Sensory Neuron Progenitors Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Sensory Neuron Progenitors Brochure Human iPSC-derived Sensory Neuron Progenitors Phase Contrast Sodium Ion Channel Expression Transient Receptor Potential Ion Channel Expression Drug Treatment ax0055 hiPSC-derived Sensory Neuron Progenitors (Male) ax0057 hiPSC-derived Sensory Neuron Progenitor (Kit) Protocol Human iPSC-derived Sensory Neuron Progenitors We’ve used our expertise in neural differentiation to bring The cells were plated on SureBond-XF in Neural Plating-XF Medium. The cells were then treated with mitomycin C two days you dorsal root ganglion (DRG) neurons derived from induced after thawing and cultured in Sensory Neuron Maintenance Medium containing growth factors (GDNF, NGF, BDNF and NT-3) pluripotent stem cells (iPSCs). Axol Human iPSC-Sensory for two weeks. (iPSC-sensory neurons should be cultured for a minimum of 6 weeks prior to performing endpoint assays.) Neuron Progenitors are derived from integration-free iPSCs of a healthy male donor and have been differentiated to neurons using small molecule inhibitors. We also offer a fully Sodium Ion Channel Expression optimized cell culture system including tailored Sensory Neuron Maintenance Medium and coating reagents to Sodium channel RNA expression analysis by cDNA PCR promote the viability and maturation of sensory neurons for endpoint assays on glass or plastic. Axol’s iPSC-Derived Sensory Neuron Progenitors show RNA expression of all three voltage-gated sodium ion channels, Nav1.7, Nav1.8 and Nav1.9. Our iPSC-derived sensory neurons express several voltage-gated sodium ion channels and transient receptor potential (TRP) ion channels that play a key role in nociception. These include sodium ion channels Nav1.7 and the DRG-specific, TTX-resistant channels, Nav1.8 and Nav1.9 as well as the temperature-sensitive, TRPV1 and TRPM8, and TRPA1, a sensor of pungency, bitterness and cold. Axol’s iPSC-Derived Sensory Neuron Progenitors are available in large batch sizes for reliable and consistent results in high-throughput screening assays. The cells are also suitable for investigating disorders of the peripheral nervous system and chronic pain as well as drug targets for pain relief. Phase Contrast Phase contrast images show the maturation of Axol Human iPSC-Derived Sensory Neuron Progenitors over two weeks after thawing and treatment with mitomycin C. cDNA from iPSC-Derived Sensory Neuron Progenitors cultured for 8 weeks was compared to cDNA from human tissue from the dorsal root ganglion (DRG). PCR analysis (40 cycles; 55oC ) confirmed the mRNA expression of SCN9A (82 bp, hNav1.7), SCN10A (149 bp, hNav1.8) and SCN11A (464 bp, hNav1.9) in Axol iPSC-derived sensory neurons. SCN5a (237 bp, hNav1.5) was included as a negative control. Data provided by Dr Edward Emery (University College London). 01 02 Human iPSC-derived Sensory Neuron Progenitors Sodium channel-mediated response to potassium chloride Nav1.7 immunocytochemistry Axol iPSC-Derived Sensory Neuron Progenitors have been shown to elicit a calcium response to the treatment of KCl at the Axol Human iPSC-Derived Sensory Neuron Progenitors express the nociceptive voltage-gated sodium ion channel Nav1.7 soma signifying the presence of sodium channels. after 63 days culture in Sensory Neuron Maintenance Medium on a multi-electrode array (MEA) (Alpha MED Scientific). Nav1.7 (red), β-tubulin III (green), Hoechst (blue). Data provided by Prof Ikuro Suzuki (Tohoku Institute of Technology). Somal response to 15 mM potassium chloride in iPSC- derived sensory neurons Each trace represents the change in Fluo-4 fluorescence intensity from one iPSC- Average peak response to potassium chloride Each bar derived sensory neuron to the bath application of 15 mM illustrates peak fluorescence at baseline and during a 60 Nav1.7 and Nav1.8 immunocytochemistry KCl at the soma. Data collected from n=4 coverslips 4 second