Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1
Pacific Science (1995), vol. 49, no. 2: 143-155 © 1995 by University of Hawai'i Press. All rights reserved Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1 RICHARD EDWARD YOUNG 2 ABSTRACT: Pelagic cephalopods of the mesopelagic-boundary region in Hawai'i have proven difficult to sample but seem to occupy a variety ofhabitats within this zone. Abralia trigonura Berry inhabits the zone only as adults; A. astrosticta Berry may inhabit the inner boundary zone, and Pterygioteuthis giardi Fischer appears to be a facultative inhabitant. Three other mesopelagic species, Liocranchia reinhardti (Steenstrup), Chiroteuthis imperator Chun, and Iridoteuthis iris (Berry), are probable inhabitants; the latter two are suspected to be nonvertical migrants. The mesopelagic-boundary region also contains a variety of other pelagic cephalopods. Some are transients, common species of the mesopelagic zone in offshore waters such as Abraliopsis spp., neritic species such as Euprymna scolopes Berry, and oceanic epipelagic species such as Tremoctopus violaceus Chiaie and Argonauta argo Linnaeus. Others are appar ently permanent but either epipelagic (Onychoteuthis sp. C) or demersal (No totodarus hawaiiensis [Berry] and Haliphron atlanticus Steenstrup). Submersible observations show that Nototodarus hawaiiensis commonly "sits" on the bot tom and Haliphron atlanticus broods its young in the manner of some pelagic octopods. THE CONCEPT OF the mesopelagic-boundary over bottom depths of the same range. The region (m-b region) was first introduced by designation of an inner zone is based on Reid et al. (1991), although a general asso Reid'sfinding mesopelagic fishes resident there ciation of various mesopelagic animals with during both the day and night; mesopelagic land masses has been known for some time. -
Headed Whales (Peponocephala Electra) in Hawaiian Waters
Notes MARINE MAMMAL SCIENCE, 00(00): 00–00 (Month 2018) VC 2018 Society for Marine Mammalogy DOI: 10.1111/mms.12507 Stomach contents and diel diving behavior of melon-headed whales (Peponocephala electra) in Hawaiian waters 1 KRISTI L. WEST, Department of Human Nutrition, Food and Animal Science, College of Tropical Agriculture and Human Resources, Agricultural Sciences 216, 1955 East-West Road, University of Hawai‘i at Manoa, Honolulu, Hawai‘i 96822, U.S.A.; WILLIAM A. WALKER, Marine Mammal Laboratory, National Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, Washington 98115, U.S.A.; ROBIN W. BAIRD,DANIEL L. WEBSTER, and GREGORY S. SCHORR, Cascadia Research Collective, 218 1=2 W. 4th Avenue, Olympia, Washington 98501, U.S.A. Knowledge of the diet and diving behavior of a species is crucial for understand- ing its behavior and ecology, and also has relevance to assessing the impact of poten- tial changes in behavior or spatial use. Assessing diet for many species of cetaceans is difficult, given that most foraging occurs far below the surface and that stomach contents of stranded animals are rarely available. Very little information on food habits or the diving behavior of melon-headed whales (Peponocephala electra)isavail- able from any region of the world. Although there is a paucity of knowledge on melon-headed whales, more is known about them in Hawaiian waters than anywhere else in the world (Aschettino et al. 2012, Woodworth et al. 2012, Baird 2016). In Hawai‘i, two populations of melon-headed whales are recognized, a Hawaiian Islands population estimated to be close to 5,000 individuals that travels offshore and among the islands, and a smaller, inshore population estimated to be about 450 individuals that is found off Hawai‘i Island and known as the Kohala resident population (Aschettino 2010, Aschettino et al. -
Supporting Information
