elliptical orbits, most comets alternately being two very different groups of objects. Comets and are very close to the sun when near perihelion and asteroids certainly looked different. Comets can be very far from the sun when near aphelion. Comets visible to the naked eye, and have been known since spend most of the time near aphelion far from the ancient times. They have a hazy, fuzzy appearance. sun, so that their ices remain frozen. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
Jjmonl 1810.Pmd
alactic Observer John J. McCarthy Observatory G Volume 11, No. 10 October 2018 Halloween spook See page 19 for more information The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue INTERNATIONAL OBSERVE THE MOON NIGHT .......................... 3 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES .............. 18 INOMN HIGHLIGHT, MARE HUMORUM SOLAR ACTIVITY ................................................................ 18 AND GASSENDI CRATER .................................................. 5 NASA'S GLOBAL CLIMATE CHANGE ................................... 18 LUNAR ICE ........................................................................ -
About GRAS and ACP About Observing Plans Overall Plan Format
About GRAS and ACP Global Rent-a-Scope systems are based on a highly modified version of ACP, that we have customized in house. A number of key differences exist between the generic version and the GRAS version. Please review this document for the supported GRAS supported directives. About Observing Plans You can generate plans a number of ways: 1. One Click Image. If you are new to GRAS and ACP follow the “One Click Image” link, this will give you a menu of target currently visible from the observatory. You just click the target to start imaging it. 2. ACP can generate a simple plan via its web interface consisting of single target with multiple filters and exposure time, please see “Single Image” and “Color Series” links inside ACP. This plan will automatically start at the observatory. This is by far the easies way to get started with ACP. The plan it generates is called “last-plan-from-web.txt” and it can be download via the My Documents link inside ACP if you wish to view its contents. 3. GRAS has also implemented via its reservation system a Plan Generator which work the same way as point two. You can select a target, filters and exposure times. You can give you plan a name and it will save it. You can then use this plan via the Launch a Plan feature on the reservation system to start the plan at a given date and time. You can also start this plan manually via “Scripted Plan” link inside ACP. -
MOP2019 Program Book.Pdf
1 Access Sakura Hall (Katahira campus) From Jun. 3 (Mon) to Jun. 6 (Thu) 10-min walk from Aoba-dori Inchibancho station (subway EW line) Route from the subway station https://www.tohoku.ac.jp/map/en/?f=KH_E01 Google Maps https://goo.gl/maps/VHjgQ9jumBLjexf77 Aoba Science Hall (Aobayama campus) Jun. 7 (Fri) 3-min walk from Aobayama station (subway EW line) Route from the subway station https://www.tohoku.ac.jp/map/en/?f=AY_H04 Google Maps https://goo.gl/maps/keQ1qyWia1cc7dYw6 2 Campus map (Katahira) University Cafeteria Katahira campus Meeting room Meeting room (2F, ESPACE ) (Katahira Hal) (3-6 June) North gate Main gate Meeting point for excursion on 6 June (12:00) Sakura Hall (https://www.tohoku.ac.jp/map/en/?f=KH) EV(to 1F) EV(to 2F) Registration Coffee Poster Oral Sakura Hall session session Entrance WC WC WC WC 2F 1F 3 Campus map (Aobayama) Aoba Science Aobayama campus Hall (7 June) Exit N1 Subway EW-line Aobayama Station (https://www.tohoku.ac.jp/map/en/?f=AY) 4 Excursion June 6 (Thu) – 12:15 Getting on a bus near the venue – 13:10 Arriving at Matsushima area – 13:10-14:50 Lunch time We have no reservation. There are many restaurants along the street nearby the coast. – 15:00-16:00 Getting on a boat ① – 16:00-17:45 Sightseeing Tickets of the Zuiganji-temple ② and Date Masamune Historical Meseum ③ will be provided. Red circles in the map are recommended. – 17:45 Getting on a bus – 18:45 Arriving at central Sendai near the banquet place ② ② ① ③ ① http://www.matsushima- kanko.com/uploads/Image/files/matsushimagaikokugomap2018.pdf 5 Banquet Date: Jun. -
Instrumental Methods for Professional and Amateur
Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A. -
UNA Planetarium Newsletter Vol. 4. No. 2
UNA Planetarium Image of the Month Newsletter Vol. 4. No. 2 Feb, 2012 I was asked by a student recently why NASA was being closed down. This came as a bit of a surprise but it is somewhat understandable. The retirement of the space shuttle fleet last year was the end of an era. The shuttle serviced the United States’ space program for more than twenty years and with no launcher yet ready to replace the shuttles it might appear as if NASA is done. This is in part due to poor long-term planning on the part of NASA. However, contrary to what This image was obtained by the Cassini spacecraft in orbit around Saturn. It shows some people think, the manned the small moon Dione with the limb of the planet in the background. Dione is spaceflight program at NASA is alive and about 1123km across and the spacecraft was about 57000km from the moon well. In fact NASA is currently taking when the image was taken. Dione, like many of Saturn’s moons is probably mainly applications for the next astronaut corps ice. The shadows of Saturn’s rings appear on the planet as the stripping you see to and will send spacefarers to the the left of Dione. The Image courtesy NASA. International Space Station to conduct research in orbit. They will ride on Russian rockets, but they will be American astronauts. The confusion over the fate of NASA also Astro Quote: “Across the exposes the fact that many of the Calendar for Feb/Mar 2012 important missions and projects NASA is sea of space, the stars involved in do not have the high public are other suns.” Feb 14 Planetarium Public Night profile 0f the Space Shuttles. -
