Nervous System Central Nervous System Peripheral Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Nervous System Central Nervous System Peripheral Nervous System Peripheral Nervous System Involuntary reflexes (spinal cord); Organization of Nervous System: voluntary actions (higher brain centers) Nervous system Integration Central nervous system Peripheral nervous system (CNS) (PNS) Motor Sensory output input Brain Spinal cord Motor division Sensory division (efferent) (afferent) Autonomic nervous system Somatic nervous system (involuntary; smooth & cardiac muscle) (voluntary; skeletal muscle) Sympathetic division Parasympathetic division Peripheral Nervous System Motor Units: Motor Unit: A single motor neuron and all the muscle fibers innervated by it (motor unit = all-or-none) Motor unit size dictates control: Fine Control / Rapid Reaction: 1-10 fibers / MU (e.g., ocular muscles) Gross Control / Slow Reaction: 1000’s fibers / MU (e.g., quadriceps) Recruitment: Addition of motor units to produce smooth, steady muscle tension (multiple fiber summation) Motoneuron Pool: Set of motor neurons innervating Small large motor units activated… muscle fibers within the same muscle • Varying thresholds Motor units overlap; provides coordination Marieb & Hoehn – Figure 9.13 1 Peripheral Nervous System Types of Motor Neurons: 1) Alpha () motor neurons: • Give rise to large Type A alpha (A) motor nerve fibers (~ 14 µm diameter) • Innervate extrafusal skeletal muscle fibers (generate force) 2) Gamma () motor neurons: • Give rise to small Type A gamma (Aγ) motor nerve fibers (~ 5 µm diameter) • Innervate intrafusal muscle fibers (small, specialized fibers – muscle spindle) What is the length of the muscle? Proper control of muscle function requires: What is the instantaneous tension? How rapidly is the length / tension changing? 1) Excitation of muscle by motor neuron 2) Continuous feedback of sensory information from each muscle • Requires specialized receptors: A) Muscle spindle – Detect muscle length B) Golgi tendon organ – Detect tendon (muscle) tension Guyton & Hall – Figure 54.2 Peripheral Nervous System Muscle Spindle – Anatomy: Sensory Innervation: Primary Ending: Large sensory fiber (Ia) encircling central portion of intrafusal fibers Secondary Ending: Smaller sensory fiber(s) (II) encircling / branched along intrafusal fiber • 3 – 12 intrafusal muscle fibers enclosed in connective tissue capsule • Central regions lacking actin / myosin (non-contractile); serve as sensor regions • Contractile ends; innervated by Aγ motor fibers 2 Costanzo – Figure 3.29 Peripheral Nervous System Muscle Spindle – Anatomy: Nuclear Nuclear chain bag Types of Intrafusal Fibers: 1) Nuclear Chain 2) Nuclear Bag • Small fibers; nuclei arranged in a row • large fibers; nuclei grouped in central region • 3 – 9 fibers / muscle spindle • 1 – 3 fibers / muscle spindle • Innervated by type Ia and type II afferent • Innervated by type Ia afferent fibers fibers (primary / secondary endings) (primary endings) Costanzo – Figure 3.29 Peripheral Nervous System Muscle Spindle – Physiology: Nuclear Nuclear chain bag Muscle spindles emit sensory nerve impulses continuously • Stretching increases rate; shortening decreases rate Sensory region excited via lengthening of muscle which stretches intrafusal fibers • Group II afferent fibers detect the length of a muscle fiber (nuclear chain) • Number of impulses proportional to degree of stretch (tonic reception) • Group Ia afferent fibers detect the velocity of length change (nuclear chain / bag) • Number of impulses proportional to rate of length change (phasic reception) 3 Peripheral Nervous System Muscle Spindle – Physiology: Reflex • Muscle spindles function as length comparators (intrafusal vs. extrafusal length) • Designed to oppose change in intrafusal length (negative feedback system) • Returns intrafusal fibers to original length by activating extrafusal fibers A (Type Ia) Type II: Delayed signals; Relay information Guyton & Hall – Figure 54.4 Peripheral Nervous System Reflex: Reflex: Rapid, automatic response to a specific stimuli Reflex Arc: Step 2: Sensory neuron activation Step 1: Receptor activation Step 3: Information Step 4: processing Motor neuron Step 5: activation Effector activation 4 Costanzo – Figure 3.30 Peripheral