bath application of 15 mM KCl at the soma. Data Mature iPSC-derived sensory neurons express the sodium ion channels, Nav1.7 and Nav1.8, and the maturation marker, weeks post plating. collected from n=4 coverslips 4 weeks post plating. doublecortin (DCX) after 6 weeks in culture. Data provided by Dr Ramin Raouf and Natasha Rangwani (King’s College London). TTX-resistant Nav1.8 and Nav1.9 Nociceptive sensory neurons are unique in that they contain voltage-gated inward current sodium channels (Nav 1.8 and Nav 1.9) that are resistant to tetrodotoxin (TTX). The presence of these TTX-resistant ion channels was confirmed in Axol iPSC-derived sensory neurons. Axol Human iPSC-Derived Sensory Neuron Progenitors show positive staining for the nociceptive voltage-gated sodium ion channels A) Nav1.7 (green), Nav1.8 (red), DAPI (blue) after 38 days in culture and B) Nav1.8 (red) and doublecortin (green) Electrophysiological characterization of Axol Human iPSC-Derived Sensory Neuron Progenitors using patch clamp after after 42 days in culture. 56 days in culture A) Phase contrast image of iPSC-derived sensory neurons at 8 weeks; B) Example of a sodium-current elicited by a voltage step from -100 mV to -25 mV in the presence of tetrodotoxin (0.5 mM); C) Current-voltage plot of averaged Na-currents recorded from iPSC-derived sensory neurons in the presence of TTX (n=9). Data provided by Dr Edward Emery (University College London). 03 04 Human iPSC-derived Sensory Neuron Progenitors Transient receptor potential ion channel expression TRPA1 immunocytochemistry Axol Human iPSC-Derived Sensory Neuron Progenitors express TRPA1, the ion channel involved in sensing cold, pungency and bitterness. TRPV1 immunocytochemistry Axol Human iPSC-Derived Sensory Neuron Progenitors express TRPV1, the ion channel involved in sensing heat. Axol Human iPSC-Derived Sensory Neuron Progenitors express the TRPV1 ion channel after 63 days culture in Sensory Neuron Maintenance Medium on a multi-electrode array (MEA) (Alpha MED Scientific). TRPV1 (yellow), β-tubulin III (green), Hoechst Axol Human iPSC-Derived Sensory Neuron Progenitors express the TRPA1 ion channel after 63 days culture in Sensory (blue). Data provided by Prof Ikuro Suzuki (Tohoku Institute of Technology). Neuron Maintenance Medium on a multi-electrode array (MEA) (Alpha MED Scientific). TRPA1 (purple), β-tubulin (green), Hoechst (blue). Data provided by Prof Ikuro Suzuki (Tohoku Institute of Technology). TRPA1 immunocytochemistry Axol iPSC-derived sensory neurons show a short burst of firing after the application of allyl isiothiocyanate (AIT), which indicates the presence of TRPA1 channels. Axol human iPSC-derived sensory neurons show a short burst of firing after the application of 100 μM allyl isothiocyanate. The cells were cultured at 5.0 × 105 cells/cm² on 64-channel MED-P515A MEA chips (Alpha MED Scientific) coated with SureBond+ReadySet for 7 weeks to obtain mature sensory neurons. This rastor plot shows the firing frequency of sensory neurons before and after the application of 100 μM allyl isothiocyanate (AIT). A short burst of firing after the application of AIT is observed, as expected. Data provided by Prof Ikuro Suzuki (Tohoku Institute of Technology). 05 06 Human iPSC-derived Sensory Neuron Progenitors TRPV1-mediated response to capsaicin Axol iPSC-derived sensory neurons have been shown to increase neuronal firing after the application of capsaicin, which indicates the presence of TRPV1 channels. Axol iPSC-Derived Sensory Neuron Progenitors have been shown to elicit a calcium response to the treatment of capsaicin at both the soma and the axon. This indicates that the iPSC-Derived Sensory Neurons express TRPV1 and can sense heat. Somal response to 500 nM capsaicin in iPSC-derived sensory neurons Each trace represents the response from one iPSC- derived sensory neuron to 500 nM capsaicin (CAP) using calcium dye Fluo-4 at the soma. Data collected from n=3 