Supporting Information Choy et al. 10.1073/pnas.0900711106 Table S1. Total mercury values (mean ؎ SD) of prey taxa from Hawaiian waters measured in this study Taxonomic group n Size, mm Depth category Ref(s). Day-time depth range, m THg, g/kg Mixed Zooplankton 5 1–2 epi 1 0–200 2.26 Ϯ 3.23 Invertebrates Phylum Ctenophora Ctenophores (unidentified) 3 20–30 TL other 2 0–600 0.00 Ϯ 0.00 Phylum Chordata, Subphylum Tunicata Class Thaliacea Pyrosomes (unidentified) 2 (8) 14–36 TL upmeso.dvm 2, 3 400–600ϩ 3.49 Ϯ 4.94 Salps (unidentified) 3 (7) 200–400 TL upmeso.dvm 2, 4 400–600ϩ 0.00 Ϯ 0.00 Phylum Arthropoda Subphylum Crustacea Order Amphipoda Phronima sp. 2 (6) 17–23 TL lomeso.dvm 5, 6 400–975 0.00 Ϯ 0.00 Order Decapoda Crab Megalopae (unidentified) 3 (14) 3–14 CL epi 7, 8 0–200 0.94 Ϯ 1.63 Janicella spinacauda 7 (10) 7–16 CL upmeso.dvm 9 500–600 30.39 Ϯ 23.82 Lobster Phyllosoma (unidentified) 5 42–67 CL upmeso.dvm 10 80–400 18.54 Ϯ 13.61 Oplophorus gracilirostris 5 9–20 CL upmeso.dvm 9, 11 500–650 90.23 Ϯ 103.20 Sergestes sp. 5 8–25 CL upmeso.dvm 12, 13 200–600 45.61 Ϯ 51.29 Sergia sp. 5 6–10 CL upmeso.dvm 12, 13 300–600 0.45 Ϯ 1.01 Systellapsis sp. 5 5–44 CL lomeso.dvm 9, 12 600–1100 22.63 Ϯ 38.18 Order Euphausiacea Euphausiids (unidentified) 2 (7) 5–7 CL upmeso.dvm 14, 15 400–600 7.72 Ϯ 10.92 Order Isopoda Anuropus sp. -
Giant Protistan Parasites on the Gills of Cephalopods (Mollusca)
DISEASES OF AQUATIC ORGANISMS Vol. 3: 119-125. 1987 Published December 14 Dis. aquat. Org. Giant protistan parasites on the gills of cephalopods (Mollusca) Norman ~c~ean',F. G. ~ochberg~,George L. shinn3 ' Biology Department, San Diego State University, San Diego, California 92182-0057, USA Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta Del Sol Road, Santa Barbara, California 93105. USA Division of Science, Northeast Missouri State University, Kirksville. Missouri 63501, USA ABSTRACT: Large Protista of unknown taxonomic affinities are described from 3 species of coleoid squids, and are reported from many other species of cephalopods. The white to yellow-orange, ovoid cyst-like parasites are partially embedded within small pockets on the surface of the gills, often in large numbers. Except for a holdfast region on one side of the large end, the surface of the parasite is elaborated into low triangular plates separated by grooves. The parasites are uninucleate; their cytoplasm bears lipid droplets and presumed paraglycogen granules. Trichocysts, present in a layer beneath the cytoplasmic surface, were found by transmission electron microscopy to be of the dino- flagellate type. Further studies are needed to clarify the taxonomic position of these protists. INTRODUCTION epoxy resin (see below). One specimen each of the coleoid squids Abralia trigonura and Histioteuthis dof- Cephalopods harbor a diversity of metazoan and leini were trawled near Oahu, Hawaii, in March, 1980. protozoan parasites (Hochberg 1983). In this study we Gill parasites from the former were fixed in formalin; used light and electron microscopy to characterize a those from the latter were fixed in osmium tetroxide. -
Factors Affecting Counterillumination As a Cryptic Strategy
Reference: Biol. Bull. 207: 1–16. (August 2004) © 2004 Marine Biological Laboratory Propagation and Perception of Bioluminescence: Factors Affecting Counterillumination as a Cryptic Strategy SO¨ NKE JOHNSEN1,*, EDITH A. WIDDER2, AND CURTIS D. MOBLEY3 1Biology Department, Duke University, Durham, North Carolina 27708; 2Marine Science Division, Harbor Branch Oceanographic Institution, Ft. Pierce, Florida 34946; and 3Sequoia Scientific Inc., Bellevue, Washington 98005 Abstract. Many deep-sea species, particularly crusta- was partially offset by the higher contrast attenuation at ceans, cephalopods, and fish, use photophores to illuminate shallow depths, which reduced the sighting distance of their ventral surfaces and thus disguise their silhouettes mismatches. This research has implications for the study of from predators viewing them from below. This strategy has spatial resolution, contrast sensitivity, and color discrimina- several potential limitations, two of which are examined tion in deep-sea visual systems. here. First, a predator with acute vision may be able to detect the individual photophores on the ventral surface. Introduction Second, a predator may be