Nervous System Spinal Cord Reflexes: Limited delay between 1) Stretch reflex sensory input and motor output (20 – 40 msec) # of synapses Stimulus for Sensory afferent Response in reflex arc reflex fibers of muscles 1 Muscle stretch Ia Muscle contraction Costanzo – Figure 3.31 Peripheral Nervous System Spinal Cord Reflexes: 2) Golgi tendon reflex Interneurons # of synapses Stimulus for Sensory afferent Response in reflex arc reflex fibers of muscle(s) 2 Muscle contraction Ib Muscle relaxation 5 Costanzo – Figure 3.32 Peripheral Nervous System Spinal Cord Reflexes: Afterdischarge: 3) Flexor-Withdrawal reflex Persistent neural discharge occurring in polysynaptic reflex circuits Interneurons # of synapses Stimulus for Sensory afferent Response in reflex arc reflex fibers of muscle(s) Many Pain; temperature II, III, and IV Flexion (ipsilateral) Extension (contralateral) Peripheral Nervous System Muscle Spindle – Physiology: Reflex • Muscle spindles function as length comparators (intrafusal vs. extrafusal length) • Designed to oppose change in intrafusal length (negative feedback system) • Returns intrafusal fibers to original length by activating extrafusal fibers A (Type Ia) Why don’t we inhibit stretch Type II: reflexes when we voluntarily Delayed signals; Relay information activate our muscles? Answer: Gamma system Guyton & Hall – Figure 54.4 6 Peripheral Nervous System Gamma Efferent System: Higher order signals muscle to contract (+) A motor neuron (+) • Elicits tonic signaling (constant intrafusal stretch) by keeping the length of the intrafusal fibers in proportion to the length of the extrafusal fibers • A motor neurons coactivated with Aα motor neurons Figure 54.3 7 Peripheral Nervous System Levels of Motor Control: Precommand Level Cerebellum (feedback) Control output of cortex / brain stem Basal nuclei • Start / stop movements • Coordinate movements with posture • block unwanted movements Projection Level Motor cortex Direct (cerebrum) system Convey instructions to spinal cord motor neurons Brain stem Indirect (send copy of instructions to higher levels) nuclei system Segmental Level Spinal Central pattern generators (CPGs): cord Circuits that control specific, oft-repeated Sensory motor activities (e.g., locomotion) Motor input output Spinal cord reflex 8 .
Recommended publications
  • What Is a Complex Adaptive System?
    PROJECT GUTS What is a Complex Adaptive System? Introduction During the last three decades a leap has been made from the application of computing to help scientists ‘do’ science to the integration of computer science concepts, tools and theorems into the very fabric of science. The modeling of complex adaptive systems (CAS) is an example of such an integration of computer science into the very fabric of science; models of complex systems are used to understand, predict and prevent the most daunting problems we face today; issues such as climate change, loss of biodiversity, energy consumption and virulent disease affect us all. The study of complex adaptive systems, has come to be seen as a scientific frontier, and an increasing ability to interact systematically with highly complex systems that transcend separate disciplines will have a profound affect on future science, engineering and industry as well as in the management of our planet’s resources (Emmott et al., 2006). The name itself, “complex adaptive systems” conjures up images of complicated ideas that might be too difficult for a novice to understand. Instead, the study of CAS does exactly the opposite; it creates a unified method of studying disparate systems that elucidates the processes by which they operate. A complex system is simply a system in which many independent elements or agents interact, leading to emergent outcomes that are often difficult (or impossible) to predict simply by looking at the individual interactions. The “complex” part of CAS refers in fact to the vast interconnectedness of these systems. Using the principles of CAS to study these topics as related disciplines that can be better understood through the application of models, rather than a disparate collection of facts can strengthen learners’ understanding of these topics and prepare them to understand other systems by applying similar methods of analysis (Emmott et al., 2006).