coverslips 4 weeks post plating. Axonal response to 500 nM capsaicin Axol human iPSC-derived sensory neurons show sustained firing after the application of 100 nM capsaicin. The in iPSC-derived sensory neurons. Each cells were cultured at 5.0 × 105 cells/cm² on 64-channel MED-P515A MEA chips (Alpha MED Scientific) coated with trace represents the change in Fluo-4 SureBond+ReadySet for 6 weeks to obtain mature sensory neurons. This raster plot shows the firing frequency of sensory fluorescence intensity in the axons from neurons before and after the application of 100 nM capsaicin. Sustained firing is observed after the application of capsaicin. iPSC-derived sensory neuron in response to Data provided by Prof Ikuro Suzuki (Tohoku Institute of Technology). bath application of 500 nM capsaicin (CAP). Data collected from n=2 coverslips 4 weeks post plating. Average peak response to capsaicin. Each bar illustrates peak fluorescence at baseline and during a 90 second bath application of capsaicin (500nM) at the soma. Data collected from n=3 coverslips 4 weeks post plating. Data provided by Dr Ramin Raouf and Natasha Rangwani (King’s College London). 07 08 Human iPSC-derived Sensory Neuron Progenitors TRPV1-mediated response to temperature Axol iPSC-Derived Sensory Neurons subjected to an increase in temperature at day 14 and 21 results in an increase in neuronal firing. This suggests the expression of TRPV1. Axol human iPSC-derived sensory neurons show an increase in neuronal firing in response to temperature. The cells were cultured at 5.0 × 105 cells/cm² in a 37°C , 5% CO2 atmosphere on 64-channel MED-P515A MEA chips (Alpha MED Scientific) coated with SureBond+ReadySet. Spontaneous and evoked extracellular field potentials were acquired at a sampling rate of 20 kHz/channel and signals were high-pass filtered at 100 Hz. 37°C 42.6°C Electrical Activity Axol Human iPSC-Derived Sensory Neuron Progenitors display electrical activity. Axol Human iPSC-Derived Sensory Neuron Progenitors show spontaneous extracellular field potential on a 64-channel MEA (Alpha MED Scientific) after 33 days in culture. Cells were seeded at 5x105 cells/cm² and treated with 2.5 µg/ml mitomycin C. Data provided by Prof Ikuro Suzuki (Tohoku Institute of Technology).
Recommended publications
  • Chapter 2 Test Review
    Unit III, Modules 9-13 Test Review • See also the Unit III notes and pages 76-122 • About 45 m.c., plus two essays; one on brain functioning, the other review concepts from previous units. • Some practice questions are embedded in this presentation • Other practice questions are available at the textbook website and in the textbook after each module. Neuron Order of a transmission: dendrite, cell body, axon, synapse (see arrow below) Neural Communication Neurons, 80 Neural Communication • (a)Dendrite – the bushy, branching extensions of a neuron that receive messages and conduct impulses toward the (b)cell body • (c)Axon – the extension of a neuron, ending in branching terminal fibers, through which messages are sent to other neurons or to muscles or glands • Myelin [MY-uh-lin] Sheath – a layer of fatty cells segmentally encasing the fibers of many neurons – makes possible vastly greater transmission speed of neutral impulses, – Damage to can lead to Multiple sclerosis Neural Communication • Action Potential – a neural impulse; a brief electrical charge that travels down an axon; DEPOLARIZED – generated by the movement of positively charges atoms in and out of channels in the axon’s membrane • Threshold – the level of stimulation required to trigger a neural impulse Action Potential A neural impulse. A brief electrical charge that travels down an axon and is generated by the movement of positively charged atoms in and out of channels in the axon’s membrane. Practice question • Multiple sclerosis is a disease that is most directly associated with the degeneration of: a. the myelin sheath. b. the pituitary gland.