able to detect any mismatch between the spectrum of the bioluminescence and that of the Counterillumination is a common form of crypsis in the background light. The first limitation was examined by open ocean (Latz, 1995; Harper and Case, 1999; Widder, modeling the perceived images of the counterillumination 1999). Its prevalence is due to the fact that, because the of the squid Abralia veranyi and the myctophid fish Cera- downwelling light is orders of magnitude brighter than the toscopelus maderensis as a function of the distance and upwelling light, even an animal with white ventral colora- visual acuity of the viewer. -
<I>Abralia</I> (Cephalopoda)
BULLETINOF MARINESCIENCE,49(1-2): 113-136, 1991 SQUIDS OF THE GENUS ABRALIA (CEPHALOPODA) FROM THE CENTRAL EQUATORIAL PACIFIC WITH A DESCRIPTION OF ABRALIA HEMINUCHALIS, NEW SPECIES Lourdes Alvina Burgess ABSTRACT Abralia trigonura Berry, 1913, from the Hawaiian Islands is redescribed and a neotype designated. A closely related new species Abralia heminuchalis from the central equatorial Pacific is described. Material from a new area of distribution for Abralia similis Okutani and Tsuchiya, 1987, is discussed. Material for the rare Abralia astrosticta Berry, 1909, is reported, accompanied by a description of a specimen from the Marshall Islands by the late Gilbert L. Voss. All the species examined are illustrated and compared, and observations on immature animals noted. Between 1967 and 1970, while preparing a reference cephalopod collection for the Bureau of Commercial Fisheries Biological Laboratory (now the Honolulu Laboratory, Southwest Center of the National Marine Fisheries Service, National Oceanic and Atmospheric Administration, NOAA), over 5,000 oegopsid squids were identified as belonging to the genus Abralia, family Enoploteuthidae. The four species found were A. trigonura Berry, 1913, A. astrosticta Berry, 1909, and two un-named species then. One of the them has been described as A. simi/is Okutani and Tsuchiya, 1987, the other presented here as Abralia heminuchalis, n. sp. Of the more specimens identified, approximately 1,145 were A. trigonura, 2,367 A, heminuchalis, 1,484 A. similis and 96 A. astrosticta. The samples were taken mainly with a modified Cobb trawl, a 10-foot Isaacs- Kidd trawl, or a Nanaimo trawl during the cruises of several research vessels operated by the laboratory. -
<I>Abralia</I> (Cephalopoda: Enoploteuthidae)
BULLETIN OF MARINE SCIENCE, 66(2): 417–443, 2000 NEW SPECIES PAPER SQUIDS OF THE GENUS ABRALIA (CEPHALOPODA: ENOPLOTEUTHIDAE) FROM THE WESTERN TROPICAL PACIFIC WITH A DESCRIPTION OF ABRALIA OMIAE, A NEW SPECIES Kiyotaka Hidaka and Tsunemi Kubodera ABSTRACT Squids of the genus Abralia collected by a midwater trawl in the western tropical Pa- cific were examined. Five species were identified, including Abralia omiae new species. This species is characterized by having five monotypic subocular photophores, two lon- gitudinal broad bands of minute photophores on the ventral mantle, and a hectocotylized right ventral arm with two crests. The other four species identified were A. similis, A. trigonura, A. siedleckyi and A. heminuchalis. Materials from new localities for these spe- cies are discussed and comparisons to related species in several additional characters are made. Squids of the genus Abralia Gray 1849, family Enoploteuthidae, are important mem- bers in the micronektonic communities in the tropical and subtropical world oceans (e.g., Reid et al., 1991). The genus is distinguished in the family Enoploteuthidae by manus of club with one row of hooks and two rows of suckers, absence of enlarged photophores with black coverage on tips of arm IV, buccal crown with typical chromatophores on aboral surface without any other pigmentation, and five to 12 photophores on eyeball (Young et al., 1998). Several systematic studies on pelagic cephalopods in the Pacific Ocean (Quoy and Gaimard, 1832; Berry, 1909, 1913, 1914; Sasaki, 1929; Grimpe, 1931; Nesis and Nikitina, 1987; Okutani and Tsuchiya, 1987; Burgess, 1992) have revealed that nine nominal Abralia species are known from the Pacific. -