    [Show full text]
  • Chapter 2 Test Review
    Unit III, Modules 9-13 Test Review • See also the Unit III notes and pages 76-122 • About 45 m.c., plus two essays; one on brain functioning, the other review concepts from previous units. • Some practice questions are embedded in this presentation • Other practice questions are available at the textbook website and in the textbook after each module. Neuron Order of a transmission: dendrite, cell body, axon, synapse (see arrow below) Neural Communication Neurons, 80 Neural Communication • (a)Dendrite – the bushy, branching extensions of a neuron that receive messages and conduct impulses toward the (b)cell body • (c)Axon – the extension of a neuron, ending in branching terminal fibers, through which messages are sent to other neurons or to muscles or glands • Myelin [MY-uh-lin] Sheath – a layer of fatty cells segmentally encasing the fibers of many neurons – makes possible vastly greater transmission speed of neutral impulses, – Damage to can lead to Multiple sclerosis Neural Communication • Action Potential – a neural impulse; a brief electrical charge that travels down an axon; DEPOLARIZED – generated by the movement of positively charges atoms in and out of channels in the axon’s membrane • Threshold – the level of stimulation required to trigger a neural impulse Action Potential A neural impulse. A brief electrical charge that travels down an axon and is generated by the movement of positively charged atoms in and out of channels in the axon’s membrane. Practice question • Multiple sclerosis is a disease that is most directly associated with the degeneration of: a. the myelin sheath. b. the pituitary gland.
    [Show full text]
  • Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
    Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education
    [Show full text]
  • Signaling by Sensory Receptors
    Signaling by Sensory Receptors David Julius1 and Jeremy Nathans2 1Department of Physiology, University of California School of Medicine, San Francisco, California 94158 2Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland 21205 Correspondence: [email protected] and [email protected] SUMMARY Sensory systems detect small molecules, mechanical perturbations, or radiation via the activa- tion of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled recep- tors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR- based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illus- trate the integration of diverse modulatory signals at the receptor, as seen in the thermosen- sory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous exam- ples in which gene duplication and sequence divergence have created novel sensory specific- ities. This is the evolutionary basis for the observed diversity in temperature- and ligand- dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche.
    [Show full text]
  • Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
    List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization
    [Show full text]
  • Inside Your Brain You and Your Brain
    Inside your brain You and your brain Many simple and complex psychological functions are mediated by multiple brain regions and, at the same time, a single brain area may control many psychological functions. CC BY Illustration by Bret Syfert 1. Cortex: The thin, folded structure on the outside surface of the brain. 2. Cerebral hemispheres: The two halves of the brain, each of which controls and receives information from the opposite side of the body. 3. Pituitary gland: The ‘master gland’ of the body, which releases hormones that control growth, blood pressure, the stress response and the function of the sex organs. 4. Substantia nigra: The ‘black substance’ contains cells that produce the neurotransmitter dopamine and the pigment melatonin, giving it a black appearance. 5. Hypothalamus: The interface between the brain and pituitary gland. It controls the production and release of hormones. 6. Spinal cord: A large bundle of millions of nerve fibres and neuronal cells, which carries information back and forth between the brain and the body. 7. Medulla oblongata: Controls vital involuntary functions such as breathing and heart rate. 8. Cerebellum: The ‘little brain’ that controls balance and coordinates movements. It’s normally required for learning motor skills, such as riding a bike, and is involved in thought processes. 9. Cranial nerve nuclei: Clusters of neurons in the brain stem. Their axons form the cranial nerves. Your brain underpins who you are. It stores your knowledge and memories, gives you the capacity for thought and emotion, and enables you to control your body. The brain is just one part of the nervous system.
    [Show full text]
  • Power Wheelchair Alternative Drive Controls in Spinal Cord Injury
    Power Wheelchair Alternative Drive Controls in Spinal Cord Injury Kristen Cezat, PT, DPT, NCS, ATP/SMS When a person with a spinal cord injury is unable to use a standard joystick on a Fact Sheet power wheelchair, an alternative drive control and location is required. Depending on the person’s level of injury and musculature that remains innervated, the more common locations of alternative drive control input devices include the head, neck, face, eyes, and tongue. A proportional drive control allows the wheelchair’s speed/direction to mirror the force/direction applied to the input device by the user, most often through a joystick. Proportional drive control options include1: • Standard Joystick: able to move in any direction at any speed. It is often the most intuitive device for adults with injuries at C5 and below. Joysticks are commonly located on either left or right arm rest but can be altered for Produced by location in midline if spasticity or contracture limits neutral shoulder/elbow alignment. • Alternative Joystick (often set at the user’s chin): joysticks vary in size and require less force and deflection to activate the joystick.1 air Drive ControlA non -Optionsproportional drive for control Clients uses commands with to turn on/offSpinal various functionsCord such as direction (forward, back, left, or right) of the wheelchair. Speed is predetermined and not variable to the strength of the command provided. Non- Injury proportional drive controls include1,2: a Special Interest • Sip-and-Puff Group of • Head Array • Head Array/Sip-and-Puff Combo Non-proportional drive controls can be either momentary or latched.
