9781862396203 Backmatter.Pdf by Guest on 25 September 2021 576 INDEX
Total Page:16
File Type:pdf, Size:1020Kb
Index Page numbers in italic denote figures. Page numbers in bold denote tables. Abathomphalus 242, 244 Andes, uplift 393, 428–429 Abies 485, 487, 508, 510 annelids, Cambrian, Chengjiang biota 87 Acacia 484, 485 anomalocaridids, Cambrian 86, 90, 92, 94 Acarinina 326, 331, 335 anoxia, ocean 163 Acer 489, 505, 508, 510 Cretaceous 217 acidification, ocean, PETM 331–332 Ordovician 105 acritarchs Permian–Triassic boundary 191, 192, 195–196, 198 Cambrian 94 Superanoxic Event 195, 198 Early Permian, Oman 174 Early Palaeozoic Icehouse 123–124, 126, 128, aeolianite, as palaeoclimate indicator 19 131–135, 136, 137 Aeronian Antarctic Bottom Water 372, 566–567, 568, 569 climate 8,24 Antarctic Circumpolar Current 30, 105, 320, early, glaciation 126, 130, 131, 132 371–372 Aesculus 485 inception 393–395, 397, 401, 403, 415 Africa, Early Permian, palaeontology 174 Antarctic Intermediate Water 430, 432 air temperature, surface, Neoproterozoic 70, 71, 72 Antarctic Peninsula Ice-sheet 519–521 Al Khlata Formation 174–175, 176 Antarctica Alamaminella weddellensis 356 Early Permian, palaeontology 178–180 Alangium 508 glaciation 28, 105–106, 352–377 albedo hysteresis 375 Neoproterozoic 66, 69, 70, 71, 73, 77 modelling 453–454 Northern Hemisphere glaciation 570 see also Antarctic Peninsula Ice-sheet; East Albian Antarctic Ice-Sheet; West Antarctic climate 9, 26, 27 Ice-Sheet palaeogeography 273 Apectodinium 333–335 Alchornea 485, 508 Aptian algae, haptophyte, alkenone production 14, 540, 541, climate 9,26 545–547 palaeogeography 272 Alisporites indarraensis 177 Arabia, Early Permian, palaeontology 174–175 alkenes, isoprenoid 13,15 aragonite sea 30, 31, 36, 37, 38 alkenones 540–541 Araucaria 219 application 543–544, 549–550, 552–553 Archaeoglobigerina 240 C37 Total index 542, 547–548, 552, 555 Arctitreta 178 carbon isotope composition Areosphaeridium diktyoplokum, extinction 355 Eocene–Oligocene transition 366 Argentina, Early Permian, palaeontology 173, 182 Oligocene–Miocene boundary 399–400, 402 argillisols, as palaeoclimate indicator 19 Plio-Pleistocene transition 542–555 Artemisia 485, 503, 510 palaeothermometry, Mid-Pliocene 473 Anatolian steppe 512 Plio-Pleistocene transition 539–555 arthropods, Cambrian, Chengjiang biota 81, 82, 83, 84, preservation 547–548 86, 87, 89, 90, 91–92, 94 production 14, 540, 541, 545–547 Ashgill 102 , 103, 105, 125 quantification 542–543 climate change 8, 24, 107, 109–116 K U37 unsaturation index 11, 541–542 early, regression 130, 131–132, 131, 132, 141–142 Plio-Pleistocene transition 543–555 Asselian–Sakmarian, deglaciation 171–184 unsaturation ratio 11, 14, 16, 541 Asterocyclina 356 water column studies 544–545 Atlantic Ocean Allonia 86 circulation 106–107 Alnus 483, 487, 491, 505, 508 water exchange with Pacific 428–430 Alpheus 437 water properties 430, 432–433 Altiplano–Puna Plateau 392, 393 see also Intertropical Convergence Zone; North Amanoa 510 Atlantic Deep Water Ambikella 178 atmosphere Ambikella notoplicata 175 chemistry, climate modelling 164 amino acid racemization epimerization 11,14 circulation, Ordovician 115, 116 amphibians climate modelling 