Cephalopoda: Teuthoidea: Enoploteuthidae
EARLY LIFE HISTORY STAGES OF ENOPLOTEUTHIN SQUIDS (CEPHALOPODA : TEUTHOIDEA : ENOPLOTEUTHIDAE) FROM HAWAIIAN WATERS R Young, R Harman To cite this version: R Young, R Harman. EARLY LIFE HISTORY STAGES OF ENOPLOTEUTHIN SQUIDS (CEPHALOPODA : TEUTHOIDEA : ENOPLOTEUTHIDAE) FROM HAWAIIAN WATERS. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 1985, pp.181-201. hal-03022097 HAL Id: hal-03022097 https://hal.sorbonne-universite.fr/hal-03022097 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 1985, 35 (3/4) : 181-201 EARLY LIFE HISTORY STAGES OF ENOPLOTEUTHIN SQUIDS (CEPHALOPODA : TEUTHOIDEA : ENOPLOTEUTHIDAE) FROM HAWAIIAN WATERS R.E. YOUNG and R.F. HARMAN Department of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, Hawaii 96822 USA HAWAII ABSTRACT. — Species of the enoploteuthid subfamily Enoploteuthinae spawn LARVAE individual eggs in the plankton. Eggs captured off Hawaii were reared in the CEPHALOPODA laboratory for several days after hatching. The hatchings were matched to size-series ENOPLOTEUTHIDAE of larvae taken from an extensive trawling program designed to catch squid larvae. SQUIDS The early life history stages of thèse species are described and systematic characters VERTICAL-DISTRIBUTION evaluated. -
FAU Institutional Repository
FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1992 Springer. This manuscript is an author version with the final publication available at http://www.springerlink.com and may be cited as: Herring, P. J., Widder, E. A., & Haddock, S. H. D. (1992). Correlation of bioluminescence emissions with ventral photophores in the mesopelagic squid Abralia veranyi (Cephalopoda: Enoploteuthidae). Marine Biology, 112(2), 293‐298. doi:10.1007/BF00702474 I I Marine Biology 112, 293- 298 (1992) Marine lntemattonat dournal llfSB~~7/ In on life Oceans B-Iology J--_--- () and Coastal Waters JJ-)P\J~ - © Springer-Verlag 1992 J Correlation of bioluminescence emissions with ventral photophores in the mesopelagic squid Ahralia veranyi (Cephalopoda: Enoploteuthidae) P. J. Herring I, E. A. Widder 2 and S. H. D. Haddock 3 1 Institute of Oceanographic Sciences, Deacon Laboratory, Brook Road, Wormley, Godalming GU8 5UB, Surrey, England 2 Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, Florida 34946, USA 3 Marine Science Institute, University of California, Santa Barbara, California 93106, USA Date of final manuscript acceptance: September 26, 1991. Communicated by 1. Mauchline, Oban Abstract. Specimens of the squid Abralia veranyi were spinosus and Systellaspis debilis is spectrally different collected off the Bahamas in 1989. The bioluminescence from that emitted by the photophores ofthe same species of the ventral photophores was recorded on videotape at (Herring 1983, Latz et al. 1988), and in many animals the 11 to 12°C and 24 °C, in conjunction with measurements emission spectra are determined, in part, by the effects of of the spectral emission at the same temperatures. -
The Early Life Histories of Three Families of Cephalopods (Order Teuthoidea) and an Examination of the Concept of a Paralarva
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1995 The Early Life Histories of Three Families of Cephalopods (Order Teuthoidea) and an Examination of the Concept of a Paralarva Elizabeth Keane Shea College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Zoology Commons Recommended Citation Shea, Elizabeth Keane, "The Early Life Histories of Three Families of Cephalopods (Order Teuthoidea) and an Examination of the Concept of a Paralarva" (1995). Dissertations, Theses, and Masters Projects. Paper 1539617690. https://dx.doi.org/doi:10.25773/v5-1wxh-6552 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. L-ilay R r e h w e s n v e s i s . Shea. C-Sl THE EARLY LIFE HISTORIES OF THREE FAMILIES OF CEPHALOPODS (ORDER TEUTHOIDEA) AND AN EXAMINATION OF THE CONCEPT OF A PARALARVA A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia VlROlNi.o f til In Partial Fulfillment OfinstituITE marine Of the Requirements for the Degree of sClENci Master of Arts by Elizabeth K. Shea 1995 This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts Elizabeth K. Shea Approved, July 1995 Dr. -