The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery, -
Simple Regret Minimization for Contextual Bandits
Simple Regret Minimization for Contextual Bandits Aniket Anand Deshmukh* 1, Srinagesh Sharma* 1 James W. Cutler2 Mark Moldwin3 Clayton Scott1 1Department of EECS, University of Michigan, Ann Arbor, MI, USA 2Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA 3Climate and Space Engineering, University of Michigan, Ann Arbor, MI, USA Abstract 1 Introduction The multi-armed bandit (MAB) is a framework for There are two variants of the classical multi- sequential decision making where, at every time step, armed bandit (MAB) problem that have re- the learner selects (or \pulls") one of several possible ceived considerable attention from machine actions (or \arms"), and receives a reward based on learning researchers in recent years: contex- the selected action. The regret of the learner is the tual bandits and simple regret minimization. difference between the maximum possible reward and Contextual bandits are a sub-class of MABs the reward resulting from the chosen action. In the where, at every time step, the learner has classical MAB setting, the goal is to minimize the sum access to side information that is predictive of all regrets, or cumulative regret, which naturally of the best arm. Simple regret minimization leads to an exploration/exploitation trade-off problem assumes that the learner only incurs regret (Auer et al., 2002a). If the learner explores too little, after a pure exploration phase. In this work, it may never find an optimal arm which will increase we study simple regret minimization for con- its cumulative regret. If the learner explores too much, textual bandits. Motivated by applications it may select sub-optimal arms too often which will where the learner has separate training and au- also increase its cumulative regret. -
P6.31 Long-Term Total Solar Irradiance (Tsi) Variability Trends: 1984-2004
P6.31 LONG-TERM TOTAL SOLAR IRRADIANCE (TSI) VARIABILITY TRENDS: 1984-2004 Robert Benjamin Lee III∗ NASA Langley Research Center, Atmospheric Sciences, Hampton, Virginia Robert S. Wilson and Susan Thomas Science Application International Corporation (SAIC), Hampton, Virginia ABSTRACT additional long-term TSI variability component, 0.05 %, with a period longer than a decade. The incoming total solar irradiance (TSI), Analyses of the ERBS/ERBE data set do not typically referred to as the “solar constant,” is support the Wilson and Mordvinor analyses being studied to identify long-term TSI changes, approach because it used the Nimbus-7 data which may trigger global climate changes. The set which exhibited a significant ACR response TSI is normalized to the mean earth-sun shift of 0.7 Wm-2 (Lee et al,, 1995; Chapman et distance. Studies of spacecraft TSI data sets al., 1996). confirmed the existence of 0.1 %, long-term TSI variability component with a period of 10 years. In our current paper, analyses of the 1984- The component varied directly with solar 2004, ERBS/ERBE measurements, along with magnetic activity associated with recent 10-year the other spacecraft measurements, are sunspot cycles. The 0.1 % TSI variability presented as well as the shortcoming of the component is clearly present in the spacecraft ACRIM study. Long-term, incoming total solar data sets from the 1984-2004, Earth Radiation irradiance (TSI) measurement trends were Budget Experiment (ERBE) active cavity validated using proxy TSI values, derived from radiometer (ACR) solar monitor; 1978-1993, indices of solar magnetic activity. Typically, Nimbus-7 HF; 1980-1989, Solar Maximum three overlapping spacecraft data sets were Mission [SMM] ACRIM; 1991-2004, Upper used to validate long-term TSI variability trends. -
CURRICULUM VITAE 21St July 2013 DAVID JOHN SOUTHWOOD
CURRICULUM VITAE 21st July 2013 DAVID JOHN SOUTHWOOD Personal Information Personal details: Date/Place of Birth 30 June 1945/Torquay (UK) Marital Status Married Nationality: British Email: [email protected] (work) Languages: English (native), French (qualified to A level, reading writing and conversation, very good), German (Inst. Ling. General), Spanish (O level, reading/writing very good, speaking good) Private interests Reading, Walking, Railways, Film and Theatre -------------------------------------- Professional Employment History Currently: Senior Research Investigator: Imperial College, London, SW72AZ, UK. Past Administrative Positions Director of Science and Robotic Exploration, (July 15th 2008-30th April 2011) European Space Agency, 8-10 Rue Mario-Nikis, 75738, Paris, Cedex 15, France. Director of Science, European Space Agency, Paris, France (May 2001-July 2008) Head, Earth Observation Science Strategy, in Directorate of Applications, European Space Agency, Paris, France (March 1999 - March 2000) Head, Earth Observation Strategy, in Directorate of Science, European Space Agency, Paris, France (October 1997 - February 1999) Head of Physics Department (Blackett Laboratory), Imperial College, London. (September 1994 - September 1997). Head of Space and Atmospheric Physics Group (Space Physics 1984-1986), Physics Department, Imperial College London (September 1984 - July 1990, September 1995 – September 1997), -------------------------------------- Academic Positions Professor of Physics, Physics Department, Imperial College