158–159, 445–450 Eocene–Oligocene boundary 358 Aulosteges 178 as proxy 256, 260, 262 Australia, Early Permian, palaeontology 175–177, 182 Anatolia, Artemisia steppe 512 Avalonia, Ordovician 109, 110 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/4307553/9781862396203_backmatter.pdf by guest on 25 September 2021 576 INDEX Avicennia 483, 484, 485, 485, 487, 505, 506, 508, calcium carbonate see calcite 509, 510 calcrete, as proxy 18, 19, 268 caliche, as proxy 268 Baltica, Ordovician 109, 115 California, climate and vegetation 489–491, 492 Bandoproductus umariensis 178 Calligonum 485, 485, 489 Banksia 487 Callovian, climate 9, 26, 37 barite, biogenic, as proxy 12,15 Cambrian, Early basalt, flood, and climate change 33 Burgess Shale biota 82, 91 Siberian Traps 32, 38, 192, 193, 195 Chengjiang biota 81–84, 83, 84 Basilosaurus, extinction 358 epibenthic 86, 87, 89–91, 94 bauxite, as proxy 18, 19, 256 infauna 85, 86, 87, 88,94 Beela digitata 413, 417, 420 meiofauna 90–91 beryllium, as proxy 12,15 pelagic 82–85, 86,94 Betula 505, 508 complex marine ecosystems 81–96, 93 Bighorn Basin marine food chain reconstruction 91–92 carbon isotope excursion 324, 326, 327, 328 Cambrian Evolutionary Fauna, extinction 113 terrestrial flora 338 Cambrian Explosion 61, 63, 81, 82, 94, 124–125 terrestrial mammals 336 triggers 95–96 biodiversity Cambrian Substrate Revolution 85 Early Cambrian 81–96 Cambrian–Ordovician warm mode 8,23 Early Permian 172–180 Cambrosipunculas 86 Ordovician 113, 114, 115 Campanian 27 biogeochemistry, and climate foraminifera 237, 238, 240, 241, 242, 244 modelling 163–164 palaeogeography 278 biomes, as proxy 262–264, 264, 265, 294 Canadaspis laevigata 89 biomineralization, Cambrian 95–96, 124 Cancrinella 180 biostratigraphy, Early Permian, Gondwana 170, 171 Cancrinella cf. farleyensis 173 bioturbation Candeina nitida 413, 417 black shale 132 Caradoc Cambrian 87 climate change 107, 109, 111, 112, 113–116 Boda Warm Event 107, 108, 109–111, 114–115 Early Palaeozoic Icehouse 127, 141 bolide impact, Eocene–Oligocene transition 369–370 carbon, isotope ratio Bombax 485, 505, 508 Early Permian brachiopods 180, 181 boron, isotope ratio 12,16 Eocene–Oligocene transition 363–365 Eocene–Oligocene transition 366 Ordovician 107, 108, 109 brachiopods Permian–Triassic boundary 195 Cambrian, Chengjiang biota 85, 86 see also Guttenburg Positive Carbon Isotope Excursion; Early Permian 173, 175–176, 178, 182 Hirnantian Carbon Isotope Excursion isotope composition 180, 181 carbon cycle Ordovician 111 Early Palaeozoic 123–125 Permian–Triassic boundary 194 Icehouse 137–138 bradoriids, Cambrian 89, 89 Eocene–Oligocene transition 363–365 Brigantedinium 356 modelling 22, 29 Burgess Shale, Cambrian biota 82, 91 Precambrian–Cambrian Transition 96 Phyllopod Bed 91 proxies 12,15 Buxus bahamensis 485, 508 secular variation 29–30 Buxus sempervirens 485 carbon dioxide atmospheric 22 C37 Total index 542, 547–548, 552–553, 554 Cenozic 106 calcite Early Palaeozoic 123–125 deposition, Eocene–Oligocene transition 366, 367 effect of plants 34 foraminiferal Eocene–Oligocene transition 365–366, 372–375 Mg/Ca palaeothermometry 313–320 and glaciation 29–30, 105, 107 sample preparation 315–316 and global