    [Show full text]
  • Let's Form a Reflex Arc Model
    Journal of Inquiry Based Activities (JIBA) /Araştırma Temelli Etkinlik Dergisi (ATED) Vol 9, No 2, 84-95, 2019 LET’S FORM A REFLEX ARC MODEL: A STEM ACTIVITY1 Ayşegül Kağnıcı2, Özlem Sadi3 ABSTRACT The purpose of this study is to introduce an activity which has been designed in accordance with Science, Technology, Engineering, Mathematics (STEM) education within the scope of 5E learning model and to present the implementation steps of it. The activity plan is on the topics of Nerves, Hormones and Homeostasis in Human Physiology Unit in 11th grade biology curriculum. The activity was implemented with the participation of 49 students at a public high school. For the implementation of the activity, the students were divided into groups of five and they tried to complete the activity in four class hours. The participant students stated that they both learned and enjoyed learning while they were creating their model. Moreover, the teachers who implemented the activity stated that the equipment used in the activity is easy to access, which creates an advantage for the activity to be done in class. Keywords: biology education, reflex arc, STEM, nervous system. REFLEKS YAYI MODELİ OLUŞTURALIM: BİR STEM ETKİNLİĞİ ÖZ Bu çalışmanın amacı STEM eğitimine uygun olarak tasarlanan bir etkinliğin 5E öğrenme modeli kapsamında tanıtılması ve uygulama basamaklarının sunulmasıdır. Etkinlik planı, 11. Sınıf Biyoloji Dersi Öğretim Programında bulunan İnsan Fizyolojisi ünitesindeki Sinirler, Hormonlar ve Homeostazi konusu ile ilgilidir. Etkinliğin özellikle, omuriliğin görevleri ile refleks yayının çalışma mekanizmalarının öğrenilmesi noktasında faydalı olacağı düşünülmüştür. Etkinlik, bir devlet lisesinde öğrenim gören 49 öğrencinin katılımıyla gerçekleştirilmiştir. Etkinliğin uygulanmasında öğrenciler beşer kişilik gruplar oluşturmuş ve dört ders saati boyunca etkinliği tamamlamaya çalışmışlardır.
    [Show full text]
  • Electromagnetic Field and TGF-Β Enhance the Compensatory
    www.nature.com/scientificreports OPEN Electromagnetic feld and TGF‑β enhance the compensatory plasticity after sensory nerve injury in cockroach Periplaneta americana Milena Jankowska1, Angelika Klimek1, Chiara Valsecchi2, Maria Stankiewicz1, Joanna Wyszkowska1* & Justyna Rogalska1 Recovery of function after sensory nerves injury involves compensatory plasticity, which can be observed in invertebrates. The aim of the study was the evaluation of compensatory plasticity in the cockroach (Periplaneta americana) nervous system after the sensory nerve injury and assessment of the efect of electromagnetic feld exposure (EMF, 50 Hz, 7 mT) and TGF‑β on this process. The bioelectrical activities of nerves (pre‑and post‑synaptic parts of the sensory path) were recorded under wind stimulation of the cerci before and after right cercus ablation and in insects exposed to EMF and treated with TGF‑β. Ablation of the right cercus caused an increase of activity of the left presynaptic part of the sensory path. Exposure to EMF and TGF‑β induced an increase of activity in both parts of the sensory path. This suggests strengthening efects of EMF and TGF‑β on the insect ability to recognize stimuli after one cercus ablation. Data from locomotor tests proved electrophysiological results. The takeover of the function of one cercus by the second one proves the existence of compensatory plasticity in the cockroach escape system, which makes it a good model for studying compensatory plasticity. We recommend further research on EMF as a useful factor in neurorehabilitation. Injuries in the nervous system caused by acute trauma, neurodegenerative diseases or even old age are hard to reverse and represent an enormous challenge for modern medicine.