    [Show full text]
  • Signaling by Sensory Receptors
    Signaling by Sensory Receptors David Julius1 and Jeremy Nathans2 1Department of Physiology, University of California School of Medicine, San Francisco, California 94158 2Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland 21205 Correspondence: [email protected] and [email protected] SUMMARY Sensory systems detect small molecules, mechanical perturbations, or radiation via the activa- tion of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled recep- tors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR- based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illus- trate the integration of diverse modulatory signals at the receptor, as seen in the thermosen- sory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous exam- ples in which gene duplication and sequence divergence have created novel sensory specific- ities. This is the evolutionary basis for the observed diversity in temperature- and ligand- dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Primary Processes in Sensory Cells: Current Advances
    J Comp Physiol A (2009) 195:1–19 DOI 10.1007/s00359-008-0389-0 REVIEW Primary processes in sensory cells: current advances Stephan Frings Received: 14 September 2008 / Revised: 25 October 2008 / Accepted: 25 October 2008 / Published online: 15 November 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com Abstract In the course of evolution, the strong and unre- INAD Inactivation no after-potential D mitting selective pressure on sensory performance has MEC Mechanosensitive channel-related protein driven the acuity of sensory organs to its physical limits. As OHC Outer hair cell a consequence, the study of primary sensory processes ORN Olfactory receptor neuron illustrates impressively how far a physiological function PDE Phosphodiesterase can be improved if the survival of a species depends on it. PDZ Domain postsynaptic density/discs-large/zonula Sensory cells that detect single-photons, single molecules, occludens domain mechanical motions on a nanometer scale, or incredibly TRP Channel transient receptor potential channel small Xuctuations of electromagnetic Welds have fascinated VNO Vomeronasal organ physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent develop- Introduction ments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfac- Sensory cells provide the central nervous system with vital tion, as well as the analysis of light polarization and the ori- information about the body and its environment. Each sen- entation in the Earth’s magnetic Weld. The data are screened sory cell detects speciWc stimuli using highly specialized for common transduction strategies and common transduc- structures which operate as sensors for adequate stimuli.
    [Show full text]
  • Specialized Cilia in Mammalian Sensory Systems
    Cells 2015, 4, 500-519; doi:10.3390/cells4030500 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Specialized Cilia in Mammalian Sensory Systems Nathalie Falk, Marlene Lösl, Nadja Schröder and Andreas Gießl * Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; E-Mails: [email protected] (N.F.); [email protected] (M.L.); [email protected] (A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-9131-85-28055; Fax: +49-9131-85-28060. Academic Editors: Gang Dong and William Tsang Received: 18 May 2015 / Accepted: 9 September 2015 / Published: 11 September 2015 Abstract: Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS
    Chapter 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS Figure 36.1 This shark uses its senses of sight, vibration (lateral-line system), and smell to hunt, but it also relies on its ability to sense the electric fields of prey, a sense not present in most land animals. (credit: modification of work by Hermanus Backpackers Hostel, South Africa) Chapter Outline 36.1: Sensory Processes 36.2: Somatosensation 36.3: Taste and Smell 36.4: Hearing and Vestibular Sensation 36.5: Vision Introduction In more advanced animals, the senses are constantly at work, making the animal aware of stimuli—such as light, or sound, or the presence of a chemical substance in the external environment—and monitoring information about the organism’s internal environment. All bilaterally symmetric animals have a sensory system, and the development of any species’ sensory system has been driven by natural selection; thus, sensory systems differ among species according to the demands of their environments. The shark, unlike most fish predators, is electrosensitive—that is, sensitive to electrical fields produced by other animals in its environment. While it is helpful to this underwater predator, electrosensitivity is a sense not found in most land animals. 36.1 | Sensory Processes By the end of this section, you will be able to do the following: • Identify the general and special senses in humans • Describe three important steps in sensory perception • Explain the concept of just-noticeable difference in sensory perception Senses provide information about the body and its environment. Humans have five special senses: olfaction (smell), gustation (taste), equilibrium (balance and body position), vision, and hearing.
    [Show full text]
  • Fundamentals of Nervous System and Nervous Tissue
    Fundamentals of Nervous System and Nervous Tissue Chapter 12 Nervous System The nervous system is the main system to communicate and coordinate body activities by sending electrical impulses. Nervous system forms a communication network in whole body. Endocrine system communicates through chemical messengers – hormones. 12 pairs of Cranial nerves arise from brain Brain (Part of PNS) Central NS 31 pairs of spinal nerves arise from spinal Spinal nerve cord nerve cord (Part of PNS) Somatic sensory Afferent Division Visceral sensory Peripheral NS Somatic NS Efferent Division Sympathetic Autonomic NS Parasympathetic Neuron A neuron has a cell body. Many smaller branched appendages are called Dendrites. Dendrites bring in information (nerve impulse) to the cell body. A single longer appendage is called Axon. It takes information away from cell body. It branches at the end into terminal knobs. A terminal knob secretes a chemical called Neurotransmitter in the gap to the next neuron or muscle membrane. 3-types of neurons (on basis of function) Specialized nerve cells are called Neurons. Sensory neurons bring information from sense organs like eyes to CNS. Sensory = Affrent. Somatic Sensory = coming from body wall - skin, muscles and joints; Visceral Sensroy = coming from internal organs - viscera Motor neurons take information from CNS to effectors like muscles or glands. Motor = Effrent. Somatic Motor – going to skeletal muscles and Visceral Motor – going to smooth or cardiac muscles. Inter-neurons receive information from sensory neurons and
    [Show full text]
  • Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury
    cells Review Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury Håkan Aldskogius * and Elena N. Kozlova Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial Citation: Aldskogius, H.; Kozlova, neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response E.N.
