The Neural Basis of Speech and Language
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Long-Term Potentiation Differentially Affects Two Components of Synaptic
Proc. Nati. Acad. Sci. USA Vol. 85, pp. 9346-9350, December 1988 Neurobiology Long-term potentiation differentially affects two components of synaptic responses in hippocampus (plasticity/N-methyl-D-aspartate/D-2-amino-5-phosphonovglerate/facilitation) DOMINIQUE MULLER*t AND GARY LYNCH Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92717 Communicated by Leon N Cooper, September 6, 1988 (receivedfor review June 20, 1988) ABSTRACT We have used low magnesium concentrations ing electrode was positioned in field CAlb between two and the specific antagonist D-2-amino-5-phosphonopentanoate stimulating electrodes placed in fields CAla and CAlc; this (D-AP5) to estimate the effects of long-term potentiation (LTP) allowed us to activate separate inputs to a common pool of on the N-methyl-D-aspartate (NMDA) and non-NMDA recep- target cells. Stimulation voltages were adjusted to produce tor-mediated components of postsynaptic responses. LTP in- field EPSPs of -1.5 mV and did not elicit population spikes duction resulted in a considerably larger potentiation of non- in any of the responses included for data analysis. NMDA as opposed to NMDA receptor-related currents. In- Paired-pulse facilitation was produced by applying two creasing the size of postsynaptic potentials with greater stimulation pulses separated by 30 or 50 ms to the same stimulation currents or with paired-pulse facilitation produced stimulating electrode and LTP was induced by patterned opposite effects; i.e., those aspects ofthe response dependent on burst stimulation-i.e., 10 bursts delivered at 5 Hz, each NMDA receptor's increased to a greater degree than did those burst being composed of four pulses at 100 Hz (see ref. -
Chapter 2 Test Review
Unit III, Modules 9-13 Test Review • See also the Unit III notes and pages 76-122 • About 45 m.c., plus two essays; one on brain functioning, the other review concepts from previous units. • Some practice questions are embedded in this presentation • Other practice questions are available at the textbook website and in the textbook after each module. Neuron Order of a transmission: dendrite, cell body, axon, synapse (see arrow below) Neural Communication Neurons, 80 Neural Communication • (a)Dendrite – the bushy, branching extensions of a neuron that receive messages and conduct impulses toward the (b)cell body • (c)Axon – the extension of a neuron, ending in branching terminal fibers, through which messages are sent to other neurons or to muscles or glands • Myelin [MY-uh-lin] Sheath – a layer of fatty cells segmentally encasing the fibers of many neurons – makes possible vastly greater transmission speed of neutral impulses, – Damage to can lead to Multiple sclerosis Neural Communication • Action Potential – a neural impulse; a brief electrical charge that travels down an axon; DEPOLARIZED – generated by the movement of positively charges atoms in and out of channels in the axon’s membrane • Threshold – the level of stimulation required to trigger a neural impulse Action Potential A neural impulse. A brief electrical charge that travels down an axon and is generated by the movement of positively charged atoms in and out of channels in the axon’s membrane. Practice question • Multiple sclerosis is a disease that is most directly associated with the degeneration of: a. the myelin sheath. b. the pituitary gland. -
Signaling by Sensory Receptors
Signaling by Sensory Receptors David Julius1 and Jeremy Nathans2 1Department of Physiology, University of California School of Medicine, San Francisco, California 94158 2Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland 21205 Correspondence: [email protected] and [email protected] SUMMARY Sensory systems detect small molecules, mechanical perturbations, or radiation via the activa- tion of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled recep- tors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR- based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illus- trate the integration of diverse modulatory signals at the receptor, as seen in the thermosen- sory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous exam- ples in which gene duplication and sequence divergence have created novel sensory specific- ities. This is the evolutionary basis for the observed diversity in temperature- and ligand- dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. -
Spinal Tracts.Pdf