    [Show full text]
  • The Reflex Arc: How a Stimulus Elicits a Response
    The Reflex Arc How a Stimulus Elicits a Response A Knee-Jerk Response • What happened? • When the hammer hit the knee the foot jerked up. • Why? Reacting to Changes • You need to keep the conditions inside your body constant. Doing this is called homeostasis. Small changes inside your body can cause its cells to be damaged or destroyed. Yet, there are big changes going on outside your body. • You need to detect a change in the environment (a stimulus) and react to the change (a response) in a way that maintains homeostasis. When you do this without thinking, it is called a reflex. Reacting to Changes • It can get very hot or very cold outside, but the temperature inside your body stays the same. How? • When it gets cold outside (stimulus) you shiver (response) and keep the temperature inside your body from dropping. • When it gets hot outside (stimulus) you perspire (response) and keep the temperature inside your body from rising. Posture • In order to maintain your posture (even bad posture - stop slouching) your muscles are constantly monitoring their shape. A change in shape of a muscle (the stimulus) causes the muscle to readjust its shape (the response) and maintain your posture. • The knee-jerk reflex is base on the hammer changing the shape of a muscle. Revisiting the Knee-Jerk Response • What is the stimulus? The hammer hits the tendon. • What is the response? The muscle contracts, causing the foot to jerk upward. Other Reflexes Stimulus Response The aroma of your favorite Salivation food A nasty odor Nausea A bright light shining in your Pupils get smaller eye An insect flying towards your Blinking eye How is a Stimulus Detected? • Some cells are specialized to react to a specific stimulus.
    [Show full text]
  • Student Academic Learning Services Nervous System Quiz
    Student Academic Learning Services Page 1 of 8 Nervous System Quiz 1. The term central nervous system refers to the: A) autonomic and peripheral nervous systems B) brain, spinal cord, and cranial nerves C) brain and cranial nerves D) spinal cord and spinal nerves E) brain and spinal cord 2. The peripheral nervous system consists of: A) spinal nerves only B) the brain only C) cranial nerves only D) the brain and spinal cord E) the spinal and cranial nerves 3. Which of these cells are not a type of neuroglia found in the CNS: A) astrocytes B) microglia C) Schwann cells D) ependymal cells E) oligodendrocytes 4. The Schwann cells form a myelin sheath around the: A) dendrites B) cell body C) nucleus D) axon E) nodes of Ranvier 5. The neuron processes that normally receives incoming stimuli are called: A) axons B) dendrites C) neurolemmas D) Schwann cells E) satellite cells www.durhamcollege.ca/sals Student Services Building (SSB), Room 204 905.721.2000 ext. 2491 This document last updated: 7/29/2011 Student Academic Learning Services Page 2 of 8 6. Collections of nerve cell bodies inside the PNS are called: A) ganglia B) tracts C) nerves D) nuclei E) tracts or ganglia 7. Which of the following best describes the waxy-appearing material called myelin: A) an outermembrane on a neuroglial cell B) a lipid-protein (lipoprotein) cell membrane on the outside of axons C) a mass of white lipid material that surrounds the cell body of a neuron D) a mass of white lipid material that insulates the axon of a neuron E) a mass of white lipid material that surrounds the dendrites of a neuron 8.
    [Show full text]
  • ALS and Other Motor Neuron Diseases Can Represent Diagnostic Challenges
    Review Article Address correspondence to Dr Ezgi Tiryaki, Hennepin ALS and Other Motor County Medical Center, Department of Neurology, 701 Park Avenue P5-200, Neuron Diseases Minneapolis, MN 55415, [email protected]. Ezgi Tiryaki, MD; Holli A. Horak, MD, FAAN Relationship Disclosure: Dr Tiryaki’s institution receives support from The ALS Association. Dr Horak’s ABSTRACT institution receives a grant from the Centers for Disease Purpose of Review: This review describes the most common motor neuron disease, Control and Prevention. ALS. It discusses the diagnosis and evaluation of ALS and the current understanding of its Unlabeled Use of pathophysiology, including new genetic underpinnings of the disease. This article also Products/Investigational covers other motor neuron diseases, reviews how to distinguish them from ALS, and Use Disclosure: Drs Tiryaki and Horak discuss discusses their pathophysiology. the unlabeled use of various Recent Findings: In this article, the spectrum of cognitive involvement in ALS, new concepts drugs for the symptomatic about protein synthesis pathology in the etiology of ALS, and new genetic associations will be management of ALS. * 2014, American Academy covered. This concept has changed over the past 3 to 4 years with the discovery of new of Neurology. genes and genetic processes that may trigger the disease. As of 2014, two-thirds of familial ALS and 10% of sporadic ALS can be explained by genetics. TAR DNA binding protein 43 kDa (TDP-43), for instance, has been shown to cause frontotemporal dementia as well as some cases of familial ALS, and is associated with frontotemporal dysfunction in ALS. Summary: The anterior horn cells control all voluntary movement: motor activity, res- piratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells.
    [Show full text]