warming, Permian–Triassic boundary preservation 316–317 192, 193, 194–195 calcite compensation depth and magmatism 30, 32–33, 34 Eocene–Oligocene transition 360, 361, 362, 365, Mid-Pliocene 445 366–368, 374 Neoproterozoic 67–68, 69, 70, 71, 73, 76 PETM 332 and Northern Hemisphere glaciation 570–572 calcite sea 30, 31, 36, 37, 38 Oligocene–Miocene boundary 398–400, 402 calcium Ordovician 105, 107, 115, 125 palaeothermometry 313–320 proxies 6, 13, 15, 16 seawater palaeoconcentration 6, 314–315 Silurian 125 see also magnesium/calcium ratio and tectonism 30, 31 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/4307553/9781862396203_backmatter.pdf by guest on 25 September 2021 INDEX 577 drawdown 23, 30, 35, 37, 399–400, 401, 402, 414 Chrysalidina 244 Early Palaeozoic 124, 138 Cibicidoides 352 and methane hydrate dissociation 36–37 Cibicidoides renzi 414 Carbon Isotope Excursions Cibicidoides wuellerstorfi 414 see Guttenburg Positive Carbon Isotope Excursion; Cindarella 86 Hirnantian Carbon Isotope Excursion; Cinnamomum 487 Monterey Event circulation carbonate atmosphere, Ordovician 115, 116 alkalinity 12,15–16 ocean burial, Early Palaeozoic 124, 138 Eocene–Oligocene transition 371, 372, 375 Caribbean 430, 432 magnesium/calcium ratio 318–319 deposition, Eocene–Oligocene transition 366, 367 Mid-Miocene 414–415 dissolution models 158, 162, 163, 165 Eocene–Oligocene transition 367 Permian 162, 163, 165 PETM 332 modern 427, 428 fixing 34–35 Neogene 427 oxygen isotope ratio 11,14 Ordovician 115 Permian–Triassic boundary 193–194 Pliocene 445, 566–567, 569 as proxy 16–17, 256, 366–368 proxies 12,14–15 see also calcite compensation depth; lysocline thermohaline Carboniferous Ordovician 103–104, 109–111, 112, 114–115 Early, climate 8 Panamanian Seaway closure 435 -Late Permian, cool mode 9, 24–25, 38 Cistus 489 Mid, glaciation 169 Clarkina carinata 192 palaeoclimate modelling 160–161 Classopolis 268 Caribbean clay minerals coral reefs 403, 436, 437 as palaeoclimate indicator 13,19 current system 428–430, 432 Eocene–Oligocene transition 368–369 extinctions 403, 415 Cleiothyridina 178 salinity 432–433 CLIMAP project 7, 21 sedimentology 430, 431, 432 Climatic Amplitude Method 482–483 Carpinus 485, 489, 508, 510 Cloudina 61, 96 Carya 485, 489, 508, 510 cnidarians, Cambrian 86 Cassia 487 coal Cassidulina teretis 415 Carboniferous, palaeoclimate modelling 160–161 Castanopsis 508 coal gap 25 Cathaya 487, 508, 510 Early Permian Cedrus 485, 508, 510 Weller Coal Measures 178 Celtis 485, 508 Witbank Basin 174 Cenomanian 27 PETM 340 foraminifera 236, 237, 243, 244 as proxy 13, 18, 19, 256, 264 palaeogeography 236, 274 Columbia River basalts 39 Cenozoic Conchoecia daphnoides 84 deep-water temperatures 317–319 Coniacian 27 glaciation 105–107, 317–318 palaeogeography 276 Mg/Ca palaeothermometry 313–320 conodonts surface-water temperatures 319–320 Ordovician 114 Central American Seaway see Panamanian Seaway Permian–Triassic boundary 194, 196–197 Central Atlantic Magmatic Province 38 Contusotruncana 242 Ceratonia 485, 489, 505 Contusotruncana contusa 242 Chaetoceros 356 cooling, global, Permian–Triassic boundary 192 chaetognaths, Cambrian 84–85, 84, 86,94 coprolites, Chengjiang biota 92 champsosaurs,