Spinal Tracts Andreas Talgø Lie Illustrations by: Peder Olai Skjeflo Holman Previous material: Maja Solbakken Definitions to bring home Nerve Ganglion Neuron Nucleus Tract Collection neurons Collection of nerve A single cell Collection of Collection of axons that transmits cell bodies in the transmitting nerve cell bodies in traveling up or sensation or motor PNS, typically linked electrical impluses. the CNS, typically down the spinal impulses depending by synapses. linked by synapses. cord, depending on the function and Location: both on function destination. Location: PNS Location: CNS and destination. Location: PNS Location: CNS - does it matter? Tract - highway to pass anatomy exam? • Highway = Tract • Lane = Neuron • Car = Signal Slow... Fast!! Just to make sure... • Ipsilateral or contralateral • Ventral = anterior • Dorsal = posterior High yield points to understand • What does the tract transmit - Motor or sensory? If sensory: which sensation? • Where does the neurones synapse - 1.st, 2nd and 3rd order neron? Which ganglion/nuclei? • Where there are decussations - If there are any decussations at all? ASCENDING / SENSORY TRACTS Sensations * Temperature NOT transmitted by the tracts: * Pressure * Visualization * Pain * Audition * Fine touch * Olfaction * Crude touch * Gustation * Proprioception * Vibration Sensations Precise sensation Primitive sensation Fine touch Crude touch Pressure Pain Vibration Temperature Proprioception Other: sexual, itching, tickling Ascending tracts / Sensory tracts Dorsal coulmn Lat. Spinothalamic Ant. -
System Inflammation Macrophages/Microglia in Central Nervous Brain Dendritic Cells
Brain Dendritic Cells and Macrophages/Microglia in Central Nervous System Inflammation This information is current as Hans-Georg Fischer and Gaby Reichmann of September 25, 2021. J Immunol 2001; 166:2717-2726; ; doi: 10.4049/jimmunol.166.4.2717 http://www.jimmunol.org/content/166/4/2717 Downloaded from References This article cites 51 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/166/4/2717.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Brain Dendritic Cells and Macrophages/Microglia in Central Nervous System Inflammation1 Hans-Georg Fischer2 and Gaby Reichmann Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS .inflammation was associated with the proliferation of CD11b؉ brain cells that exhibited the dendritic cell (DC) marker CD11c These cells constituted up to 30% of the total CD11b؉ brain cell population. -
Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes
Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 1989 Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes Nancy C. Tkacs Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Physiology Commons Recommended Citation Tkacs, Nancy C., "Neurophysiology of Frog Dorsal Root Afferent Fibers and Their Intraspinal Processes" (1989). Dissertations. 2652. https://ecommons.luc.edu/luc_diss/2652 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1989 Nancy C. Tkacs UBRA~Y·· NEUROPHYSIOLOGY OF FROG DORSAL ROOT AFFERENT FIBERS AND THEIR INTRASPINAL PROCESSES by Nancy C. Tkacs A Dissertation Submitted to the Faculty of the Graduate School of .Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy April 1989 DEDICATION To Bill, with deep love and gratitude ii ACKNOWLEDG.EMENTS I would like to thank the faculty of the Department of Physiology for the excellent training I have received. I am particularly grateful to Dr. James Filkins for supporting my dissertation research. My thanks also go to Dr. Charles Webber, Dr. David Euler, Dr. David Carpenter, and Dr. Sarah Shefner for serving on my dissertation committee. Their helpful suggestions added much to the research and the dissertation. My gratitude goes to several individuals who unselfishly shared their time, resources, and expertise. -
Mixed Electrical–Chemical Synapses in Adult Rat Hippocampus Are Primarily Glutamatergic and Coupled by Connexin-36
ORIGINAL RESEARCH ARTICLE published: 15 May 2012 NEUROANATOMY doi: 10.3389/fnana.2012.00013 Mixed electrical–chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36 Farid Hamzei-Sichani 1,2,3‡, Kimberly G. V. Davidson4‡,ThomasYasumura4,William G. M. Janssen3, Susan L.Wearne 4#, Patrick R. Hof 3, Roger D.Traub 5†, Rafael Gutiérrez 6, Ole P.Ottersen7 and John E. Rash4,8* 1 Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, USA 2 Program in Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA 3 Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA 4 Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 5 Department of Physiology and Pharmacology, Downstate Medical Center, State University of New York, Brooklyn, NY, USA 6 Department of Pharmacobiology, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 7 Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway 8 Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA Edited by: Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neu- Ryuichi Shigemoto, National Institute ronal communication in mammalian brain, whereas axodendritic and axosomatic gap junc- for Physiological Sciences, Japan tions have rarely been described. We present ultrastructural, immunocytochemical, and Reviewed by: Javier DeFelipe, Cajal Institute, Spain dye-coupling evidence for “mixed” (electrical/chemical) synapses on both principal cells Richard J. Weinberg, University of and interneurons in adult rat hippocampus. -