Age and Growth in Paralarvae of the Mesopelagic Squid Abralia Trigonura Based on Daily Growth Increments in Statoliths
MARINE ECOLOGY PROGRESS SERIES Vol. 82: 31-40,1992 Published May 14 Mar. Ecol. Prog. Ser. l Age and growth in paralarvae of the mesopelagic squid Abralia trigonura based on daily growth increments in statoliths Keith A. Bigelow* Department of Oceanography. School of Ocean and Earth Science and Technology (SOEST), University of Hawaii at Manoa. Honolulu, Hawaii 96822, USA ABSTRACT: Growth increments in statoliths were used to estimate the age of 55 Abralia trigonura (Berry, 1913),a small tropical mesopelagic enoploteuthid squid collected from Hawaiian waters in 1988 and 1989. Growth increments were examined with light and scanning electron microscopy. Daily periodicity of Increment formation and the statolith size at hatching were confirmed by rearing hatchlings in the laboratory. Mantle length (ML) at age data suggested that paralarvae grew exponentially at a rate of 5.9 741 ML d-' for ca 40 d post-hatching, while post-paralarvae exhibited slower growth. No significant difference in growth was noted between paralarvae collected from spatially or temporally separated samples, though estimated length differed at hatching. Estimated paralarval mortality was 7.0 d~'.Within statolith microstructures, a transition in increment widths occurred at an average of 41.5 increments, which corresponded to 10.9 mm ML. The transition probably represents the end of the paralarval period, which is marked by a shift from an epipelagic to a mesopelagic habitat INTRODUCTION differences in survival, which will relate to recruitment variability in adult populations (Houde 1987). Similar Oceanic squid (Teuthoidea: Oegopsida) generally relationships between larval survival and recruitment have planktonic young (paralarvae) that are typically presumably exist for squids. -
Cephalopod Paralarvae Assemblages in Hawaiian Islands Waters
MARINE ECOLOGY PROGRESS SERIES Published August 20 Mar Ecol Prog Ser Cephalopod paralarvae assemblages in Hawaiian Islands waters John R. Bowerl~*,Michael P. seki2,Richard E. young3, Keith A. Bigelow4, Jed Hirota3. Pierre ~lament~ 'Faculty of Fisheries, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan 2Honolulu Laboratory. Southwest Fisheries Science Center, National Marine Fisheries Service. NOAA, 2570 Dole Street, Honolulu. Hawaii 96822-2396. USA 3Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, Hawaii 96822, USA 40ceanicFisheries Programme, Secretariat of the Pacific Comrnunity, BP D5, 98848 Noumea Cedex, New Caledonia ABSTRACT: The distribution and abundance of cephalopod paralarvae near the Hawaiian Islands are described. Paralarvae were collected dunilg 5 plankton surveys in 1991 to 1993. The 404 tows at 59 sta- tions collected 10375 paralarvae from 21 families and 57 species. The most numerous fanlilies were the Ommastrephidae (23% of total catch). Pyroteuthididae (I?%), Enoploteuthididae (16%), Onycho- teuthididae (14 %), and Chtenopterygidae (8"/,,).The most numerous species were Ommastrephes bar- tramii (18%), Pterygioteuthis rnicrolampas (15",,0),Chtenopter~x sicula (8%), and Onychoteuthis com- pacta (6%).Analysis of paralarval distribution patterns identified 2 paralarval assemblages: 'island associated' and 'oceanic' The 15 'island-associated' species showed increased paralarval abundance near the islands, suggesting preferential spawning in this area. Epipelagic nearshore spawners included Onychoteuthis sp. C, Sthenoteuthis oualaniensis, and Nototodarus hawaiiensis. Mesopelagic nearshore spawners included 3 reported members of the Hawaiian Mesopelagic Boundary Community (Abralia tngonura, Liocranchia reinhardti, and Chiroteuthis picteti) and 3 probable new members (Liocranchia valdiviae, Histioteu this hoylei and Enoploteuthis jonesi). KEY WORDS: Paralarvae - Cephalopod .