    [Show full text]
  • Propioceptores Articulares Y Musculares*
    Biomecánica, VII, 13 (79-93), 1999 TEMAS DE ACTUALIZACIÓN Propioceptores articulares y musculares* JOSÉ A. VEGA Departamento de Morfología y Biología Celular Universidad de Oviedo, Oviedo Resumen La función de los mecanorreceptores de las articulaciones y músculos se considera asociada a la propiocepción. Sin embargo, existen evidencias de que la propiocepción no sólo depende del morfotipo de mecanorreceptor presente en dichos tejidos sino también de las propiedades de las neuronas sensitivas primarias y las fibras sensitivas asociadas a ellos, así como de su proyección sobre el asta posterior de la médula espinal. Este artículo resume las bases morfológicas de la propiocepción a nivel del sistema nervioso periférico, analizando: a) las neuronas sensitivas primarias propioceptivas; b) los tipos de fibras nerviosas sensitivas que llegan a los propioceptores; c) la inervación sensitiva de articulaciones y músculos; d) los morfotipos de mecanorreceptores asociados a la propiocepción; e) los datos recientes obtenidos a partir de animales deficientes en factores clave para el desarrollo del sistema propioceptor. Palabras clave: propiocepcion, mecanorreceptores, ganglios sensitivos, fibras nerviosas sensitivas Summary The function of mechanoreceptors associated with joints and muscles are hypothesized to signal primarily propioception. However, increasing evidences suggest that proprioception depends not only on the morphotype of mechanoreceptors, but also the type of primary sensory neuron and nerve fibre, as well as the synapsis in the dorsal horn of the spinal cord. This article summarizes the morphological basis for proprioception in the peripheral nervous system analyzing: a) the proprioceptive primary sensory neurons; b) the types of sensory nerve fibres supplying proprioceptors; c) the sensory innervation of joints and muscles; d) the morphotypes of mechanoreceptors which subserves to proprioception; e) the recent data obtained form animals deficient in key factors for normal development of the prorioceptive systme.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: a Whole-Mount Muscle Approach
    Wright State University CORE Scholar Neuroscience, Cell Biology & Physiology Faculty Publications Neuroscience, Cell Biology & Physiology 1-25-2017 Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole-Mount Muscle Approach Martha Jean Sonner Wright State University Marie C. Walters Wright State University David R. Ladle Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/ncbp Part of the Medical Cell Biology Commons, Medical Neurobiology Commons, Medical Physiology Commons, Neurosciences Commons, and the Physiological Processes Commons Repository Citation Sonner, M. J., Walters, M. C., & Ladle, D. R. (2017). Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole-Mount Muscle Approach. PLOS ONE, 12 (1), e0170751. https://corescholar.libraries.wright.edu/ncbp/1104 This Article is brought to you for free and open access by the Neuroscience, Cell Biology & Physiology at CORE Scholar. It has been accepted for inclusion in Neuroscience, Cell Biology & Physiology Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. RESEARCH ARTICLE Analysis of Proprioceptive Sensory Innervation of the Mouse Soleus: A Whole- Mount Muscle Approach Martha J. Sonner, Marie C. Walters, David R. Ladle* Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio, United States of America * [email protected] a1111111111 Abstract a1111111111 a1111111111 Muscle proprioceptive afferents provide feedback critical for successful execution of motor a1111111111 a1111111111 tasks via specialized mechanoreceptors housed within skeletal muscles: muscle spindles, supplied by group Ia and group II afferents, and Golgi tendon organs, supplied by group Ib afferents.
    [Show full text]