Nervous Tissue
Nervous Tissue • Controls and integrates all body activities within limits that maintain life • Three basic functions – sensing changes with sensory receptors • fullness of stomach or sun on your face – interpreting and remembering those changes – reacting to those changes with effectors • muscular contractions • glandular secretions Major Structures of the Nervous System • Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors Organization of the Nervous System • CNS is brain and spinal cord • PNS is everything else Nervous System Divisions • Central nervous system (CNS) – consists of the brain and spinal cord • Peripheral nervous system (PNS) – consists of cranial and spinal nerves that contain both sensory and motor fibers – connects CNS to muscles, glands & all sensory receptors Subdivisions of the PNS • Somatic (voluntary) nervous system (SNS) – neurons from cutaneous and special sensory receptors to the CNS – motor neurons to skeletal muscle tissue • Autonomic (involuntary) nervous systems – sensory neurons from visceral organs to CNS – motor neurons to smooth & cardiac muscle and glands • sympathetic division (speeds up heart rate) • parasympathetic division (slow down heart rate) • Enteric nervous system (ENS) – involuntary sensory & motor neurons control GI tract – neurons function independently of ANS & CNS Neurons • Functional unit of nervous system • Have capacity to produce action potentials – electrical excitability • Cell body – single nucleus with prominent nucleolus – Nissl -
The Posterior Muscles of the Auricle: Anatomy and Surgical Applications
Central Annals of Otolaryngology and Rhinology Research Article *Corresponding author Christian Vacher, Department of Maxillofacial Surgery & Anatomy, University of Paris-Diderot, APHP, 100, The Posterior Muscles of the Boulevard Général Leclerc, 92110 Clichy, France, Tel: 0033140875671; Email: Submitted: 19 December 2014 Auricle: Anatomy and Surgical Accepted: 16 January 2015 Published: 19 January 2015 Applications Copyright © 2015 Vacher et al. Rivka Bendrihem1, Christian Vacher2* and Jacques Patrick Barbet3 OPEN ACCESS 1 Department of Dentistry, University of Paris-Descartes, France Keywords 2 Department of Maxillofacial Surgery & Anatomy, University of Paris-Diderot, France • Auricle 3 Department of Pathology and Cytology, University of Paris-Descartes, France • Anatomy • Prominent ears Abstract • Muscle Objective: Prominent ears are generally considered as primary cartilage deformities, but some authors consider that posterior auricular muscles malposition could play a role in the genesis of this malformation. Study design: Auricle dissections of 30 cadavers and histologic sections of 2 fetuses’ ears. Methods: Posterior area of the auricle has been dissected in 24 cadavers preserved with zinc chlorure and 6 fresh cadavers in order to describe the posterior muscles and fascias of the auricle. Posterior auricle muscles from 5 fresh adult cadavers have been performed and two fetal auricles (12 and 22 weeks of amenorhea) have been semi-serially sectioned in horizontal plans. Five µm-thick sections were processed for routine histology (H&E) or for immuno histochemistry using antibodies specific for the slow-twitch and fast-twich myosin heavy chains in order to determine which was the nature of these muscles. Results: The posterior auricular and the transversus auriculae muscles looked in most cases like skeletal muscles and they were made of 75% of slow muscular fibres. -
Deconstructing Spinal Interneurons, One Cell Type at a Time Mariano Ignacio Gabitto
Deconstructing spinal interneurons, one cell type at a time Mariano Ignacio Gabitto Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Mariano Ignacio Gabitto All rights reserved ABSTRACT Deconstructing spinal interneurons, one cell type at a time Mariano Ignacio Gabitto Abstract Documenting the extent of cellular diversity is a critical step in defining the functional organization of the nervous system. In this context, we sought to develop statistical methods capable of revealing underlying cellular diversity given incomplete data sampling - a common problem in biological systems, where complete descriptions of cellular characteristics are rarely available. We devised a sparse Bayesian framework that infers cell type diversity from partial or incomplete transcription factor expression data. This framework appropriately handles estimation uncertainty, can incorporate multiple cellular characteristics, and can be used to optimize experimental design. We applied this framework to characterize a cardinal inhibitory population in the spinal cord. Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. By using our Sparse Bayesian approach, we showed that V1 interneurons, a major inhibitory population that controls motor output, fractionate into diverse subsets on the basis of the expression of nineteen transcription factors. Transcriptionally defined subsets exhibit highly structured spatial distributions with mediolateral and dorsoventral positional biases. These distinctions in settling position are largely predictive of patterns of input from sensory and motor neurons, arguing that settling position is a determinant of inhibitory microcircuit organization. -
Chapter 8 Nervous System
Chapter 8 Nervous System I. Functions A. Sensory Input – stimuli interpreted as touch, taste, temperature, smell, sound, blood pressure, and body position. B. Integration – CNS processes sensory input and initiates responses categorizing into immediate response, memory, or ignore C. Homeostasis – maintains through sensory input and integration by stimulating or inhibiting other systems D. Mental Activity – consciousness, memory, thinking E. Control of Muscles & Glands – controls skeletal muscle and helps control/regulate smooth muscle, cardiac muscle, and glands II. Divisions of the Nervous system – 2 anatomical/main divisions A. CNS (Central Nervous System) – consists of the brain and spinal cord B. PNS (Peripheral Nervous System) – consists of ganglia and nerves outside the brain and spinal cord – has 2 subdivisions 1. Sensory Division (Afferent) – conducts action potentials from PNS toward the CNS (by way of the sensory neurons) for evaluation 2. Motor Division (Efferent) – conducts action potentials from CNS toward the PNS (by way of the motor neurons) creating a response from an effector organ – has 2 subdivisions a. Somatic Motor System – controls skeletal muscle only b. Autonomic System – controls/effects smooth muscle, cardiac muscle, and glands – 2 branches • Sympathetic – accelerator “fight or flight” • Parasympathetic – brake “resting and digesting” * 4 Types of Effector Organs: skeletal muscle, smooth muscle, cardiac muscle, and glands. III. Cells of the Nervous System A. Neurons – receive stimuli and transmit action potentials -
L4-Physiology of Motor Tracts.Pdf
: chapter 55 page 667 Objectives (1) Describe the upper and lower motor neurons. (2) Understand the pathway of Pyramidal tracts (Corticospinal & corticobulbar tracts). (3) Understand the lateral and ventral corticospinal tracts. (4) Explain functional role of corticospinal & corticobulbar tracts. (5) Describe the Extrapyramidal tracts as Rubrospinal, Vestibulospinal, Reticulospinal and Tectspinal Tracts. The name of the tract indicate its pathway, for example Corticobulbar : Terms: - cortico: cerebral cortex. Decustation: crossing. - Bulbar: brainstem. Ipsilateral : same side. *So it starts at cerebral cortex and Contralateral: opposite side. terminate at the brainstem. CNS influence the activity of skeletal muscle through two set of neurons : 1- Upper motor neurons (UMN) 2- lower motor neuron (LMN) They are neurons of motor cortex & their axons that pass to brain stem and They are Spinal motor neurons in the spinal spinal cord to activate: cord & cranial motor neurons in the brain • cranial motor neurons (in brainstem) stem which innervate muscles directly. • spinal motor neurons (in spinal cord) - These are the only neurons that innervate - Upper motor neurons (UMN) are the skeletal muscle fibers, they function as responsible for conveying impulses for the final common pathway, the final link voluntary motor activity through between the CNS and skeletal muscles. descending motor pathways that make up by the upper motor neurons. Lower motor neurons are classified based on the type of muscle fiber the innervate: There are two UMN Systems through which 1- alpha motor neurons (UMN) control (LMN): 2- gamma motor neurons 1- Pyramidal system (corticospinal tracts ). 2- Extrapyramidal system The activity of the lower motor neuron (LMN, spinal or cranial) is influenced by: 1.